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Abstract

We compare the expressive power of process calculi by studying the problem of
electing a leader in a symmetric network of processes. We consider the π-calculus
with mixed choice, separate choice and internal mobility, value-passing CCS and
Mobile Ambients, together with other ambient calculi (Safe Ambients, the Push
and Pull Ambient Calculus and Boxed Ambients). We provide a unified approach
for all these calculi using reduction semantics.
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1 Introduction

In this tutorial we consider expressiveness results regarding different process
calculi. In the last twenty years, a great variety of concurrent calculi have been
developed, and most of them are Turing complete, i.e. they can compute the
same class of functions as Turing machines. However, function computability
is only one possible way to evaluate the power of a concurrent language; other
aspects, related to the concurrent nature of the model, should also be taken
into account. Our focus is on the synchronisation capabilities of a calculus,
and more precisely on the mechanisms that allow remote processes to achieve
an agreement. Agreement is, in general, an important problem in distributed
computing. A lot of research has been devoted to either finding algorithms
to achieve agreement among remote processes, or proving the impossibility of
such algorithms existing. The problem has important implications of a practi-
cal nature in the field of Distributed Systems, where the design of the operating
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system has to ensure the correct interaction between remote processes when
a central coordinator is not feasible.

Comparing the expressiveness of calculi can be achieved by either exhibiting
an encoding or by showing that such an encoding cannot exist. For the latter,
one way of proceeding is to show that there is a problem that can be solved in
some calculi, but not the others. In the field of distributed algorithms [17,36],
various models of computation have been compared via the symmetric leader
election problem, which consists in requiring the members of a symmetric net-
work to elect one of their number as their leader. This problem expresses
the ability of group of processes to reach an agreement (on the leader) in a
completely decentralised way. Translation of the problem into process alge-
bra setting has proved a rather successful way of comparing various process
calculi [3,11,27,26,28,30,37].

The notion of encoding in a formal setting is subject to specific and natural
conditions, which guarantee the meaningfulness of the encoding. For instance,
when dealing with the synchronisation problem, the subject of this tutorial,
we should require that the encoding should not itself solve the problem of syn-
chronisation; it would be like mapping Turing machines into finite automata
by using a translation which adds an oracle.

For symmetric leader election problems, the computational difficulty of finding
a solution lies in breaking the initial symmetry to achieve a situation which is
inherently asymmetric (one is the leader and the others are not). In the case of
process calculi, some of the symmetry-breaking arguments are rather sophis-
ticated and use additional discriminations that are related to the topology of
the network.

In this tutorial we shall collect, present, systematise and interpret a collection
of results regarding expressiveness in process calculi obtained by means of the
symmetric leader election problem. We shall provide a uniform presentation
by the use of reduction semantics, and we shall highlight the similarities and
differences between the various approaches to leader election problems. In
particular, we shall focus on the following calculi:

• Communicating Concurrent Systems (CCS).
• The π-calculus (πm) and its dialects: the π-calculus with separate choice πs

and the π-calculus with internal mobility πI.
• Ambient calculi: Mobile Ambients (MA) and its dialects Safe Ambients

(SA), the Push and Pull Ambient Calculus (PAC) and Boxed Ambients
(BA).

CCS [18,20] is a simple calculus, that aims to represent concurrency with
synchronous communication. Based on the concept of channels, it contains two
primitives for sending and receiving which can synchronise by handshaking on
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the same channel. In this paper we shall consider value-passing CCS, where
input and output primitives carry value parameters. However, for the sake of
simplicity, we shall call it CCS throughout the paper.

The π-calculus [21] enhances the CCS model by allowing processes to commu-
nicate channel names, which can also be used as channels for communication,
allowing the dynamic creation of new links between processes (link mobility).
In this paper we consider the π-calculus as presented in [20]. We call this
version the mixed-choice π-calculus, which we denote by πm; here the word
“mixed” signifies that a choice can contain both input and output guards.
The results presented this tutorial would still hold also for the π-calculus with
matching and mismatching.

