
Konstantinos Chatzikokolakis a, Catuscia Palamidessi b

a Eindhoven University of Technology, The Netherlands
b INRIA and LIX, École Polytechnique, Palaiseau, France

Making Random Choices Invisible to the

Scheduler ?

Abstract

When dealing with process calculi and automata which express both nondetermin-
istic and probabilistic behavior, it is customary to introduce the notion of scheduler
to resolve the nondeterminism. It has been observed that for certain applications,
notably those in security, the scheduler needs to be restricted so not to reveal the
outcome of the protocol’s random choices, or otherwise the model of adversary would
be too strong even for “obviously correct” protocols. We propose a process-algebraic
framework in which the control on the scheduler can be specified in syntactic terms,
and we show how to apply it to solve the problem mentioned above. We also con-
sider the definition of (probabilistic) may and must preorders, and we show that
they are precongruences with respect to the restricted schedulers. Furthermore, we
show that all the operators of the language, except replication, distribute over prob-
abilistic summation, which is a useful property for verification.

1 Introduction

Security protocols, in particular those for anonymity and fair exchange, of-
ten use randomization to achieve their goals. Since they usually involve more
than one agent, they also give rise to concurrent and interactive activities
that can be best modeled by nondeterminism. Thus it is convenient to specify
them using a formalism which is able to represent both probabilistic and non-
deterministic behavior. Formalisms of this kind have been explored in both
Automata Theory ([1–5]) and in Process Algebra ([6–11]). See also [12,13] for
comparative and more inclusive overviews.

Email addresses: k.chatzikokolakis@tue.nl (Konstantinos Chatzikokolakis),
catuscia@lix.polytechnique.fr (Catuscia Palamidessi).
? This work has been partially supported by the INRIA DREI Équipe Associée
PRINTEMPS, the INRIA ARC project ProNoBiS and the STW/Sentinels PEARL
project.

Preprint submitted to Elsevier Science 19 October 2009

Due to the presence of nondeterminism, in such formalisms it is not possible
to define the probability of events in absolute terms. We need first to decide
how each nondeterministic choice during the execution will be resolved. This
decision function is called scheduler. Once the scheduler is fixed, the behavior
of the system (relatively to the given scheduler) becomes fully probabilistic
and a probability measure can be defined following standard techniques.

It has been observed by several researchers that in security the notion of
scheduler needs to be restricted, or otherwise any secret choice of the protocol
could be revealed by making the choice of the scheduler dependent on it. This
issue was for instance one of the main topics of discussion at the panel of
CSFW 2006. We illustrate it here with an example on anonymity. We use
the standard CCS notation, plus a construct of probabilistic choice P +p Q
representing a process that evolves into P with probability p and into Q with
probability 1− p.

The system Sys consists of a receiver R and two senders S, T communicating
via private channels a, b respectively. Which of the two senders is successful is
decided probabilistically by R. After reception, R sends a signal ok.

R
∆
= a.ok.0 +0.5 b.ok.0

S
∆
= ā.0

T
∆
= b̄.0

Sys
∆
= (νa)(νb)(R | S | T)

The signal ok is public, but since it is the same in both cases, in principle an
external observer should not be able to infer from it the identity of the sender
(S or T). So the system should be anonymous. However, consider a team of
two attackers A and B defined as

A
∆
= ok.s̄.0 B

∆
= ok.t̄.0

and consider the parallel composition Sys | A | B. We have that, under certain
schedulers, the system is no longer anonymous. More precisely, a scheduler
could leak the identity of the sender via the channels s, t by forcing R to
synchronize with A on ok if R has chosen the first alternative, and with B
otherwise. In this case, an output on the public channel s (resp. t) reveals that
S (resp. T) was the sender. This is possible because in general a scheduler can
see the whole history of the computation, in particular the random choices,
even those which are supposed to be private. Note that the visibility of the
synchronization channels to the scheduler is not crucial for this example: we
would have the same problem, for instance, if S, T were both defined as ā.0,
R as a.ok .0, and Sys as (νa)((S +0.5 T) | R).

The above example demonstrates that, with the standard definition of sched-

2

A | ā0 | ā1
([0 = 0]ok +0.5 [0 = 1]ok) | ā1 ok

0
([1 = 0]ok +0.5 [1 = 1]ok) | ā0 0

ok

B | ā0 | ā1
a(x).[x = 0]ok | ā0 | ā1 ok

0
a(x).[x = 1]ok | ā0 | ā1 0

ok

Fig. 1. Execution trees for A | C and B | C
uler, it is not possible to represent a truly private random choice (or a truly
private nondeterministic choice, for the matter) with the current probabilis-
tic process calculi. This is a clear shortcoming when we want to use these
formalisms for the specification and verification of security protocols.

There is another issue related to verification: a private choice has certain
algebraic properties that would be useful in proving equivalences between
processes. In fact, if the outcome of a choice remains private, then it should
not matter at which point of the execution the process makes such choice,
until it actually uses it. Consider for instance A and B defined as follows

A
∆
= a(x).([x = 0]ok

+0.5

[x = 1]ok)

B
∆
= a(x).[x = 0]ok

+0.5

a(x).[x = 1]ok

Process A receives a value and then decides randomly whether it will accept
the value 0 or 1. Process B does exactly the same thing except that the choice
is performed before the reception of the value. If the random choices in A
and B are private, intuitively we should have that A and B are equivalent
(A ≈ B). This is because it should not matter whether the choice is done
before or after receiving a message, as long as the outcome of the choice is
completely invisible to any other process or observer. However, consider the
parallel context C = a0 | a1. Under any scheduler, A has probability at most
1/2 to perform ok . With B, on the other hand, the scheduler can choose
between a0 and a1 based on the outcome of the probabilistic choice, thus
making the maximum probability of ok equal to 1. The execution trees of
A | C and B | C are shown in Figure 1.

In general when +p represents a private choice we would like to have

C[P +p Q] ≈ C[τ.P] +p C[τ.Q] (1)

for all processes P,Q and all contexts C not containing replication (or recur-
sion). In the case of replication the above cannot hold since !(P +p Q) makes
available each time the choice between P and Q, while (!τ.P)+p (!τ.Q) chooses
once and for all which of the two (P or Q) should be replicated. Similarly for

3

recursion. The reason why we need a τ is explained in Section 5.

The algebraic property (1) expresses in an abstract way the privacy of the
probabilistic choice. Moreover, this property is also useful for the verification
of security properties. The interested reader can find in [14] an application to
a fair exchange protocol, as an example. In principle (1) should be useful for
any kind of verification in the process algebra style.

We propose a process-algebraic approach to the problem of hiding the outcome
of random choices. Our framework is based on a calculus obtained by adding
to CCS an internal probabilistic choice construct 2 . This calculus, to which we
refer as CCSp, is a variant of the one studied in [11], the main differences being
that we use replicated input instead of recursion, and we lift some restrictions
that were imposed in [11] to obtain a complete axiomatization. The semantics
of CCSp is given in terms of Segala’s simple probabilistic automata ([4,7]).

In order to limit the power of the scheduler, we extend CCSp with terms repre-
senting explicitly the notion of scheduler. The latter interact with the original
processes via a labeling system. This will allow to specify at the syntactic
level (by a suitable labeling) which choices should be visible to schedulers,
and which ones should not.

1.1 Contribution

The main contributions of this paper are:

• A process calculus CCSσ in which the scheduler is represented as a process,
and whose power can therefore be controlled at the syntactic level.
• The adaptation of the standard notions of probabilistic testing preorders to

CCSσ and the “sanity check” that they are still precongruences. For must
testing, we additionally require that the occurrences of + in the context are
guarded, otherwise we have the problem that P and τ.P are must equivalent,
but Q+P and Q+τ.P are not. This is typical for the plus operator of CCS:
usually it does not preserve weak equivalences.
• The proof that, under suitable conditions on the labelings of C, τ.P and
τ.Q, CCSσ satisfies the property expressed by (1), where ≈ is probabilistic
testing equivalence.

2 We actually consider a variant of CCS where infinite behavior is expressed by
replicated input-prefixed processes rather than by recursion, since this choice sim-
plifies the formalization of schedulers. This version of CCS is not equivalent to the
original one because replication corresponds to recursion with static scope while re-
cursion in CCS has dynamic scope ([15]), however the scoping issues are orthogonal
to those investigated in this paper.

4

• An application of CCSσ to an extended anonymity example (the Dining
Cryptographers Protocol, DCP). We also briefly outline how to extend CCSσ
so to allow the definition of private nondeterministic choice, and we apply
it to the DCP with a nondeterministic master. To our knowledge this is
(together with [16]) the first formal treatment of the scheduling problem
in DCP and the first formalization of a nondeterministic master for the
(probabilistic) DCP.

1.2 Related work

The works that are most closely related to ours are [17,18,16]. The authors
of [17,18] consider probabilistic automata and introduce a restriction on the
scheduler to the purpose of making them suitable to applications in security
protocols. Their approach is based on dividing the actions of each component
of the system in equivalence classes (tasks). The order of execution of differ-
ent tasks is decided in advance by a so-called task scheduler. The remaining
nondeterminism within a task is resolved by a second scheduler, which mod-
els the standard adversarial scheduler of the cryptographic community. This
second entity has limited knowledge about the other components: it sees only
the information that they communicate during execution.

In [16] the authors define a notion of admissible scheduler by introducing an
equivalence relation on the nodes of the execution tree, and requiring that an
admissible scheduler maps two equivalent nodes into bisimilar steps. Both our
paper and [16] have developed, independently, the solution to the problem of
the scheduler in the Dining Cryptographers as an example of application to
security.

Another work along these lines is [19], which uses partitions on the state-space
to obtain partial-information schedulers. However [19] considers a synchronous
parallel composition, so the setting is rather different from [17,18,16] and ours.

Our approach is in a sense dual to the above ones. Instead of defining a re-
striction on the class of schedulers, we provide a way to specify that a choice is
transparent to the scheduler. We achieve this by introducing labels in process
terms, used to represent both the nodes of the execution tree and the next
action or step to be scheduled. We make two nodes indistinguishable to sched-
ulers, and hence the choice between them private, by associating to them the
same label. Furthermore, in contrast with [17,18], our “equivalence classes”
(schedulable actions with the same label) can change dynamically, because
the same action can be associated to different labels during the execution.
However we do not know at the moment whether this difference determines a
separation in the expressive power.

5

1.3 Plan of the paper

In the next section we briefly recall some basic notions. In Section 3 we define
CCSσ, a variant of CCS with explicit scheduler. In Section 4 we compare our
notion of scheduler with the more standard “semantic” notion. In Section 5
we study the probabilistic testing preorders, their compositionality properties,
and the conditions under which (1) holds. Section 6 presents an application
to security. Section 7 concludes.

2 Preliminaries

In this section we briefly recall some preliminary notions about simple prob-
abilistic automata, probabilistic bisimulation and CCSp.

2.1 Simple probabilistic automata ([4,7])

A discrete probability space is a tuple (Ω, µ), where Ω is a countable set and
µ is a discrete probability measure over Ω, that is, a function µ : 2Ω 7→ [0, 1]
such that µ(Ω) = 1 and µ(∪iCi) =

∑
i µ(Ci) where Ci is a countable family of

pairwise disjoint subsets of Ω. It is also useful to consider discrete probabil-
ity spaces over an uncountable set Ω′, by simply restricting to its countable
subsets. Thus, for any set Ω′ we denote by Prob(Ω′) the set of all discrete
probability spaces (Ω, µ) where Ω is a countable subset of Ω′.