The asynchronous π-calculus [15,2] has become particularly popular as a model
for asynchronous communication. In this fragment there is no explicit choice,
and outputs have no continuation. However output prefixing and separate
choice can be encoded in the asynchronous π-calculus [2,25]; separate choice
is guarded choice with the restriction that input and output guards cannot
be mixed in the same choice. In this tutorial we look at the separate-choice
π-calculus, which we denote by πs, rather than the asynchronous π-calculus;
however the results valid for πs also hold for the asynchronous π-calculus.

We shall also consider the π-calculus with internal mobility (which we denote
by πI), proposed by Sangiorgi [34]. This is a subset of πm where only private
names can be sent, giving a symmetry between inputs and outputs. The main
advantage of this calculus is the simpler theory of bisimulation.

Finally, we shall deal with Mobile Ambients and other ambient calculi. MA [9]
has been proposed to model features of computation over the Internet. This
calculus is based on the simple unifying concept of ambient. Computation is
no longer defined as exchanging values, but it is the result of ambients moving
into and out of other ambients bringing along active processes and possibly
other ambients.

In the last few years many dialects have been spawned: Levi and Sangiorgi’s
SA [16], which introduces a way of controlling the boundary of the ambients;
Phillips and Vigliotti’s PAC [29], which aims to model a more traditional
client-server architecture and finally BA [4,5], which focuses on security prop-
erties and therefore does not permit ambients to be dissolved. Several relations
among the above calculi are obvious or have been proved in the literature, ad-
dressing at least partially the issue of expressiveness. However, questions about
their expressive power can still be asked:

• πs is a subcalculus of πm. Does there exist an encoding from πm into πs, or
is πm strictly more expressive?

• CCS with value passing and πI can be viewed as subcalculi of πm. Thus πm
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is as least as expressive as CCS. Does an encoding exist from πm into CCS
or πI?

• The asynchronous π-calculus can be encoded into MA, PAC and BA. Can
MA or PAC or BA be encoded into the asynchronous π-calculus or CCS ?

In the tutorial we shall show that the answers to the previous questions
are negative, i.e. those encodings do not exist under certain conditions (Sec-
tion 2.3). The proofs are based on the possibility/impossibility of solving the
symmetric leader election problem.

In encodings of languages that (do not) admit a solution for leader election
problems, one important requirement is that the encoding preserves the origi-
nal distribution among processes. This requirement aims at avoiding that the
encoding may introduce a central coordinator [26,28]. Therefore this condi-
tion makes the notion of encoding suitable for comparing the expressiveness
of languages for distributed systems, where processes are expected to coordi-
nate without the help of a centralised server.

The negative results mentioned above have been achieved in recent years as
follows:

• Palamidessi [26] established that πm is not encodable in πs;
• Phillips and Vigliotti [28,37] proved that small fragments of MA, PAC and

BA are not encodable in πs.

All these separation results are proved by considering the leader election prob-
lem in a fully connected (and symmetric) network. For instance, Palamidessi
showed that the problem can be solved in the case of πm, but not in the case
of πs. If there were an encoding from πm to πs, then the solution for πm could
be translated into one for πs, provided that the encoding satisfied certain con-
ditions (such as distribution preservation—see Section 2.3). Therefore no such
encoding can exist.

Finer-grained separation results are obtained by considering the leader election
problem in a network whose underlying graph is a ring. Those latter negative
results have been achieved in recent years as follows:

• Palamidessi [26] proved that CCS and πI do not admit a solution to the
leader election problem for certain symmetric rings, while πm does. She
deduced that there is no encoding from πm into CCS.

• Phillips and Vigliotti [30] proved that subcalculi of MA, PAC and BA admit
solutions to the leader election problem for symmetric rings. They concluded
that those calculi cannot be encoded into CCS.

The tutorial is organised as follows. We start by discussing leader election
in distributed networks, and how to formalise the problem in process calculi
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(Section 2). In Section 3 we define the various calculi we shall consider. We
next deal with leader election problems in general symmetric networks with
no restriction on topology (Section 4). We present solutions for various calculi,
show that other calculi do not admit solutions, and derive separation results
(Section 4.3). Then we deal with leader election problems in rings (Section 5).
We present positive and negative results for various calculi, and again derive
separation results (Section 5.4). We then discuss the meaning of the results
presented in this tutorial and compare other notions of encoding which yield
separation results among the asynchronous π-calculus, CCS and πI. We end
the tutorial with a history of related work and conclusions.

2 Leader Election, Electoral Systems and Encodings

After first discussing leader election informally, we show how it can be for-
malised in the setting of process calculi and reduction semantics. We then
discuss criteria for encodings between calculi.

2.1 Leader Election Problems in Distributed Systems

In this section we introduce leader election problems as described in the field
of distributed systems. We use the word ‘problems’ in the plural, because
there are different settings that lead to diverse solutions (when solutions do
exist). A network is informally a set of machines that run independently and
that compute through communication. Abstractly we can think of them as
processes. Processes have the same state, if they can perform intuitively the
same actions. The essence of a symmetric leader election problem is to find
an algorithm where, starting from a configuration (network) of processes in
the same state, any possible computation reaches a configuration where one
process is in the state of leader and the other processes are in the state lost (i.e.
they have lost the election). In some cases a solution may be impossible, and
in other cases there may be more than one algorithm, and then complexity
measures can be used in order to compare the different solutions. In this
tutorial, we shall not consider such issues.

The criteria common to all leader election problems are the following:

Symmetry Each process in the network has to have the same duties (further-
more, processes cannot be allowed to have distinct identifiers which could
be used to decide the leader by e.g. allowing the process with the largest
identifier to become leader). In the symmetry lies the computational diffi-
culty of the problem. In fact, in an asymmetric configuration of processes,
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one process can declare itself the winner. This is not possible in symmetric
configurations, since if one process can declare itself the winner, every other
process in the configuration can do the same. Thus, in symmetric networks,
for the winner to be elected, the initial symmetry has to be somehow broken.

Distribution The computation has to be decentralised, in the sense that the
computation has to start from any subset of processes in the network. Gen-
erally, leader election problems are run after a reconfiguration or crash of
a system, in order to establish which process can start the initialisation. In
this context, the configuration of processes has to be able to elect a leader
without any help from outside.

Uniqueness of the leader The processes in a network reach a final configuration
from any computation. In the final configuration there is one process only
that is elected the winner and the other processes in the configuration have
lost.

Leader election problems may vary according to the following parameters:

Topology of the network The network could be a fully connected graph or a
ring or tree or any other graph or hyper-graph [1,36,17]. The topology of
the network influences the construction of the algorithm, since it changes
the information regarding the totality of the processes involved.

In this tutorial we look at general networks, where there is no restriction
on topology, in Section 4, and at rings in Section 5. In the general case,
our algorithms will assume that the network is fully connected, though of
course this is not assumed when we state impossibility results.

Knowledge of size of the network The number of processes can be known or
unknown to the processes before starting the election [36]. This parameter
also influences the construction of an algorithm. In most cases we shall
implement algorithms where the size of the network is known, but there is
an interesting exception in the case of PAC, where we present an algorithm
for a ring where the processes are defined uniformly regardless of the size
of the ring.

Declaration of the leader The leader could be announced by one process only,
which could be the leader itself or any other process. Alternatively every
process in the configuration has to be aware of the winner. The latter re-
quirement is considered standard, although the weaker one (the former one)
is also acceptable, since the winner could inform the other processes of the
outcome of the election.

We shall adopt the weaker assumption in this tutorial for simplicity. Note
that in the original paper [26] Palamidessi uses the stronger requirement for
her results.

We have described leader election problems as presented in the field of dis-
tributed algorithms. In this field, it is common to reason on what is known as
pseudo-code. This means that proofs are given by using some form of ‘general
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enough language’, that is, a mixture of an ad hoc Pascal-like language and
natural language without any formalised semantics. Nestmann et al. [24] show
that this approach very often hides underpinning problems and assumptions.
The formal and rigorous semantics of process algebra, as presented in this tu-
torial, is therefore an advantage in the description of leader election problems.
Formal semantics is necessary when proving that either a given algorithm is
the correct solution to a leader election problem, or that no algorithm exists.