The Dirac measure on x ∈ Ω, denoted by δ(x), is the probability measure
that assigns probability 1 to {x}. We also denote by

∑
i[pi]µi the probability

measure obtained as a convex sum of the measures µi.

A simple probabilistic automaton 3 is a tuple (S, q, A,D) where S is a set of
states, q ∈ S is the initial state, A is a set of actions andD ⊆ S×A×Prob(S) is
a transition relation. Intuitively, if (s, a, (S ′, µ)) ∈ D then there is a transition
from the state s performing the action a and leading to a distribution µ over
the states S ′ of the automaton. The idea is that the choice of transition among
the available ones in D is performed nondeterministically, and the choice of
the target state among the ones allowed by µ (i.e. those states s such that
µ(s) > 0) is performed probabilistically. For simplicity, we omit the sample

3 For simplicity, in the following we refer to a simple probabilistic automaton as
a probabilistic automaton. Note however that simple probabilistic automata are a
subset of the probabilistic automata defined in [4,5] which allow a single probabilistic
transition to contain multiple distinct actions.

6

space S ′ when this does not create confusion, and we write s
a−→ µ when

(s, a, (S ′, µ)) ∈ D.

Note also that the set of states S can be uncountable, but each transition can
only reach a countable subset S ′ of states. In this paper we use automata with
an uncountable state space, but whose transitions have only a finite support
set.

A probabilistic automaton M is fully probabilistic if from each state of M
there is at most one transition available. A (partial or complete) execution ϕ
of a probabilistic automaton is a (possibly infinite) sequence s0a1s1a2s2 . . . of
alternating states and actions, such that q = s0, and for each i (si, ai+1, µi) ∈ D
and µi(si+1) > 0 hold. We use lstate(ϕ) to denote the last state of a finite
execution ϕ, and exec∗(M), exec(M) to represent the set of all the finite and
of all the executions of M , respectively.

A scheduler of a probabilistic automaton M = (S, q, A,D) is a function

ζ : exec∗(M) 7→ D

such that ζ(ϕ) = (s, a, µ) ∈ D implies that s = lstate(ϕ). The idea is that a
scheduler selects a transition among the ones available in D and it can base its
decision on the history of the execution. The execution tree of M relative to the
scheduler ζ, denoted by etree(M, ζ), is a fully probabilistic automaton M ′ =
(S ′, q′, A′,D′) such that S ′ ⊆ exec∗(M), q′ = q, A′ = A, and (ϕ, a, µ′) ∈ D′ if
and only if ζ(ϕ) = (lstate(ϕ), a, µ) for some µ and µ′(ϕas) = µ(s). Intuitively,
etree(M, ζ) is produced by unfolding the executions of M and resolving all
nondeterministic choices using ζ. Note that etree(M, ζ) is a simple 4 and fully
probabilistic automaton.

We define the probability of a finite execution ϕ = s0a1s1 . . . ansn as pb(ϕ) =∏n−1
i=0 µi(si+1) where si

ai+1−→ µi, 0 ≤ i ≤ n− 1. A cone with prefix ϕ is defined
as C(ϕ) = {ϕ′ ∈ exec∗(M, ζ) | ϕ ≤ ϕ′} where ≤ is the prefix relation on
executions. We define the probability of a cone as pb(C(ϕ)) = pb(ϕ). This way
we can construct a probability space on the states of etree(M, ζ) which allows
us to define the probability of any event that can be expressed as a countable
union of disjoint cones. More information about the construction can be found
in [4].

4 This is true because we do not consider probabilistic schedulers. If we considered
such schedulers then the execution tree would no longer be a simple automaton.

7

2.2 Probabilistic bisimulation

If R is an equivalence relation over a set S, then we can lift it to a relation on
probability distributions over S by considering two distributions related if they
assign the same probability to the same equivalence classes. More formally
two distributions µ1, µ2 are equivalent, written µ1Rµ2, iff for all equivalence
classes E ∈ S/R : µ1(E) = µ2(E).

Let (S, q, A,D) be a probabilistic automaton. A symmetric relation R ⊆ S×S
is a strong bisimulation iff for all (s1, s2) ∈ R and for all a ∈ A :

s1
a−→ µ1 ⇒ ∃µ2 : s2

a−→ µ2 and µ1Rµ2

We write s1 ∼ s2 if there is a strong bisimulation that relates them.

The union of two probabilistic automata M1 = (S1, q1, A,D1), M2 = (S2, q2,
A,D2) is an automaton M = (S1 ∪ S2, q, A,D1 ∪ D2) where q ∈ S1 ∪ S2. We
say that M1,M2 are bisimilar if q1 ∼ q2 in M .

2.3 CCS with internal probabilistic choice

Let a range over a countable set of channel names. We denote by a the corre-
sponding co-action and we generally assume that a = a. The syntax of CCSp
is the following:

α ::= a | ā | τ prefixes

P,Q ::= processes

α.P prefix

| P | Q parallel

| P +Q nondeterministic choice

| ∑
i piPi internal probabilistic choice

| (νa)P restriction

| !a.P replicated input

| 0 nil

with the additional requirement that
∑
i pi = 1 for all probabilistic choices.

We also use the notation P1 +p P2 to represent a binary probabilistic choice∑2
i=1 piPi with p1 = p and p2 = 1− p.

The semantics of a CCSp term is a probabilistic automaton defined inductively
on the basis of the syntax according to the rules in Figure 2. We denote by

8

ACT
α.P

α−→ δ(P)
RES P

α−→ µ α 6= a, a
(νa)P

α−→ (νa)µ

SUM1 P
α−→ µ

P +Q
α−→ µ

PAR1 P
α−→ µ

P | Q α−→ µ | Q

PROB ∑
i piPi

τ−→ ∑
i [pi]δ(Pi)

REP
!a.P

a−→ δ(P | !a.P)

COM
P

β−→ δ(P ′) Q
β−→ δ(Q′) β ∈ {a, a}

P | Q τ−→ δ(P ′ | Q′)
Fig. 2. The semantics of CCSp. SUM1 and PAR1 have corresponding right rules
SUM2 and PAR2, omitted for simplicity.

µ | Q the measure

(µ | Q)(X) =

µ(P) if X = P | Q
0 otherwise

Similarly (νa)µ is a measure µ′ such that µ′((νa)P) = µ(P).

A transition of the form P
a−→ δ(P ′), i.e. a transition having for target a

Dirac measure, corresponds to a transition of a non-probabilistic automaton
(a standard labeled transition system). Thus, all the rules of CCSp imitate the
ones of CCS except from PROB. The latter models the internal probabilistic
choice: a silent τ transition is available from the sum to a measure containing
all of its operands, with the corresponding probabilities. Note also that we
restrict replication to input prefixes (instead of using full replication or recur-
sion). This greatly simplifies the presentation, while being sufficient for our
needs.

Note that in the produced probabilistic automaton, all transitions to non-Dirac
measures are silent. This is similar to the alternating model ([2]), however our
case is more general because the silent and non-silent transitions can be both
available at the same state. On the other hand, with respect to the simple
probabilistic automata the fact that the probabilistic transitions are silent
looks as a restriction. However, it has been proved by Bandini and Segala
([7]) that the simple probabilistic automata and the alternating model are
essentially equivalent, so, being in the middle, our model is equivalent as well.

9

θ ::= 0 θ | 1 θ | ε label indexes

l ::= κθ labels

P,Q ::= processes

l :α.P prefix

| P | Q parallel

| P +Q nondeterm. choice

| l :∑i piPi prob. choice

| (νa)P restriction

| !l :a.P replicated input

| l :0 nil

S, T ::= scheduler

l.S single action

| (l, l).S synchronization

| if l label test

then S

else S

| 0 nil

CP ::= P ‖ S complete proc.

Fig. 3. The syntax of CCSσ

3 A variant of CCS with an explicit scheduler

In this section we present a variant of CCS in which the scheduler is explicit,
in the sense that it has a specific syntax and its behavior is defined by the
operational semantics of the calculus. We will refer to this calculus as CCSσ.
Processes in CCSσ contain labels that allow us to refer to a particular sub-
process. A scheduler also behaves like a process, using however a different
and much simpler syntax, and its purpose is to guide the execution of the
main process using the labels that the latter provides. A complete process is
a process running in parallel with a scheduler, and we will formally describe
their interaction by defining an operational semantics for complete processes.

3.1 Syntax

Let a range over a countable set of channel names and κ over a countable set
of base labels. The syntax of CCSσ, shown in Figure 3, is the same as the one of
CCSp except for the presence of labels. These are used to select the subprocess
which “performs” a transition. Since only the operators with a rule without
premises can originate a transition, we only need to assign labels to the prefix,
the probabilistic sum and the replicated input. For reasons explained later, we
also put labels on 0, even though this is not required for scheduling transitions.
We use labels of the form κθ where κ is a base label and the index θ is a finite
string of 0 and 1, possibly empty. Indexes are used to avoid multiple copies
of the same label in case of replication, which occurs dynamically due to the

10

bang operator. As explained in the semantics, each time a process is replicated
(i.e. a new parallel copy is created) we relabel both sides of the new parallel
composition by appending 0 to the labels in the left component, and 1 to
those in the right one. For simplicity we write κ for κε and we use l1, l2, . . .
in a process to denote an arbitrary label, with or without an index. The idea
of using 0 and 1 to distinguish parallel component positions has been already
proposed in the literature, notably by Boudol and Castellani ([20]) and by
Bodei, Degano and Priami ([21]).

A scheduler selects a sub-process for execution on the basis of its label, so
we use l.S to represent a scheduler that selects the process with label l and
continues as S. In the case of synchronization we need to select two processes
simultaneously, hence we need a scheduler of the form (l1, l2).S. Using if-then-
else the scheduler can test whether a label is available in the process (in the
top-level) and act accordingly.

The grammar in Figure 3 defines the set of finite schedulers. We identify each
scheduler with its parsing tree, so a scheduler can be viewed as a tree with 0
as leaves and with three types of internal nodes: l-nodes (labelled by a single
label), (l, l)-nodes and if -nodes. This allows us to extend schedulers to infinite
ones, defined as above but on infinite trees. Such schedulers will be used for
processes with infinite behaviour. Note that the set of all infinite schedulers is
uncountable.

Finally, a complete process is a process put in parallel with a scheduler, for
example l1 : a.l2 : b.l3 : 0 ‖ l1.l2.0. We denote by Pσ, CPσ the sets of all CCSσ
processes and complete processes respectively.

3.2 Semantics

The operational semantics of the CCSσ-calculus is given in terms of proba-
bilistic automata defined according to the rules shown in Figure 4. The states
of the automaton are complete processes and transitions result to a prob-
ability measure on complete processes. Note that for any transition in the
semantics, the complete processes in the support of the resulting measure
have all the same scheduler. To make this clear, if µ ∈ Prob(Pσ), we denote
by µ ‖ S ∈ Prob(CPσ) its lifting to complete processes under scheduler S,
that is a measure such that

(µ ‖ S)(X) =

µ(P) if X = P ‖ S
0 otherwise

Then transitions are of the form P ‖ S α−→ µ ‖ S ′ where µ ∈ Prob(Pσ).