2.2 Electoral Systems

In this section we formalise the leader election problem in process calculi
using reduction semantics (unlabelled transitions). Milner and Sangiorgi [22]
motivated the study of reduction semantics on the grounds that it is a uniform
way of describing semantics for calculi that are syntactically different from
each other. Reduction semantics has been widely used due to its simplicity
and ability to represent uniformly simple process calculi such as CCS [20],
first- and second-order name-passing calculi such as the π-calculus and the
higher-order π-calculus [22,33], and more complex calculi such as the Seal
Calculus [10] and the Ambient Calculus [9]. Reduction semantics will provide
a uniform framework for all calculi we shall consider.

In reduction semantics a process calculus L is identified with:

• a set of processes;
• a reduction relation; and
• an observational predicate.

First of all, we assume the existence of a set of names N , ranged over by; the
variables m, n, x, y . . . range over it. Names are meant to be atomic, and they
are a useful abstraction to represent objects that in real life we do not want
to view as separated, such as identifiers, sequences of bits, etc.

Some operators of a language are binding, in the sense that names that fall
within their scope are called bound, and processes that differ in bound variables
only are considered identical. Names that are not bound in a process are
called free. These concepts will be explicitly defined for each concrete syntax
considered later in this tutorial.

We assume that a language L contains at least the parallel composition op-
erator | and the restriction operator νn P . We assume that in each calculus
operator | has the same kind of semantics: it nondeterministically lets either
the left- or the right-hand process execute on its own, or else it lets the two
sides synchronise. Restriction νn P binds n; it makes the name n private or
bound in P . We write ν~n instead of νn1 . . . νnk for some list of names n1, . . . , nk
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which is not relevant in the context. In general we identify processes that differ
only on their bound names, and we keep separate the set of free names and the
set of bound names. Process can be identified up to the structural congruence
relation ≡. Structural congruence allows rearrangement without computation
taking place. In all the calculi we shall consider, the following laws will hold
(plus other laws, depending on the particular calculus):

P | Q ≡ Q | P νn (P | Q) ≡ P | νn Q if n /∈ fn(P )

(P | Q) | R ≡ P | (Q | R) νm νn P ≡ νn νm P

The computational steps for a language can be captured by a simple relation
over the set of processes called the reduction relation, written →. To model
visible behaviour of programs, an observation relation is defined between pro-
cesses and names: P ↓ n means intuitively that the process P has the ob-
servable name n. We shall see in each concrete calculus how these notions are
defined.

Networks are informally compositions of processes or processes composed with
the operator |; the size of a network is the number of processes that can be
“regarded as separate units”. This means that a composition of processes can
be seen as one process only in counting the size of the network. A symmetric
network is a network where components differ only on their names. Compo-
nents of a network are connected if they share names, using which they can
engage in communication. Rings are networks where each process is connected
just to its left-hand and right-hand neighbours. A network elects a leader by
exhibiting a special name, and an electoral system is a network where every
possible maximal computation elects a leader.

We now make these notions precise. We assume that N includes a set of
observables Obs = {ωi : i ∈ N}, such that for all i, j we have ωi 6= ωj if i 6= j.
The observables will be used by networks to communicate with the outside
world.

Definition 2.1 Let P be a process. A computation C of P is a (finite or
infinite) sequence P = P0 → P1 → · · ·. It is maximal if it cannot be extended,
i.e. either C is infinite, or else it is of the form P0 → · · · → Ph where Ph 6→.

Definition 2.2 Let C be a computation P0 → · · · → Ph → · · ·. We define the
observables of C to be Obs(C) = {ω ∈ Obs : ∃h Ph ↓ ω}.

Networks are collections of processes running in parallel, as the following def-
inition states.

Definition 2.3 A network Net of size k is a pair (A, 〈P0, . . . , Pk−1〉), where
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A is a finite set of names and P0, . . . , Pk−1 are processes. The process inter-
pretation Net\ of Net is the process νA (P0 | · · · | Pk−1). We shall always work
up to structural congruence, so that the order in which the restrictions in A
are applied is immaterial.