11

ACT
l :α.P ‖ l.S α−→ δ(P) ‖ S RES

P ‖ S α−→ µ ‖ S ′ α 6= a, a

(νa)P ‖ S α−→ (νa)µ ‖ S ′

SUM1
P ‖ S α−→ µ ‖ S ′

P +Q ‖ S α−→ µ ‖ S ′ PAR1
P ‖ S α−→ µ ‖ S ′

P | Q ‖ S α−→ µ | Q ‖ S ′

COM
P ‖ l1 β−→ δ(P ′) ‖ 0 Q ‖ l2 β−→ δ(Q′) ‖ 0 β ∈ {a, a}

P | Q ‖ (l1, l2).S
τ−→ δ(P ′ | Q′) ‖ S

PROB
l :

∑
i piPi ‖ l.S τ−→ (

∑
i [pi]δ(Pi)) ‖ S

REP
!l :a.P ‖ l.S a−→ δ(ρ0P | ρ1!l :a.P) ‖ S

IF1
l ∈ tl(P) P ‖ S1

α−→ µ ‖ S ′1
P ‖ if l then S1 else S2

α−→ µ ‖ S ′1

IF2
l /∈ tl(P) P ‖ S2

α−→ µ ‖ S ′2
P ‖ if l then S1 else S2

α−→ µ ‖ S ′2
Fig. 4. The semantics of CCSσ. SUM1 and PAR1 have corresponding right rules
SUM2 and PAR2, omitted for simplicity.

ACT is the basic communication rule. In order for l : α.P to perform α, the
scheduler should select this process for execution, so the scheduler needs to
be of the form l.S. After the execution the complete process will continue as
P ‖ S. The RES rule models restriction on channel a: communication on this
channel is not allowed by the restricted process. SUM1 models nondetermin-
istic choice. If P ‖ S can perform a transition, which means that S selects one
of the labels of P , then P + Q ‖ S will perform the same transition, i.e. the
branch P of the choice will be selected and Q will be discarded. For example

l1 :a.P + l2 :b.Q ‖ l1.S a−→ δ(P) ‖ S

Note that the operands of the sum do not have labels, the labels belong to the
subprocesses of P and Q. In the case of nested choices, the scheduler must go
deep and select the label of a prefix, thus resolving all the choices at once.

PAR1 has a similar behavior for the parallel composition. The scheduler selects
P to perform a transition on the basis of the label. The difference is that in
this case Q is not discarded; it remains in the continuation. COM models
synchronization. If P ‖ l1 can perform the action a and Q ‖ l2 can perform
ā, then (l1, l2).S, scheduling both l1 and l2 at the same time, can synchronize
the two. PROB models internal probabilistic choice. Note that the scheduler

12

cannot affect the outcome of the choice, it can only schedule the choice as a
whole (this is why a probabilistic sum has a label) and the process will move
to a measure containing all the operands with corresponding probabilities.

REP models replicated input. This rule is the same as for CCSp, with the
addition of a re-labeling operator ρi. The reason for this is that we want
to avoid ending up with multiple copies of the same label as the result of
replication, since this would create ambiguities in scheduling as explained in
Section 3.3. ρiP appends i ∈ {0, 1} to the index of all labels of P , for example:

ρiκ
θ :α.P = κθi :α.ρiP

and similarly for the other operators. Note that we relabel only the resulting
process, not the continuation of the scheduler. There is no need to do so, since
the continuation of the scheduler can simply use the labels with the added
index, after the replication.

Finally if-then-else allows the scheduler to adjust its behavior based on the
labels that are available in P . We denote by tl(P) the set of top-level labels
of P , defined as

tl(l :α.P) = tl(l :
∑
i piPi) = tl(!l :a.P) = tl(l :0) = {l}

tl(P +Q) = tl(P | Q) = tl(P) ∪ tl(Q)

tl((νa)P) = tl(P)

Then if l then S1 else S2 behaves like S1 if l is available in P and as S2

otherwise. This is needed when P is the outcome of a probabilistic choice, as
discussed in Section 4.

We denote by JP K the probabilistic automaton produced by P .

3.3 Deterministic labelings

The idea in CCSσ is that a syntactic scheduler will be able to completely re-
solve the nondeterminism of the process, without needing to rely on a semantic
scheduler at the level of the automaton. This means that the execution of a
process in parallel with a scheduler should be fully probabilistic. To achieve
this we impose a condition on the labels that we can use in CCSσ processes.
A labeling is an assignment of labels to the prefixes, the probabilistic sums,
the replicated inputs and the 0s of a process. We require all labelings to be
deterministic in the following sense.

Definition 1 We define the relation −→ on complete processes as P ‖ S −→
P ′ ‖ S ′ iff P ‖ S α−→ µ ‖ S ′ for some α and µ(P ′) > 0. We define −→∗

13

as the reflexive and transitive closure of −→. With a slight abuse of notation
we define the same relation on processes (without schedulers) as P −→ P ′ iff
P ‖ S −→ P ′ ‖ S ′ for some S, S ′.

Definition 2 A labeling of a process P is deterministic iff for all schedulers S
and for all P ′, S ′ such that P ‖ S −→∗ P ′ ‖ S ′ there is at most one transition
rule P ′ ‖ S ′ α−→ that can be applied.

In the general case, it is impossible to decide whether a particular labeling is
deterministic. However, there are simple ways to construct labeling that are
guaranteed to be deterministic. A simple such family are the linear labelings.

Definition 3 A labeling is called linear iff for all labels κθ11 , κ
θ2
2 appearing in

the process, κ1 6= κ2 or θ1 � θ2 ∧ θ2 � θ1, where � is the prefix relation on
indexes.

The idea is that in a linear labeling all labels should be pairwise distinct. The
extra condition on the indexes forbids having two (distinct) labels κ, κ0 since
they could become equal as the result of relabeling the first. This is important
for the following proposition.

Proposition 4 Linear labelings are preserved by transitions.

PROOF. Let lab(P) denote the set of all labels of P . First, note that the
transition rules only append strings to the indexes of the process’ labels. That
is, if P −→ Q and κη ∈ lab(Q) then there exists a label κθ ∈ P such that
θ � η. This is clear since the only relabeling operator ρi only appends strings
to indexes.

We write θ � η for θ � η ∧ η � θ. First, we notice that θ � η iff θi 6= ηi for
some i ≤ min{|θ|, |η|} where θi, ηi denote the i-th character of θ, η respectively.
As a consequence we have that

θ � η ⇒ θθ′ � ηη′ for all θ′, η′ (2)

since θθ′ and ηη′ still differ at the i-th character.

The proof is by induction of the “proof tree” of the transition. For the base
case, the rules ACT, PROB are easy since the labels of the resulting process
are a subset of the original ones. The interesting rule for the base case is the
REP rule:

!l :a.P ‖ l.S α−→ δ(ρ0P | ρ1!l :a.P) ‖ S
The labels of the resulting process are of the form κθi where κθ ∈ lab(!l :a.P)
and i ∈ {0, 1}. So consider two such labels κθi, κηj. Since !l : a.P has a linear
labeling, we have θ � η and from (2) we get θi � ηj.

14

For the inductive case, the rules RES, SUM1/2, IF1, IF2 are easy since the
resulting measure µ is the same as in the premise, so a direct application of
the induction hypothesis suffices. Now consider the PAR1 rule

P ‖ S α−→ µ ‖ S ′
P | Q ‖ S α−→ µ | Q ‖ S ′

Assume that P | Q has a linear labeling and consider a process P ′ such
that µ(P ′) > 0. We want to show that P ′ | Q has a linear labeling, that
is, if two labels of P ′ | Q have the same base then their indexes must be
prefix-incomparable. Since Q has a linear labeling and so does P ′ (from the
induction hypothesis), we only need to compare indexes between P ′ and Q.
Let κη ∈ lab(P ′), κι ∈ lab(Q). Since P ′ comes from a transition of P then
there exists κθ ∈ lab(P) such that θ � η, and since P | Q has a linear labeling
then θ � ι. So from (2) we have η � ι. 2

Proposition 5 A linear labeling is deterministic.

PROOF. Let P be a process with a linear labeling, let S be a scheduler and
P ′ ‖ S ′ be a complete process such that P ‖ S −→∗ P ′ ‖ S ′. We want to
show that there is only one transition P ′ ‖ S ′ α−→ µ ‖ S ′′ enabled. Since
linear labelings are preserved by transitions, P ′ has also a linear labeling. As
a consequence, its labels are pairwise distinct, so the label(s) in the root of
S ′ appear at most once in P ′. So from the rules PAR1/PAR2, at most one is
applicable, since at most one branch of P | Q contains the required label. The
same holds for SUM1/SUM2.

We want to show that we can construct at most one proof tree for the transition
of P ′ ‖ S ′. Since we eliminated one rule of the pairs PAR1/2, SUM1/2, for
the remaining rules and for a fixed “type” of process and scheduler, there
is at most one rule applicable. For example for P | Q and l.S only PAR is
applicable, for P | Q and (l1, l2).S only COM is applicable, for !l : a.P and
l.S only REP and so on. And since the premises of all rules involve a simpler
process or a simpler scheduler, the result comes easily by induction on the
structure of P ′ ‖ S ′. 2

There are labelings that are deterministic without being linear. In fact, such
labelings will be the means by which we hide information from the scheduler.
However, the property of being deterministic is crucial since it implies that
the scheduler will resolve all the nondeterminism of the process.

Proposition 6 Let P be a CCSσ process with a deterministic labeling. Then
JP ‖ SK is fully probabilistic for all schedulers S,.

15

PROOF. Direct application of the definition of deterministic labeling. 2

4 Expressiveness of the syntactic scheduler

CCSσ with deterministic labelings allows us to separate probabilities from
nondeterminism in a straightforward way: a process in parallel with a scheduler
behaves in a fully probabilistic way and the nondeterminism arises from the
fact that we can have many different schedulers. We may now ask the question:
how powerful are the syntactic schedulers wrt the semantic ones, i.e. those
defined directly over the automaton?

Let P be a CCSp process and Pσ be the CCSσ process obtained from P
by applying a linear labeling. We denote this relation by P ≡l Pσ. We say
that the semantic scheduler ζ of JP K is equivalent to the syntactic scheduler
S of Pσ, written ζ ∼P S, iff the automata etree(JP K, ζ) and JPσ ‖ SK are
probabilistically bisimilar.

A process is blocked if it cannot perform a transition under any scheduler.
A scheduler S is non-blocking for a process P if it always schedules some
transition, except when P itself is blocked. Let Sem(P) be the set of the
semantic schedulers for the process P and Syn(Pσ) be the set of the non-
blocking syntactic schedulers for process Pσ. Then we can show that for all
semantic schedulers of P we can create a equivalent syntactic one for Pσ.

Proposition 7 Let P be a CCSp process and let Pσ be a CCSσ process ob-
tained by adding a linear labeling to P . Then ∀ζ ∈ Sem(P) ∃S ∈ Syn(Pσ) :
ζ ∼P S.