Networks are to be seen as presentations of processes, showing how the global
process is distributed to the k nodes of the network. We shall sometimes write
[P0 | · · · | Pk−1] instead of νA (P0 | · · · | Pk−1), when the globally restricted
names do not need to be made explicit.

We shall tend to write networks in their process interpretation (i.e. as re-
stricted parallel compositions), while still making it clear which process be-
longs to each node of the network.

Networks inherit a notion of computation from processes through the process
interpretation: Net → Net′ if Net\ → Net′\. Overloading notation, we shall
let C range over network computations. Also, we define the observables of a
network computation C to be the observables of the corresponding process
computation: Obs(C) = Obs(C\).

The definitions that follow lead up to the formulation of symmetry in a network
(Definition 2.7), capturing the notion that each process is the same apart from
the renaming of free names. First we introduce the notion of permutation
on names, which is a a bijective function that keeps free and bound names
separated.

Definition 2.4 A permutation is a bijection σ : N → N such that σ pre-
serves the distinction between observable and non-observable names, i.e. n ∈
Obs iff σ(n) ∈ Obs. Any permutation σ gives rise in a standard way to a map-
ping on processes, where σ(P ) is the same as P , except that any free name n
of P is changed to σ(n) in σ(P ), with bound names being adjusted as necessary
to avoid clashes.

A permutation σ induces a bijection σ̂ : N → N defined as follows: σ̂(i) = j
where σ(ωi) = ωj. Thus for all i ∈ N, σ(ωi) = ωσ̂(i). We use σ̂ to permute the
indices of processes in a network.

An automorphism over a network is simply a permutation over the set of
processes in the network such that the induced bijection over the indexes of
the processes is finite.

Definition 2.5 Let Net = ν~n (P0 | · · · | Pk−1) be a network of size k.
An automorphism on Net is a permutation σ such that (1) σ̂ restricted to
{0, . . . , k − 1} is a bijection, and (2) σ preserves the distinction between free
and bound names, i.e. n ∈ ~n iff σ(n) ∈ ~n.
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In general, if a permutation is repeatedly composed with itself, then we reach
the identity permutation after a finite number of iterations. As a result, also
the induced bijection reaches a fixed point after a finite number of self appli-
cations. The orbit is the record of all the results of the self applications of the
induced bijection before reaching the fixed point.

Definition 2.6 Let σ be an automorphism on a network of size k. For any
i ∈ {0, . . . , k − 1} the orbit Oσ̂(i) generated by σ̂ is defined as follows:

Oσ̂(i) = {i, σ̂(i), σ̂2(i), . . . , σ̂h−1(i)}

where σ̂j represents the composition of σ̂ with itself j times, and h is the least
such that σ̂h(i) = i.

Definition 2.7 Let Net = ν~n (P0 | · · · | Pk−1) be a network of size k and let
σ be an automorphism on it. We say that Net is symmetric with respect to σ
iff for each i = 0, . . . , k − 1 we have Pσ̂(i) = σ(Pi).

We say that Net is symmetric if it is symmetric with respect to some auto-
morphism with a single orbit (which must have size k).

A simpler proposal for defining symmetry of a network would be to require
that, for any two processes Pi and Pj, there is a permutation σij such that
σij(Pi) = Pj. However, while this is necessary (and implied by our definition),
it is not sufficient, since the various σij can be defined independently of each
other, and we could end up classing asymmetric networks as symmetric. As a
simple example, consider the network of three CCS processes given by

P0 = a.b.c P1 = b.c.a P2 = a.c.b

This should not be regarded as symmetric, since P0 and P2 share a common
initial action, leaving P1 as the odd one out. It can be checked that indeed,
according to our definition, the network is not symmetric. But if we just
consider pairs of processes we can certainly define permutations σij such that
σij(Pi) = Pj.

Intuitively an electoral system is a network which reports a unique winner, no
matter how the computation proceeds.

Definition 2.8 A network Net of size k is an electoral system if for every
maximal computation C of Net there exists an i < k such that Obs(C) = {ωi}.
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2.3 Encodings

The concept of encoding is inherently associated to expressiveness. If there
exists an encoding [[−]] from a source language S to a target language T , one
could see the language T as ‘mirroring’ S. Thus, the model underpinning T
is at least as expressive as the one underpinning S. At the highest level of
abstraction, an encoding [[−]] is a function from a source language to a target
language. However, not just any function [[−]] from source language to target
language should be accepted as an encoding; some ‘relevant’ behaviour of the
first language must be ‘preserved’.