PROOF. We fix a CCSp process P0 for which we are going to prove the
proposition, and let M = (S, P0, A,D) = JP0K. We also fix a scheduler ζ :
exec∗(M) → D for M . An execution ϕ ∈ exec∗(M) of M is a sequence ϕ =
P0α1P1 . . . αnPn such that Pi−1

αi−→ µ and µ(Pi) > 0. Then etree(M, ζ) is
a fully probabilistic automaton whose set of states is exec∗(M) and where
ϕ

α−→ µe iff ζ(ϕ) = (Pn, α, µ) and µe(ϕαPn+1) = µ(Pn+1). We aim at finding
a syntactic scheduler Sζ such that ζ ∼P0 Sζ .

In the remaining of the proof P, P1, P2, S, S1, S2, . . . denote arbitrary processes
and schedulers. We also denote by P̂ a CCSσ process such that P ≡l P̂ , and
by sup(µ) the support of µ.

First note that for each rule in the semantics of CCSp there is a corresponding
rule for CCSσ, the only addition being the syntactic scheduler and the labels

16

of the resulting processes. Thus, we can show (by induction on the proof tree
of P

α−→ µ) that

P
α−→ µ ⇒ ∃S : P̂ ‖ S α−→ µ′ ‖ 0 and

∀P ′ ∈ sup(µ) : µ(P ′) = µ′(P̂ ′)
(3)

The scheduler S above has no continuation, since it is reduced to 0 after the
transition. There might still be several schedulers producing this transition,
but it is easy to see that there exists a unique minimal one, i.e. one not con-
taining an if-then-else construct. If t = (P, α, µ) ∈ D is the tuple describing
the transition of P , let sched(t, P̂) denote this minimal scheduler.

We now construct the syntactic scheduler σ(ζ, ϕ, P̂) ∈ Syn(P̂) for a process P̂
corresponding to the semantic scheduler ζ, at a state ϕ such that lstate(ϕ) =
P . Let (P, α, µ) = ζ(ϕ). From (3) there is a transition P̂ ‖ S α−→ µ′ ‖ 0 with
S = sched(ζ(ϕ), P̂). Let {P1, . . . , Pn} = sup(µ) and {P̂1, . . . , P̂n} = sup(µ′).
We denote by lm(P̂) the left-most label appearing in P̂ . Note that all processes
contain at least one label since they contain at least one 0. We recursively
define σ(ζ, ϕ, P̂) as

σ(ζ, ϕ, P̂)
∆
= sched(ζ(ϕ), P̂).

if lm(P̂1) then σ(ζ, ϕαP1, P̂1) else

. . .

if lm(P̂n−1) then σ(ζ, ϕαPn−1, P̂n−1) else

σ(ζ, ϕαPn, P̂n)

(4)

We then define an equivalence ≡P on schedulers as

S1 ≡P S2 iff P ‖ S1
α−→ µ ‖ S3 ⇔ P ‖ S2

α−→ µ ‖ S3

Intuitively S1 ≡P S2 iff they have the same effect on the process P , for example
if S1 is an if-then-else construct that enables S2.

We are now ready for the final part of the proof. Let ϕ0 = P0 be an empty
execution ofM , the scheduler Sζ that we want to construct is Sζ = σ(ζ, ϕ0, P̂0).

We compare the automata etree(M, ζ) and JP̂0 ‖ SζK and we show that they
are bisimilar by creating a bisimulation relation that relates their starting
states ϕ0 and P̂0 ‖ Sζ . We define a relation R ⊆ exec∗(M)× CPσ as follows:

ϕ R (P̂ ‖ S) iff lstate(ϕ) = P and S ≡
P̂
σ(ζ, ϕ, P̂)

Clearly ϕ0 R (P̂0 ‖ Sζ), it remains to show that R is a strong bisimulation.

Suppose that ϕ R (P̂ ‖ S) and ϕ
α−→ µe with {ϕαP1, . . . , ϕαPn} = sup(µe).

Since lstate(ϕ) = P we have P
α−→ µ with {P1, . . . , Pn} = sup(µ). Since

17

S ≡
P̂
σ(ζ, ϕ, P̂) then (by construction of σ) there exists a transition P̂ ‖

S
α−→ µ′ ‖ Sc where µ′(P̂i) = µ(Pi) for 1 ≤ i ≤ n.

The scheduler Sc above is the continuation of σ(ζ, ϕ, P̂) (defined in (4)). It is
an if-then-else choice between the schedulers σ(ζ, ϕαPi, P̂i), each guarded by
if lm(P̂i). Since the labeling of P̂ is linear, all labels are pairwise distinct, so
the P̂i’s have disjoint labels, i.e. lm(P̂i) /∈ tl(P̂j) for i 6= j. As a consequence,

Sc ≡P̂i
σ(ζ, ϕαPi, P̂i) since only the i-th branch of Sc can be enabled by P̂i.

Thus we have (ϕαPi) R (P̂i ‖ Sc), for all 1 ≤ i ≤ n, which implies that
µe R (µ′ ‖ Sc).

Similarly for the case where P̂ ‖ S α−→ µ′ ‖ Sc. By definition of σ(ζ, ϕ, P̂)
there exists a transition P

α−→ µ where µ(Pi) = µ′(P̂i), thus ϕ
α−→ µe with

µe(ϕαPi) = µ(Pi). So again (ϕαPi) R (P̂i ‖ Sc), for all 1 ≤ i ≤ n, thus
µe R (µ′ ‖ Sc). 2

To obtain this result the label test (if-then-else) is crucial, in the case P
performs a probabilistic choice. The scheduler uses the test to find out the
result of the probabilistic choice and adapt its behavior accordingly (as the
semantic scheduler is allowed to do). For example let P = l : (l1 :a +p l2 : b) |
(l3 : c + l4 : d). For this process, the scheduler l.(if l1 then l3.l1 else l4.l2)
first performs the probabilistic choice. If the result is l1 : a it performs c, a,
otherwise it performs d, b. This is also the reason we need labels for 0, in case
it is one of the operands of the probabilistic choice.

One would expect to obtain also the inverse of Proposition 7, showing the same
expressive power for the two kinds of schedulers. We believe that this is indeed
true, but it is technically more difficult to state. The reason is that the simple
translation we did from CCSp processes to CCSσ, namely adding a linear
labeling, might introduce choices that are not present in the original process.
For example let P = (a+p a) | (c+d) and Pσ = l : (l1 :a+p l2 : a) | (l3 :c+ l4 :d).
In P the choice a+p a is not a real choice, it can only do an τ transition and
go to a with probability 1. But in Pσ we make the two outcomes distinct due
to the labeling. So the syntactic scheduler l.(if l1 then l3.l1 else l4.l2) has no
semantic counterpart simply because Pσ has more choices than P , but this is
an artifact of the translation. A more precise translation that would establish
the exact correspondence of schedulers is left as future work.

4.1 Using non-linear labelings

Up to now we are using only linear labelings which, as we saw, give us the
whole power of semantic schedulers. However, we can construct non-linear

18

labelings that are still deterministic, that is there is still only one transition
possible at any time even though we have multiple occurrences of the same
label. There are various cases of useful non-linear labelings.

Proposition 8 Let P ,Q be CCSσ processes with deterministic labelings (not
necessarily disjoint). The following labelings are all deterministic:

l : (P +p Q) (5)

l1 :a.P + l2 :b.Q (6)

(νa)(νb)(l1 :a.P + l1 :b.Q | l2 : ā) (7)

PROOF. Processes (5),(7) have only one transition enabled, while (6) has
two, all enabled by exactly one scheduler. After any of these transitions, only
one of P,Q remains. 2

Consider the case where P and Q in the above proposition share the same
labels. In (5) the scheduler cannot select an action inside P,Q, it must select
the choice itself. After the choice, only one of P,Q will be available so there
will be no ambiguity in selecting transitions. The case (6) is similar but with
nondeterministic choice. Now the guarding prefixes must have different labels,
since the scheduler should be able to resolve the choice, however after the
choice only one of P,Q will be available. Hence, again, the multiple copies of
the labels do not constitute a problem. In (7) we allow the same label on the
guarding prefixes of a nondeterministic choice. This is because the guarding
channels a, b are restricted and only one of the corresponding output actions is
available (ā). As a consequence, there is no ambiguity in selecting transitions.
A scheduler (l1, l2) can only perform a synchronization on a, even though l1
appears twice.

However, using multiple copies of a label limits the power of the scheduler,
since the labels provide information about the outcome of a probabilistic choice
(and allow the scheduler to choose different strategies through the use of the
scheduler choice). In fact, this is exactly the technique we use to achieve the
goals described in Section 1. Consider for example the process:

l : (l1 : ā.R1 +p l1 : ā.R2) | l2 :a.P | l3 :a.Q (8)

According to Proposition 8 (5) this labeling is deterministic. However, since
both branches of the probabilistic sum have the same label l1, the scheduler
cannot resolve the choice between P and Q based on the outcome of the
probabilistic choice. There is still nondeterminism: the scheduler l.(l1, l2) will
select P and the scheduler l.(l1, l3) will select Q. However this selection will
be independent from the outcome of the probabilistic choice.

19

Note that we did not impose any direct restrictions on the schedulers. We still
consider all possible syntactic schedulers for the process (8) above. However,
having the same label twice limits the power of the syntactic schedulers with
respect to the semantic ones. This approach has the advantage that the re-
strictions are limited to the choices with the same label. We already know that
having pairwise distinct labels gives the full power of the semantic scheduler.
So the restriction is local to the place where we, intentionally, put the same
labels.

5 Testing relations for CCSσ processes

Testing relations ([22]) are a method of comparing processes by considering
their interaction with the environment. A test is a process that runs in parallel
with the one being tested, and that contains a distinguished action ω that
represents success. Two processes are testing equivalent if they can pass the
same tests. This idea is very useful for the analysis of security protocols, as
suggested in [23], since a test can be seen as an adversary who interferes with
a communication agent and declares ω if an attack is successful. Then two
processes are testing equivalent if they are vulnerable to the same attacks.

In the probabilistic setting we take the approach of [13] which considers the
exact probability of passing a test, in contrast to [10] which considers only the
ability to pass a test with probability non-zero (may-testing) or one (must-
testing). This approach leads to the definition of two preorders vmay and
vmust. Intuitively, P vmay Q means that if P under some scheduler passes O
with probability p then Q also passes O under some scheduler with at least
the same probability. P vmust Q means that if P under any scheduler passes
O with probability p then Q under all schedulers passes O with at least the
same probability.

More precisely, a test O is a CCSσ process containing the distinguished action
ω, such that when put in parallel with any of the tested processes, the resulting
labeling is deterministic. Let TestP denote the set of all tests with respect to
the set of processes P and let (ν)P denote the restriction on all channels of
P , thus allowing only τ actions. We define pω(P, S,O) to be the probability
that (ν)(P | O) ‖ S produces ω:

pω(P, S,O) = pb(
⋃
{C(ϕωs) | ϕωs ∈ exec∗(J(ν)(P | O) ‖ SK)})

Note that the set on the right hand side is a countable union of disjoint cones
so its probability is well-defined. We can now define may and must testing.

Definition 9 Let P,Q be CCSσ processes. We define the must and may test-

20

ing preorders as follows:

P vmay Q iff ∀O ∀SP ∃SQ : pω(P, SP , O) ≤ pω(Q,SQ, O)

P vmust Q iff ∀O ∀SQ ∃SP : pω(P, SP , O) ≤ pω(Q,SQ, O)

where O ranges over Test{P,Q} and SX ranges over Syn((ν)(X | O)).

We also define ≈may,≈must to be the equivalences induced by vmay,vmust

respectively.

Note that Definition 9 is slightly different than the definition of probabilistic
testing of [13], given below:

Definition 10 Let P,Q be CCSσ processes and O a test. We first define:

P dOe = sup{pω(P, S,O) | S ∈ Syn((ν)(P | O))}
P bOc = inf{pω(P, S,O) | S ∈ Syn((ν)(P | O))}

The may and must testing preorders of [13] are defined as:

P ≤may Q iff P dOe ≤ QdOe ∀O ∈ Test{P,Q}

P ≤must Q iff P bOc ≤ QbOc ∀O ∈ Test{P,Q}

The above definition is arguably closer to the informal intuition and easier
to understand. However, the use of sup, inf in P dOe, P bOc makes it difficult
to use in proofs. Instead, we use Definition 9 which turns out to be slightly
stronger.

Proposition 11 For all CCSσ processes P,Q:

P vmay Q ⇒ P ≤may Q

P vmust Q ⇒ P ≤must Q

The inverse is also true for finite processes.

PROOF. We use the simple fact that for any non-empty sets A,B ⊆ R:

∀a ∈ A ∃b ∈ B : a ≤ b ⇒ supA ≤ supB

∀b ∈ B ∃a ∈ A : a ≤ b ⇒ inf A ≤ inf B

Assuming supA > supB, let k = (supA + supB)/2. Since k < supA there
exists a ∈ A such that k < a. Then there exists b ∈ B such that a ≤ b so we
have supB < k < a ≤ b which is a contradiction. Similarly for inf.

21

The inverse does not hold in general, for example if A = [0, 1], B = (0, 1)
we have supA = supB = 1 but 1 > b ∀b ∈ B. However it holds if supA ∈
A, supB ∈ B, for example if A,B are finite. 2

The difference between vmay and ≤may lies in cases where the supremum of
pω(P, S,O) cannot be achieved by any single scheduler S. For finite processes
this is never the case since the set of schedulers is finite.

5.1 Compositionality properties

In this section we study some compositionality properties of the testing pre-
orders for CCSσ. A context C is a process containing a hole that we denote
by []. The application of C to a process P , denoted by C[P] is the process
obtained by replacing [] by P . Note that we can only apply C to P if the
labeling of C[P] is deterministic. A preorder v is a precongruence if P v Q
implies C[P] v C[Q] for all contexts C. A labeling of a process is fresh (with
respect to a set P of processes) if its labels are distinct from the labels of
any process in P . Note that a fresh labeling is not necessarily linear. The
following proposition states that may testing is a precongruence if we restrict
to contexts with fresh labelings, and must testing is also a precongruence if,
additionally, we restrict to contexts where the + occurs only guarded. More
precisely, this means that if C = C ′ + R then C ′ = a.C ′′ for some a 6= τ ,
and recursively, the same must hold for all subcontexts of C. This result is
essentially an adaptation to our framework of the analogous precongruence
property in [3] 5 .

Proposition 12 Let P,Q be CCSσ processes such that P vmay Q and let C
be a context with a fresh labeling (wrt P,Q). Then C[P] vmay C[Q]. Similarly
for vmust, provided that any occurrence of + in C is guarded. If +p does not
occur in C then the restriction on C’s labeling can be dropped.

PROOF. We first prove the proposition for contexts where [] is not under
replication. Without loss of generality we assume that tests do not perform
internal actions, but only synchronizations with the tested process. The proof
will be by induction on the structure of C. Let O range over tests, let SP
range over Syn((ν)(C[P] | O)) and SQ range over Syn((ν)(C[Q] | O)). The

5 The authors of [3] considered only the case of context without occurrences of +,
but we believe that our more liberal restriction would have been sufficient also for
obtaining the result in [3].

22

induction hypothesis is:

may) ∀O ∀SP ∃SQ : pω(C[P], SP , O) ≤ pω(C[Q], SQ, O) and

must) ∀O ∀SQ ∃SP : pω(C[P], SP , O) ≤ pω(C[Q], SQ, O)

We have the following cases for C (note that we use the freshness restriction
only for the probabilistic choice):

• Case C = []. Trivial.
• Case C = l1 :a.C ′

The scheduler SP has to be of the form SP = (l1, l2).S ′P where l2 is the label
of a a prefix in O (if no such prefix exists then the case is trivial).

A scheduler of the form (l1, l2).S can schedule any process of the form
l1 :a.X (with label l1) giving the transition:

(ν)(l1 :a.X | O) ‖ (l1, l2).S
τ−→ δ((ν)(X | O′)) ‖ S

and producing always the same O′. The probability pω will be

pω(l1 :a.X, (l1, l2).S, O) = pω(X,S,O′) (9)

Thus for (may) we have

pω(C[P], (l1, l2).S ′P , O) = pω(C ′[P], S ′P , O
′) (9)

≤ pω(C ′[Q], S ′Q, O
′) Ind. Hyp.

= pω(C[Q], (l1, l2).S ′Q, O) (9)

= pω(C[Q], SQ, O)

For (must) we can perform the above derivation in the opposite direction,
given that a scheduler for C[Q] must be of the form SQ = (l1, l2).S ′Q.
• Case C = C ′ | R

We have that R | O is itself a test and

pω(X | R, S,O) = pω(X,S,R | O) (10)

Thus for (may) we have

pω(C[P], SP , O) = pω(C ′[P], SP , R | O) (10)

≤ pω(C ′[Q], SQ, R | O) Ind. Hyp.

= pω(C[Q], SQ, O) (10)

For (must) we can perform the above derivation in the opposite direction.

23

• Case C = l1 : (C ′ +p R)
Let us first assume that P is in the top-level of C ′[P]. In order to be non-
blocking, the scheduler of l1 : (C ′[P] +p R) must detect the outcome of the
probabilistic choice and continue as SC if the outcome is C ′[P] or as SR
otherwise. For example SP could be l1.if l then SC else SR or a more
complicated if-then-else. So we have

pω(l1 : (C ′[P] +p R), S, O) = p pω(C ′[P], SC , O)+

p̄ pω(R, SR, O)
(11)

where p̄ = 1− p. For (may) we have

pω(l1 : (C ′[P] +p R), SP , O)

= p pω(C ′[P], SC , O) + p̄ pω(R, SR, O) (11)

≤ p pω(C ′[Q]), S ′C , O) + p̄ pω(R, SR, O) Ind. Hyp.

= pω(l1 : (C ′[Q] +p R), l1.(if l then S ′C else SR), O)

= pω(C[Q], SQ, O)

Where l ∈ tl(Q), which means that l /∈ tl(R) since we consider only contexts
with a fresh labeling. We used the if-then-else in SQ to imitate the test
of SP and the fact that l /∈ tl(R) is crucial. (note that we use the freshness
restriction only for the probabilistic choice) If P is not in the top-level of
C ′[P] then SP will have the same behaviour on C ′[Q]. So we can construct
the scheduler SQ by duplicating SP until the point where P becomes top-
level, when the previous case applies.

For (must) we can perform the above derivation in the opposite direction.

• Case C = C ′ +R
Let T (X) = (ν)(X | O). We first prove the case of (may). Assuming then
T (C[P]) is not blocked (the other case is trivial), a scheduler SP for T (C[P])
has to choose between C ′[P] and R, using the rules SUM1 and SUM2 re-
spectively. Let us consider the two cases:
- The transition of T (C[P]) is obtained using SUM1. In this case

pω(C ′[P] +R, SP , O) = pω(C ′[P], SP , O)

From the I.H., there exists a scheduler SQ for T (C ′[Q]) s.t.

pω(C ′[P], SP , O) ≤ pω(C ′[Q], SQ, O)

If T (C ′[Q]) is not blocked then SQ is a non-blocking scheduler also for
T (C[Q]), and we have

pω(C ′[P], SP , O) ≤ pω(C ′[Q], SQ, O) = pω(C ′[Q] +R, SQ, O)

24

If T (C ′[Q]) is blocked then SQ might not be a valid scheduler for T (C[Q]).
However in this case pω(C ′[Q], SQ, O) = pω(C ′[P], SP , O) = 0 and the
result holds trivially for any scheduler of T (C[Q]).

- The transition of T (C[P]) is obtained using SUM2. In this case, using the
same scheduler SP for T (C[Q]), we have

pω(C ′[P] +R, SP , O) = pω(R, SP , O) = pω(C ′[Q] +R, SP , O)

Let us consider now the (must) case. Like in the (may) case, we have
two possibilities, corresponding to the applications of SUM1 and SUM2
respectively. With SUM2 the proof is exactly the same. With SUM1, we
proceed in an analogous way and we derive that, for every scheduler SQ of
T (C ′[Q]) there exists a scheduler SP of T (C ′[P]) such that

pω(C ′[P], SP , O) ≤ pω(C ′[Q], SQ, O) = pω(C ′[Q] +R, SQ, O)

Note now that the process T (C ′[P]) cannot be blocked, because C ′ = a.C ′′

for some a 6= τ , and T (C ′[Q]) is not blocked. Hence SP is a non-blocking
scheduler for T (C[P]), and we have

pω(C ′[P] +R, SP , O) = pω(C ′[P], SP , O)

Note that the restriction to guarded + is essential. Otherwise T (C ′[P]) can
be blocked, thus SP will be blocking for T (C[P]) so we will be forced to use
a scheduler for T (C[P]) that chooses R.
• Case C = (νa)C ′

The process (ν)((νa)C ′[X] | O) has the same transitions as (ν)(C ′[X] |
(νa)O). The result follows from the induction hypothesis.

We have shown the proposition for any context where [] is not under replica-
tion. Now we show it for an arbitrary context C by induction on the number k
of nested bangs that enclose []. The base case k = 0 has already been shown.
Consider a context C =!l :a.C ′ with k nested bangs. First, we define:

C[P]m =

l :a.(ρ0C
′[P] | ρ1C[P]m−1) m > 1

l :a.ρ0C
′[P] m = 1

Intuitively, C[P]m is the m-times unfolding of C[P] =!l : a.C ′[P], taking into
account the relabeling that takes place each time a new process is spawned.
Then we prove that:

C[P]m vmay C[Q]m ∀m ≥ 1 (12)

The proof is by induction onm (this is nested, part of the proof of the inductive
case for the induction on k). It is easy to see that

P vmay Q ⇒ ρiP vmay ρiQ i ∈ {0, 1} (13)

25

For the base case m = 1 we have C ′[P] vmay C
′[Q] (hypothesis of the outer

induction) thus ρ0C
′[P] vmay ρ0C

′[Q] from (13) and finally l :a.ρ0C
′[P] vmay

l :a.ρ0C
′[Q] (apply context l :a.[]).

For the inductive case we have

C[P]m−1 vmay C[Q]m−1 ⇒ Ind. Hyp.

ρ1C[P]m−1 vmay ρ1C[Q]m−1 ⇒ (13)

ρ0C
′[P] | ρ1C[P]m−1 vmay ρ0C

′[P] | ρ1C[Q]m−1 Cont. without !