We appeal here to the intuitive meaning of the words ‘relevant’ and ‘to pre-
serve’, but it remains to formalise the meaning of these words, by exhibiting
the semantic properties that [[−]] must satisfy. Before giving our particular
answer in the setting of electoral systems, we mention a number of properties
to be found in the literature. There are two sorts of property which are most
relevant to our setting: the operational and the syntactic.

We first state some common forms of operational correspondence (including
observational correspondence via barbs). Assuming that P ∈ S and [[P ]] ∈ T ,
that →∗ means the reflexive and transitive closure of the reduction relation,
and that ' is a suitable equivalence relation, we have:

• Preservation of execution steps (completeness): if P → P ′ then [[P ]] →∗'
[[P ′]] [25,19,8,12];

• Reflection of execution steps (soundness): if [[P ]] →∗ Q then there is P ′ such
that P →∗ P ′ and Q →∗' [[P ′]] [25,19,12];

• Barb preservation (completeness): if P ↓ n then for some Q we have [[P ]] →∗

Q and Q ↓ n [29,38];
• Barb reflection (soundness): if [[P ]] ↓ n then P ↓ n [29,38].

We now turn to syntactic requirements on an encoding. In their simplest form,
these involve a particular operator being preserved from source to target lan-
guage. The operator in question must of course be common to both languages.
We give a few examples. Assuming that | and ν are two operators common
to S and T , then the first two statements below express that [[−]] preserves
restriction (bound names) and distribution (parallel composition).

• Distribution preservation: [[P | Q]] = [[P ]] | [[Q]] [26,30,28,12];
• Restriction preservation: [[νn P ]] = νn [[P ]] [11];
• Substitution preservation: for all substitutions σ on S there exists a substi-

tution θ on T such that [[σ(P )]] = θ([[P ]]) [26,37];
• Link independence: if fn(P )∩ fn(Q) = ∅ then fn([[P ]])∩ fn([[Q]]) = ∅ [26,30].

The list of properties given above is certainly not exhaustive, but it includes
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some common properties used by the scientific community.

In general, it is not required that all of the properties above are satisfied in
order for a function to be called an encoding. More specifically, there is not
even a subset of these properties that is regarded as necessary. In fact, the
conditions regarded as relevant depend on the reasons why the encoding is
sought in the first place. For instance one could show that some primitives are
redundant in a calculus by showing an encoding from the full set of processes
to an appropriate fragment. This could be very useful for implementation
purposes. This is the case for the programming language Pict [31], which is
based on the asynchronous π-calculus, where input-guarded choice can be
implemented [25]. One could also show that one calculus can be encoded into
another in order to ‘inherit’ some (possibly good) properties. For instance,
from the encoding of the λ-calculus into the π-calculus one could derive easily
the Turing completeness of the π-calculus.

Although there is no unanimous agreement on what constitutes an encoding,
it is clear that the judgement as to whether a function is an encoding relies
on acceptance or rejection of the properties that hold for the encoding. That
is, to give a meaning to the results that will be presented in this tutorial,
the conditions on encodings we shall now present have to be accepted and
considered ‘reasonable’.

In dealing with leader election problems, an encoding must preserve the fun-
damental criteria of the problem, that is, the conditions for an encoding must
preserve symmetric electoral systems without introducing a solution. This is
what we aim to achieve with the following definition.

Definition 2.9 Let L and L′ be process languages. An encoding [[−]] : L → L′

is

(1) distribution-preserving if for all processes P , Q of L, [[P | Q]] = [[P ]] | [[Q]];
(2) permutation-preserving if for any permutation of names σ in L there

exists a permutation θ in L′ such that [[σ(P )]] = θ([[P ]]) and the per-
mutations are compatible on observables, in that for all i ∈ N we have
σ(ωi) = θ(ωi), so that σ̂(i) = θ̂(i);

(3) observation-respecting if for any P in L,
(a) for every maximal computation C of P there exists a maximal com-

putation C ′ of [[P ]] such that Obs(C) = Obs(C ′);
(b) for every maximal computation C of [[P ]] there exists a maximal com-

putation C ′ of P such that Obs(C) = Obs(C ′).

An encoding which preserves distribution and permutation is uniform.

The condition of preserving distribution is important in ruling out encodings
which make use of a central server. That means that, if the target language
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does not admit a fully distributed solution to the leader election problem, the
encoding cannot introduce a spurious solution. Nestmann [23] and Prasad [32]
argue that this requirement is too strong for practical purposes. We would like
to defend it, on the basis that it corresponds to requiring that the degree of dis-
tribution of the processes is maintained by the translation, i.e. no coordinator
is added. This condition makes the notion of encoding suitable for compar-
ing expressiveness of languages for distributed systems, where processes are
expected to coordinate without the help of a centralised control.

The second condition allows us to map symmetric networks to symmetric net-
works of the same size and with the same orbits. The third condition aims
to preserve the uniqueness of the winner, regardless of the length of the com-
putation. The condition is on barbs because the winner in this framework is
represented with a barb.

The conditions of Definition 2.9 have been formulated with the aim of achiev-
ing the following lemma, which says that symmetric electoral systems are
preserved.

Lemma 2.10 [28] Let L and L′ be process languages. Suppose [[−]] : L → L′

is a uniform observation-respecting encoding. Suppose that Net is a symmetric
electoral system of size k in L with no globally bound names. Then [[Net]] is a
symmetric electoral system of size k in L′. 2

3 Calculi

In this section we define the various calculi we shall consider.

3.1 The π-calculus with Mixed Choice

We assume the existence of names n ∈ N and co-names n ∈ N . The set of
process terms of the π-calculus with mixed choice (πm) is given by the following
syntax:

P, Q ::= 0 | ∑
i∈Iαi.Pi | P | Q | νn P | A〈m1, . . . ,mk〉

where I is a finite set. The prefixes of processes, ranged over by α, are defined
by the following syntax:

α ::= m(n) | m〈n〉
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Summation
∑

i∈Iαi.Pi represents a finite choice among the different processes
αi.Pi. This operator is also called mixed choice, since both input and output
prefixes can be present in the same summation. The symbol 0, called nil, is
the inactive process. Commonly in the π-calculus, 0 is an abbreviation for
the empty choice. Although redundant, we introduce it here as a primitive for
uniformity with the syntax of other calculi. We shall feel free to omit trailing
0s. Thus we write α instead of α.0. Recursion is handled by process identi-
fiers with parameters; each identifier A is equipped with a defining equation

A(~m)
df
= PA. It is common in the literature [35] on the π-calculus to handle

recursion via replication ! P . This operator simulates recursion by spinning off
copies of P . Recursion and replication are equivalent in (almost) all dialects of
the π-calculus. For uniformity in the presentation we have chosen to use recur-
sion over replication. Parallel composition of two processes P | Q represents P
and Q computing in parallel with each other. Restriction νn P creates a new
name n in P , which is bound. The notion of the free names fn(P ) of a term
P is standard, taking into account that the only binding operators are input
prefix and restriction. We write P{n/m} to mean that each free occurrence of
m is substituted by n in P. We use P{~n/~m} for the substitution of sequences
of names of the same length.

We reserve η for a bijection on I; we write
∑

η(i)∈I for permutation on the
sub-processes in the choice operator. The reduction relation over the processes
of πm is the smallest relation satisfying the following rules:

(Pi Comm) (m(x).P + G) | (m〈n〉.Q + H) → P{n/x} | Q

(Par)
P → P ′

P | Q → P ′ | Q
(Res)

P → P ′

νn P → νn P ′

(Str)
P ≡ Q Q → Q′ Q′ ≡ P ′

P → P ′

where G, H are summations. Structural congruence ≡ allows rearrangement of
processes; it is the smallest congruence over the set of processes that satisfies
the following equations:

P | 0 ≡ P νn (P | Q) ≡ P | νn Q if n /∈ fn(P )