The last step is obtained by applying the context ρ0C
′[P] | []. Note that this

context has no bangs enclosing [], and its labeling is fresh wrt ρ1C[P]m−1 and
ρ1C[Q]m−1. Then we have

ρ0C
′[P] vmay ρ0C

′[Q] ⇒ Outer I.H., (13)

ρ0C
′[P] | ρ1C[Q]m−1 vmay ρ0C

′[Q] | ρ1C[Q]m−1 Cont. without !

Finally by the transitivity of vmay and by applying the context l :a.[] we get

l :a.(ρ0C
′[P] | ρ1C[P]m−1) vmay l :a.(ρ0C

′[Q] | ρ1C[Q]m−1)

thus C[P]m vmay C[Q]m. This concludes the proof of (12) (inner induction).
Finally, assuming the negation of our claim, we have C[P] 6vmay C[Q], that is

∃O∃SP ∀SQ : pω(C[P], SP , O) > pω(C[Q], SQ, O)

There can be executions containing ω of arbitrary length, however their proba-
bility will go to zero as the length increases. Thus there will be an m such that
if we consider only executions of length at most m then the above inequality
will still hold. But these executions can be also performed by C[P]m, C[Q]m

which contradicts (12). This concludes the outer induction.

Similarly for vmust in the case of replicated input. 2

This also implies that ≈may,≈must are congruences. Note that P,Q in the
above proposition are not required to have linear labelings, P might include
multiple occurrences of the same label thus limiting the power of the schedulers
SP . This shows the locality of the scheduler’s restriction: some choices inside
P are hidden from the scheduler but the rest of the context is fully visible.

If we remove the freshness condition of the context then Proposition 12 is
no longer true in the presence of probabilistic choice. Let P = l1 : a.l2 : b,
Q = l3 : a.l4 : b and C = l : (l1 : a.l2 : c +p []). We have P ≈may Q but
C[P], C[Q] can be separated by the test O = ā.b̄.ω | ā.c̄.ω (when the labeling
is omitted assume a linear one). It is easy to see that C[Q] can pass the test

26

with probability 1 by selecting the correct branch of O based on the outcome
of the probabilistic choice. In C[P] this is not possible because of the labels
l1, l2 that are common in P,C.

Note also that the restriction to guarded-sum contexts in the case of (must)
is essential. As a counterexample, consider the processes P = 0 and Q = τ.0.
We have that P vmust Q. However, if C = [] + a.0, then C[P] 6vmust C[Q],
the witness being O = ā.ω.

We can now state the result that we announced in Section 1.

Theorem 13 Let P,Q be CCSσ processes and C a context with a linear and
fresh labeling (wrt P,Q, l, l1) and without occurrences of bang. Then

l : (C[l1 :τ.P] +p C[l1 :τ.Q]) ≈may C[l : (P +p Q)] and

l : (C[l1 :τ.P] +p C[l1 :τ.Q]) ≈must C[l : (P +p Q)]

If +p does not occur in C then the restriction on C’s labeling can be dropped.

PROOF. Since we will always use the label l for each probabilistic sum +p,
and l1 for τ.P and τ.Q, we will omit these labels to make the proof more
readable. We will also denote (1− p) by p̄.

Let R1 = C[τ.P] +p C[τ.Q] and R2 = C[P +p Q]. We will prove that for
all tests O and for all schedulers S1 ∈ Syn((ν)(R1 | O)) there exists S2 ∈
Syn((ν)(R2 | O)) such that pω(R1, S1, O) = pω(R2, S2, O) and vice versa. This
implies both R1 ≈may R2 and R1 ≈must R2.

Without loss of generality we assume that tests do not perform internal ac-
tions, but only synchronizations with the tested process. First, it is easy to
see that

pω(P +p Q, l.S,O) = p pω(P, S,O) + p̄ pω(Q,S,O) (14)

pω(l1 :a.P, (l1, l2).S, O) = pω(P, S,O′) (15)

where (ν)(l1 :a.P | O) ‖ (l1, l2).S
τ−→ δ((ν)(P | O′)) ‖ S.

In order for the scheduler of R1 to be non-blocking, it has to be of the form
l.S1, since the only possible transition of R1 is the probabilistic choice labeled
by l. By (14) we have

pω(C[τ.P] +p C[τ.Q], l.S1, O) = p pω(C[τ.P], S1, O) + p̄ pω(C[τ.Q], S1, O)

The proof will be by induction on the structure of C. Let O range over tests,
let S1 range over non-blocking schedulers for both C[τ.P] and C[τ.Q] (such

27

that l.S1 is a non-blocking scheduler for R1) and let S2 range over non-blocking
schedulers for R2. The induction hypothesis is:

⇒) ∀O ∀S1 ∃S2 :

p pω(C[τ.P], S1, O) + p̄ pω(C[τ.Q], S1, O) = pω(C[P +p Q], S2, O) and

⇐) ∀O ∀S2 ∃S1 :

p pω(C[τ.P], S1, O) + p̄ pω(C[τ.Q], S1, O) = pω(C[P +p Q], S2, O)

We have the following cases for C (note that we use the restriction on the
labeling only for the probabilistic choice):

• Case C = []. Trivial.
• Case C = l1 :a.C ′

The scheduler S1 of C[τ.P] and C[τ.Q] has to be of the form S1 = (l1, l2).S ′1
where l2 is the label of a a prefix in O (if no such prefix exists then the case
is trivial).

A scheduler of the form (l1, l2).S can schedule any process of the form
l1 :a.X (with label l1) giving the transition:

(ν)(l1 :a.X | O) ‖ (l1, l2).S
τ−→ δ((ν)(X | O′)) ‖ S

and producing always the same O′. The probability pω for these processes
will be given by equation (15).

Thus for (⇒) we have

p pω(l1 :a.C[τ.P], (l1, l2).S ′1, O) + p̄ pω(l1 :a.C[τ.Q], (l1, l2).S ′1, O)

= p pω(C ′[τ.P], S ′1, O
′) + p̄ pω(C ′[τ.Q], S ′1, O

′) (15)

= pω(C ′[P +p Q], S ′2, O
′) Ind. Hyp.

= pω(l1 :a.C ′[P +p Q], (l1, l2).S ′2, O) (15)

= pω(R2, S2, O)

For (⇐) we can perform the above derivation in the opposite direction,
given that a scheduler for R2 = l1 : a.C ′[P +p Q] must be of the form
S2 = (l1, l2).S ′2.
• Case C = C ′ | R

We have that R | O is itself a test, and

pω(X | R, S,O) = pω(X,S,R | O) (16)

28

Thus for (⇒) we have

p pω(C ′[τ.P] | R, S1, O) + p̄ pω(C ′[τ.Q] | R, S1, O)

= p pω(C ′[τ.P], S1, R | O) + p̄ pω(C ′[τ.Q], S1, R | O) (16)

= pω(C ′[P +p Q], S2, R | O) Ind. Hyp.

= pω(C ′[P +p Q] | R, S2, O) (16)

= pω(R2, S2, O)

For (⇐) we can perform the above derivation in the opposite direction.

• Case C = l1 : (C ′ +q R)
Since we consider only contexts with linear and fresh labelings, the labels
of C ′[X] are disjoint from those of R, thus the scheduler of a process of the
form l1 : (C ′[X] +q R) must be of the form S = l1.(if lC then SC else SR)
where lC ∈ tl(C ′[X]), SC is a scheduler containing labels of C ′[X] and SR
is a scheduler containing labels of R. Moreover

pω(l1 : (C ′[X] +q R), S, O)

= q pω(C ′[X], if lC then SC else SR, O) +

q̄ pω(R, if lC then SC else SR, O)

= q pω(C ′[X], SC , O) + q̄ pω(R, SR, O) (17)

As a consequence, the scheduler S1 of C[τ.P] and C[τ.Q] has to be of the
form S1 = l1.(if lC then SC else SR). Note that tl(C ′[τ.P]) = tl(C ′[τ.Q])
so the two processes cannot be separated by a test. SC will schedule both
(possibly separating them later).

For (⇒) we have

p pω(l1 : (C ′[τ.P] +q R), S1, O) + p̄ pω(l1 : (C ′[τ.Q] +q R), S1, O)

= q(p pω(C ′[τ.P], SC , O) + p̄ pω(C ′[τ.Q], SC , O))+

q̄ pω(R, SR, O) (17)

= q pω(C ′[P +p Q]), S ′C , O)+

q̄ pω(R, SR, O) Ind. Hyp.

= pω(l1 : (C ′[P +p Q] +q R), l1.(if l
′
C then S ′C else SR), O) (17)

= pω(R2, S2, O)

Where l′C ∈ tl(C ′[P +p Q]) (and thus l′C /∈ tl(R)).
For (⇐) we can perform the above derivation in the opposite direction,

given that a scheduler for R2 = l1 : (C ′[P +p Q] +q R) must be of the form
S2 = l1.(if l

′
C then S ′C else SR).

29

• Case C = C ′ +R
Consider the process C ′[l0 : τ.P] + R. The scheduler S1 of this process has
to choose between C ′[l0 :τ.P] and R.

There are two cases to have a transition using the SUM1, SUM2 rules.
a) Either S1 = SR and

(ν)(R | O) ‖ SR α−→ µ ‖ S ′R
SUM2

(ν)(C ′[l0 :τ.P] +R | O) ‖ SR α−→ µ ‖ S ′R
In this case

pω(C ′[l0 :τ.P] +R, SR, O) = pω(R, SR, O) (18)

b) Or S1 = SC and

(ν)(C ′[l0 :τ.P] | O) ‖ SC α−→ µ ‖ S ′C
SUM1

(ν)(C ′[l0 :τ.P] +R | O) ‖ SC α−→ µ ‖ S ′C
In this case

pω(C ′[l0 :τ.P] +R, SC , O) = pω(C ′[l0 :τ.P], SC , O) (19)

Now consider the process C ′[l0 : τ.Q] + R. Since P and Q are behind the
l0 : τ action, we have tl(C ′[l0 : τ.Q] = tl(C ′[l0 : τ.P]). Thus SR and SC will
select R and C ′[l0 : τ.Q] respectively and the equations (18) and (19) will
hold.

In the case (a) (S = SR) we have:

p pω(C ′[τ.P] +R, SR, O) + p̄ pω(C ′[τ.Q] +R, SR, O)

= p pω(R, SR, O) + p̄ pω(R, SR, O) (18)

= pω(R, SR, O)

= pω(C ′[P +p Q] +R, SR, O)

= pω(R2, S2, O)

In the case (b) (S = SC) we have:

p pω(C ′[τ.P] +R, SC , O) + p̄ pω(C ′[τ.Q] +R, SC , O)

= p pω(C ′[τ.P], SC , O) + p̄ pω(C ′[τ.Q], SC , O) (19)

= pω(C ′[P +p Q], S ′C , O) Ind. Hyp.

= pω(C ′[P +p Q] +R, S ′C , O)

= pω(R2, S2, O)

For (⇐) we can perform the above derivation in the opposite direction.

30

• Case C = (νa)C ′

The process (ν)((νa)C ′[X] | O) has the same transitions as (ν)(C ′[X] | (νa)O).
The result follows from the induction hypothesis.

2

There are two crucial points in the above Theorem. The first is that the
labels of the context are copied, thus the scheduler cannot distinguish between
C[l1 :τ.P] and C[l1 :τ.Q] based on the labels of the context. The second is that
P,Q are protected by a τ action labeled by the same label l1. This is to ensure
that in the case of a nondeterministic sum (C = R+ []) the scheduler cannot
find out whether the second operand of the choice is P or Q unless it commits
to selecting the second operand. For example, let R = a+0.5 0, P = a, Q = 0
(all omitted labels are linear). Then R1 = (R+ P) +0.1 (R+Q) is not testing
equivalent to R2 = R+(P +0.1Q) since they can be separated by O = a.ω and
a scheduler that resolves R + P to P and R + Q to R (it will be of the form
if lP then SP else SR). However, if we take R′1 = (R+l1 :τ.P)+0.1(R+l1 :τ.Q)
then R′1 is testing equivalent to R2 since now the scheduler cannot see the
labels of P,Q so if it selects P then it is bound to also select Q.

The problem with replication is simply the persistence of the processes. Clearly
(!a.P) +p (!a.Q) cannot be equivalent to !a.(P +p Q), since the first replicates
only one of P,Q while the second replicates both. However Theorem 13 to-
gether with Proposition 12 imply that

C ′[l : (C[l1 :τ.P] +p C[l1 :τ.Q])] ≈may C
′[C[l : (P +p Q)]] (20)

where C is a context without bang and C ′ is an arbitrary context. The same
is also true for ≈must (under the extra condition that + occurs only guarded
in C ′). This means that we can lift the sum towards the root of the context
until we reach a bang. Intuitively we cannot move the sum outside the bang
since each replicated copy must perform a different probabilistic choice with
a possibly different outcome.

Theorem 13 shows that the probabilistic choice is indeed private to the process
and invisible to the scheduler. The process can perform it at any time, even
in the very beginning of the execution, without making any difference to an
outside observer.

6 An application to security

In this section we discuss an application of our framework to anonymity. In
particular, we show how to specify the Dining Cryptographers protocol ([24])

31

so that it is robust to scheduler-based attacks. We first propose a method to
encode secret value passing, which will turn out to be useful for the specifica-
tion.

6.1 Encoding secret value passing

We propose to encode the passing of a secret message as follows:

l :c(x).P
∆
=

∑
v∈V l :cv.P [v/x]

l : c̄〈v〉.P ∆
= l :cv.P

where V is the finite set of values that can be transmitted through channel c.
This is the usual encoding of value passing in CCS: we use a nondeterministic
sum with a distinct channel cv for each v. The novelty is that we use the
same label in all the branches of the nondeterministic sum. To ensure that the
resulting labeling is deterministic we should restrict the channels cv and make
sure that there is at most one output on c. We will write (νc)P for (νv∈V cv)P .
For example, the labeling of the following process is deterministic:

(νc)(l1 :c(x).P | l : (l2 : c̄〈v〉+p l2 : c̄〈w〉))

This case is a combination of the cases (5) and (7) of Proposition 8. The two
outputs on c are on different branches of the probabilistic sum, so during an
execution at most one of them will be available. Thus there is no ambiguity
in scheduling the sum produced by c(x). The scheduler l.(l1, l2) will perform
a synchronization on cv or cw, whatever is available after the probabilistic
choice. In other words, using the labels we manage to hide the information
about which value was transmitted to P .

6.2 Dining cryptographers with a probabilistic master

The problem of the Dining Cryptographers is the following: Three cryptogra-
phers dine together. After the dinner, the bill has to be paid either by one of
them or by another agent called the master. The master decides who will pay
and then informs each cryptographer separately about whether they have to
pay or not. The cryptographers would like to find out whether the payer is
the master or one of them. However, in the latter case, they also wish to keep
the payer anonymous.

The Dining Cryptographers Protocol (DCP) solves the above problem as fol-
lows: each cryptographer tosses a fair coin which is visible to himself and his

32

neighbor to the right. Each cryptographer checks the two adjacent coins and,
if he is not paying, announces agree if they are the same and disagree other-
wise. However, the paying cryptographer says the opposite. It can be proved
that the master is paying if and only if the number of disagrees is even ([24]).

An external observer O is supposed to see only the three announcements
outi〈. . .〉. As discussed in [25], DCP satisfies strong anonymity. However, this
analysis considers only the value that each cryptographer announces, without
considering the order in which they make their announcements. In other words,
the announcement aad is considered to be the same, whether it corresponds
to c1 = a, c2 = a, c3 = d or to c2 = a, c3 = d, c1 = a (in the indicated order).

If we want to allow the cryptographers to make announcements in any order,
then the only reasonable way to model the choice of order is nondetermin-
istically. But this leads immediately to a simple attack: if the scheduler is
unrestricted then it can base its strategy on the decision of the master, by
selecting the paying cryptographer last (or first). Clearly, an external observer
would trivially identify the payer just from the fact that he spoke last. A simi-
lar situation would arise if the scheduler based its decision on the value of the
coins.

A natural question to ask at this point is whether this attack is realistic, or just
an artifact of the nondeterministic model. For instance, is it possible for the
scheduler to know the decision of the master? The answer is that this attack
could appear in practice without even a malicious intention from the part of
the scheduler. For example, the payer needs to make one more calculation to
add 1 to his message, so he might need more time to make his announcement
and, as a consequence, he will be scheduled last by a simple “first comes first
served” scheduler.

In any case, the scheduler restrictions, if any, should be part of the require-
ments when stating the anonymity properties of a protocol. For example the
analysis should state “assuming that the coins are fair and that the scheduler’s
decisions are independent from the master’s choice and from the coins, DCP
satisfies strong anonymity”. This way an implementor of the protocol will have
to verify that the scheduler condition is satisfied, or somehow assume that it
is.

In our framework we can solve the problem by giving a specification of the DCP
in which the choices of the master and of the coins are made invisible to the
scheduler. The specification is shown in Figure 5. We use some meta-syntax for
brevity: The symbols ⊕ and 	 represent the addition and subtraction modulo
3, while ⊗ represents the addition modulo 2 (xor). The notation i ==n stands
for 1 if i = n and 0 otherwise.

There are many sources of nondeterminism: the order of communication be-

33

Master
∆
= l1 :

∑2
i=0 pi(m0〈i == 0〉︸ ︷︷ ︸

l2

| m1〈i == 1〉︸ ︷︷ ︸
l3

| m2〈i == 2〉︸ ︷︷ ︸
l4

)

Crypti
∆
=mi(pay)︸ ︷︷ ︸

l5,i

. ci,i(coin1)︸ ︷︷ ︸
l6,i

. ci,i⊕1(coin2)︸ ︷︷ ︸
l7,i

. outi〈pay ⊗ coin1 ⊗ coin2〉︸ ︷︷ ︸
l8,i

Coini
∆
= l9,i : ((c̄i,i〈0〉︸ ︷︷ ︸

l10,i

| c̄i	1,i〈0〉︸ ︷︷ ︸
l11,i

) +0.5 (c̄i,i〈1〉︸ ︷︷ ︸
l10,i

| c̄i	1,i〈1〉︸ ︷︷ ︸
l11,i

))

Prot
∆
= (ν ~m)(Master | (ν~c)(∏2

i=0 Crypti |
∏2
i=0 Coini))

Fig. 5. Encoding of the dining cryptographers with probabilistic master

tween the master and the cryptographers, the order of reception of the coins,
and the order of the announcements. The crucial points of our specifica-
tion, which make the nondeterministic choices independent from the prob-
abilistic ones, are: (a) all communications internal to the protocol (master-
cryptographers and cryptographers-coins) are done by secret value passing,
and (b) in each probabilistic choice the different branches have the same la-
bels. For example, all branches of the master contain an output on m0, always
labeled by l2, but with different values each time.

Thanks to the above independence, the specification satisfies strong anonymity.
There are various equivalent definitions of this property. We follow here the
version presented in [25]. Let ~o represent an observable (the sequence of an-
nouncements), and pS(~o | mi〈1〉) represent the conditional probability, under
the scheduler S, that the protocol produces ~o given that the master has se-
lected Cryptographer i as the payer.

Proposition 14 (Strong anonymity) The protocol in Figure 5 satisfies the
following property: for all schedulers S and for all observables ~o:

pS(~o | m0〈1〉) = pS(~o | m1〈1〉) = pS(~o | m2〈1〉)

PROOF. Since the process is finite, it contains a finite number of nondeter-
ministic choices and as a result the set of its schedulers is also finite. Thus, the
proposition can be verified by calculating the probability of all traces under
all schedulers (this could be even done automatically). Here we make a higher
level argument to show that the Proposition holds.

Let v1, v2, v3 be the values announced by the cryptographers, that is, vi is the
output of the subprocess outi〈pay⊗coin1⊗coin2〉. These values depend only on
the selection of the master (pay) and the outcome of the coins (coin1, coin2)
and not on the scheduler, the latter can only affect their order. From the
proof of strong anonymity for a fixed announcement order ([24]) we know

34

P ::= . . . | l :{P}

CP ::= P ‖ S, T
SWITCH

P ‖ T, 0 τ−→ µ ‖ T ′, 0
l :{P} ‖ l.S, T τ−→ µ ‖ S, T ′

Fig. 6. Adding an “independent” scheduler to the calculus

that p(v1, v2, v3|ai) = p(v1, v2, v3|aj) for all cryptographers i, j and all values
of v1, v2, v3.

Now the observables of the protocol are of the form ~o = outk1〈vki
〉, outk2〈vk2〉,

outk3〈vk3〉 where k1, k2, k3 is the index of the cryptographer who speaks first,
second and third, respectively. The order (that is, the ki’s) depends on the
scheduler. However, in all random choices the same labels appear in both
branches of the choice, so a scheduler cannot use an if-then-else test to
“detect” the outcome of the choice (it would be useless since the same branch
of the if would be always activated). As a consequence, the order is fixed
for a particular scheduler, that is, a scheduler uniquely defines the ki’s above.
With a fixed order, the probability of each ~o is equal to the probability of the
corresponding vi’s, thus

pS(~o | mi〈1〉) = p(v1, v2, v3|ai) = p(v1, v2, v3|aj) = pS(~o | mj〈1〉)

2

Note that different schedulers will produce different traces (we still have non-
determinism) but they will not depend on the choice of the master.

Some previous treatment of the DCP, including [25], had solved the problem of
the leak of information due to too-powerful schedulers by simply considering
sets of announcements as observable, rather than sequences of announcements.
Thus, one could think that using a true concurrent semantics, for instance
event structures, would solve the problem. There are two issues with this
approach: first, by abstracting away from the interleaving we weaken the model
too much. There is an important information, namely the order in which the
messages are sent on the network, that is present in reality but not in a true
concurrent model, possibly leading to missed attacks. Second, the problem
of the scheduler arises from any form of nondeterminism, not only from the
interleaving. Thus, in cases like the anonymity example of the introduction,
abstracting from the interleaving will not solve the problem.

6.3 Dining cryptographers with a nondeterministic master

Up to now we considered the master in the dining cryptographers to be prob-
abilistic, that is, we assume that the master makes his decision using some

35

probability distribution. An interesting question is whether we can remove this
assumption, that is, make the same analysis with a nondeterministic master.
However, this case poses a conceptual problem: as we discussed in the previ-
ous paragraph, the decision of the master should be invisible to the scheduler.
But if the master is nondeterministic then the scheduler itself will make the
decision, so how is it possible for a scheduler to be oblivious to his own choices?

We sketch here a method to hide also certain nondeterministic choices from
the scheduler. First we need to extend the calculus with the concept of a sec-
ond independent scheduler T that we assume to resolve the nondeterministic
choices that we want to make transparent to the main scheduler S. The new
syntax and semantics are shown in Figure 6. The construct l : {P} represents
a process where the scheduling of P is protected from the main scheduler S.
The scheduler S can “ask” T to schedule P by selecting the label l. Then the
schedulers switch roles and T resolves the nondeterminism of P acting as the
main scheduler, as expressed by the SWITCH rule. Note that we need to add
T to all the other rules of the semantics, in all these rules T is simply inactive.
Moreover, we assume that T does not collaborate with S, so we can use labels
in P freely without revealing information to the scheduler.

To model the dining cryptographers with nondeterministic master we replace
the Master process in Figure 5 by the following one.

Master
∆
= l1 :

{∑2
i=0 l12,i :τ.(m0〈i == 0〉︸ ︷︷ ︸

l2

| m1〈i == 1〉︸ ︷︷ ︸
l3

| m2〈i == 2〉︸ ︷︷ ︸
l4

)
}

Essentially we have replaced the probabilistic choice by a protected nonde-
terministic one. Note that the labels of the operands are different but this is
not a problem since this choice will be scheduled by T . Note also that after
the choice we still have the same labels l2, l3, l4. However the labeling is still
deterministic, similarly to the case (6) of Proposition 8.

In case of a nondeterministic selection of the anonymous events, and a proba-
bilistic anonymity protocol, the notion of strong anonymity has not been es-
tablished yet, although some possible definitions have been discussed in [25].
Our framework makes it possible to give a natural and precise definition.

In the probabilistic case of the previous section, we compared the conditional
probabilities pS(~o | m0〈1〉) and pS(~o | m1〈1〉) corresponding to different choices
of the master. Now the choice of cryptographer i is made by the secondary
scheduler Ti = l12,i, so instead of conditional probabilities, we will have proba-
bilities of the form pS,Ti

(~o), where pS,Ti
(·) is the probability measure on traces

induced by the schedulers S, Ti. Then we naturally arrive at the following
definition.

Definition 15 (Strong anonymity for nondeterministic anon. events)

36

A protocol with a nondeterministic selection of the anonymous event satis-
fies strong anonymity iff for all observables ~o, schedulers S, and independent
schedulers Ti, Tj (selecting different anonymous events), we have:

pS,Ti
(~o) = pS,Tj

(~o)

We can now show that the above property holds for our protocol:

Proposition 16 The DCP with nondeterministic master, specified in this sec-
tion, satisfies strong anonymity.

PROOF. Similar to Proposition 14, since pS,Ti
(~o) is equal to pS(~o | mi〈1〉) in

the protocol with a probabilistic master. 2

7 Conclusion and Future work

We have proposed a process-calculus approach to the problem of limiting the
power of the scheduler so that it does not reveal the outcome of hidden random
choices, and we have shown its applications to the specification of information-
hiding protocols. We have also discussed a feature, namely the distributivity
of certain contexts over random choices, that makes our calculus appealing
for verification. Finally, we have considered the probabilistic testing preorders
and shown that they are precongruences in our calculus.

Our plans for future work are in various directions: first, we would like to
investigate the possibility of giving a game-theoretic characterization of our
notion of scheduler. A first step in this direction has been made in [26]. Second,
we want to study the use of equivalences to define security properties, while
coping at the same time with the problem of the scheduler. This direction has
been explored in [27]. Finally, we would like to investigate whether methods
to restrict the scheduler, like those presented in this paper, can be used in
a probabilistic model checker like PRISM. Currently, PRISM considers all
possible schedulers when verifying a formula, without the possibility to restrict
to a subset of them.

Acknowledgments

We wish to thank Vincent Danos for having pointed out to us an attack to
the Dining Cryptographers protocol based on the order of the scheduler, which
has inspired this work. We also thank Roberto Segala and Daniele Varacca for
their valuable comments on a previous version of this paper. Finally, we wish to

37

express our gratitude to the anonymous reviewers, for their thorough work and
their recommendations, that have helped to improve the paper considerably.

References

[1] M. Y. Vardi, Automatic verification of probabilistic concurrent finite-state
programs, in: Proceedings of the 26th Annual Symposium on Foundations of
Computer Science, IEEE Computer Society Press, Portland, Oregon, 1985, pp.
327–338.

[2] H. Hansson, B. Jonsson, A framework for reasoning about time and reliability,
in: Proceedings of the 10th IEEE Symposium on Real-Time Systems, IEEE
Computer Society Press, Santa Monica, California, USA, 1989, pp. 102–111.

[3] W. Yi, K. G. Larsen, Testing probabilistic and nondeterministic processes,
in: Proceedings of the 12th IFIP International Symposium on Protocol
Specification, Testing and Verification, North Holland, Florida, USA, 1992, pp.
47–61.

[4] R. Segala, Modeling and verification of randomized distributed real-time
systems, Ph.D. thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, available as Technical Report
MIT/LCS/TR-676 (Jun. 1995).

[5] R. Segala, N. Lynch, Probabilistic simulations for probabilistic processes, Nordic
Journal of Computing 2 (2) (1995) 250–273.

[6] H. Hansson, B. Jonsson, A calculus for communicating systems with time and
probabilities, in: Proceedings of the Real-Time Systems Symposium - 1990,
IEEE Computer Society Press, Lake Buena Vista, Florida, USA, 1990, pp.
278–287.

[7] E. Bandini, R. Segala, Axiomatizations for probabilistic bisimulation, in:
Proceedings of the 28th International Colloquium on Automata, Languages
and Programming, Vol. 2076 of Lecture Notes in Computer Science, Springer,
2001, pp. 370–381.

[8] S. Andova, Probabilistic process algebra, Ph.D. thesis, Technische Universiteit
Eindhoven (2002).

[9] M. Mislove, J. Ouaknine, J. Worrell, Axioms for probability and
nondeterminism, in: F. Corradini, U. Nestmann (Eds.), Proc. of the 10th Int.
Wksh. on Expressiveness in Concurrency (EXPRESS ’03), Vol. 96 of Electronic
Notes in Theoretical Computer Science, Elsevier, 2004, pp. 7–28.

[10] C. Palamidessi, O. M. Herescu, A randomized encoding of the π-calculus with
mixed choice, Theoretical Computer Science 335 (2-3) (2005) 373–404.

38

[11] Y. Deng, C. Palamidessi, J. Pang, Compositional reasoning for probabilistic
finite-state behaviors, in: A. Middeldorp, V. van Oostrom, F. van Raamsdonk,
R. C. de Vrijer (Eds.), Processes, Terms and Cycles: Steps on the Road to
Infinity, Vol. 3838 of Lecture Notes in Computer Science, Springer, 2005, pp.
309–337.

[12] A. Sokolova, E. d. Vink, Probabilistic automata: system types, parallel
composition and comparison, in: C. Baier, B. Haverkort, H. Hermanns, J.-P.
Katoen, M. Siegle (Eds.), Validation of Stochastic Systems: A Guide to Current
Research, Vol. 2925 of Lecture Notes in Computer Science, Springer, 2004, pp.
1–43.

[13] B. Jonsson, K. G. Larsen, W. Yi, Probabilistic extensions of process algebras,
in: J. A. Bergstra, A. Ponse, S. A. Smolka (Eds.), Handbook of Process Algebra,
Elsevier, 2001, Ch. 11, pp. 685–710.

[14] K. Chatzikokolakis, Probabilistic and information-theoretic approaches to
anonymity, Ph.D. thesis, LIX, École Polytechnique (Oct. 2007).

[15] J. Aranda, C. D. Giusto, C. Palamidessi, F. Valencia, Expressiveness of
recursion, replication and scope mechanisms in process calculi, in: F. S. de Boer,
M. M. Bonsangue (Eds.), Postproceedings of the 5th International Symposium
on Formal Methods for Components and Objects (FMCO’06), Vol. 4709 of
Lecture Notes in Computer Science, Springer, 2007, pp. 185–206.

[16] F. D. Garcia, P. van Rossum, A. Sokolova, Probabilistic anonymity and
admissible schedulers, arXiv:0706.1019v1 (2007).

[17] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira,
R. Segala, Task-structured probabilistic I/O automata, in: Proceedings the 8th
International Workshop on Discrete Event Systems (WODES’06), Ann Arbor,
Michigan, 2006.

[18] R. Canetti, L. Cheung, D. K. Kaynar, M. Liskov, N. A. Lynch, O. Pereira,
R. Segala, Time-bounded task-PIOAs: A framework for analyzing security
protocols, in: S. Dolev (Ed.), Proceedings of the 20th International Symposium
in Distributed Computing (DISC ’06), Vol. 4167 of Lecture Notes in Computer
Science, Springer, 2006, pp. 238–253.

[19] L. de Alfaro, T. A. Henzinger, R. Jhala, Compositional methods for probabilistic
systems, in: K. G. Larsen, M. Nielsen (Eds.), Proceedings of the 12th
International Conference on Concurrency Theory (CONCUR 2001), Vol. 2154
of Lecture Notes in Computer Science, Springer, 2001, pp. 351–365.

[20] G. Boudol, I. Castellani, A non-interleaving semantics for CCS based on proved
transitions, Fundamenta Informaticae XI (1988) 433–452.

[21] C. Bodei, P. Degano, C. Priami, Mobile processes with a distributed
environment, in: F. M. auf der Heide, B. Monien (Eds.), Proceedings of the
23rd International Colloquium on Automata, Languages and Programming
(ICALP’96), Vol. 1099 of LNCS, Springer-Verlag, Berlin-Heidelberg-New

39

York-London-Paris-Tokyo-Hong Kong-Barcelona-Budapest-Milan-Santa Clara-
Singapore, 1996, pp. 490–501.

[22] R. D. Nicola, M. C. B. Hennessy, Testing equivalences for processes, Theoretical
Computer Science 34 (1-2) (1984) 83–133.

[23] M. Abadi, A. D. Gordon, A calculus for cryptographic protocols: The spi
calculus, Information and Computation 148 (1) (1999) 1–70.

[24] D. Chaum, The dining cryptographers problem: Unconditional sender and
recipient untraceability, Journal of Cryptology 1 (1988) 65–75.

[25] M. Bhargava, C. Palamidessi, Probabilistic anonymity, in: M. Abadi,
L. de Alfaro (Eds.), Proceedings of CONCUR, Vol. 3653 of Lecture Notes in
Computer Science, Springer, 2005, pp. 171–185.

[26] K. Chatzikokolakis, S. Knight, P. Panangaden, Epistemic strategies and
games on concurrent processes, in: M. Nielsen, A. Kucera, P. B. Miltersen,
C. Palamidessi, P. Tuma, F. D. Valencia (Eds.), SOFSEM, Vol. 5404 of Lecture
Notes in Computer Science, Springer, 2009, pp. 153–166.

[27] K. Chatzikokolakis, G. Norman, D. Parker, Bisimulation for demonic schedulers,
in: L. de Alfaro (Ed.), FOSSACS, Vol. 5504 of Lecture Notes in Computer
Science, Springer, 2009, pp. 318–332.

40