P | Q ≡ Q | P νm νn P ≡ νn νm P

(P | Q) | R ≡ P | (Q | R) A〈~n〉 ≡ PA{~n/~m} if A(~m)
df
= PA

νn 0 ≡ 0
∑

i∈Iαi.Pi ≡
∑

η(i)∈Iαη(i).Pη(i)

together with α-conversion of bound names. A process P exhibits barb n,
written as P ↓ n, iff P ≡ ν ~m ((n〈x〉.Q + G) | R) with n /∈ ~m. We only use
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barbs on outputs; input barbs are not needed, and we thereby obtain greater
uniformity across the calculi we are considering.

By public πm we mean the subcalculus without restriction.

3.2 The π-calculus with Separate Choice

The π-calculus with separate choice (πs) [35] is the sub-calculus of πm where
summations cannot mix input and output guards. The set of processes is given
by the following grammar:

P, Q ::= 0 | ∑
i∈Iα

I
i .Pi |

∑
i∈Iα

O
i .Pi | P |Q | νn P | A〈m1, . . . ,mk〉

αI ::= m(n) αO ::= m〈n〉

The semantics of this calculus is the same as for πm taking into account the
syntactic restrictions.

The asynchronous π-calculus [15,2] is the fragment of πs where output has no
continuation, and the choice operator is not present. It has been shown [23]
that separate choice can be encoded in the asynchronous π-calculus; therefore
one could regard πs as having the same expressive strength as the asynchronous
π-calculus.

3.3 The π-calculus with Internal Mobility

The π-calculus with internal mobility (πI) [34] restricts the syntax to bound
output only. Thus the set of processes is the following:

P, Q ::= 0 | ∑
i∈Iαi.Pi | P | Q | νn P | A〈m1, . . . ,mk〉

where I is a finite set. The prefixes of processes are defined by the following
syntax:

α ::= m(n) | m(n)

and the semantics is given by the rule above by replacing the rule (Pi Comm)
with the following rule

(Int Comm) (m(n).P + S) | (m(n).Q + T ) → νn (P | Q) .
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The set of free names fn(P ) of process P is defined in the standard way,
taking into account that restriction, input and bounded output are the binding
operators. Thus, unlike in the π-calculus, in m(n).P the name n is not free;
in fact m(n).P can be thought as νn (m〈n〉.P ).

3.4 CCS

In this paper we shall use the version of CCS presented in [20], with the
addition of value passing. As well as names n ∈ N , we use co-names n ∈ N , a
set V of values, ranged over by v, . . ., and a set W of variables, ranged over by
x, . . .. The sets N , N , V and W are mutually disjoint. Processes are defined
as follows:

P, Q ::= 0 |
∑
i∈I

πi.Pi | P | Q | νn P | A〈m1, . . . ,mk〉

where I is a finite set. The prefixes of processes, ranged over by π, are defined
by the following syntax:

π ::= n(x) | n〈v〉.

The operators of the language are the same as for πm apart from prefixes where
in n〈v〉.P we have that v is a value and not a free name. We write P{v/x} to
indicate substitution from variables to values.

The reduction relation has the rule

(CCS Comm) (n(x).P + G) | (n〈v〉.Q + H) → P{v/x} | Q

(where G, H are summations) together with (Par), (Res) and (Str) as for πm.
The notion of the free names fn(P ) of a term P is standard, taking into account
that the only binding operator on names is restriction. Barbs are much as for
πm: a process P exhibits barb n, written as P ↓ n, iff P ≡ ν ~m((n〈v〉.Q+G) | R)
with n /∈ ~m.

The difference between CCS and πm may be illustrated by the πm process

P
df
= a(x).x〈b〉. This is not a valid CCS process, since x cannot be used as a

name in CCS. Clearly, when P is composed with Q
df
= a〈c〉.Q′, P can acquire

a new name c that may be used for future communication.

By public CCS we mean the subcalculus without restriction.
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3.5 Mobile Ambients

In the presentation of Mobile Ambients, we follow [9], except for commu-
nication, as noted below. Let P, Q, . . . range over processes and M, . . . over
capabilities. We assume a set of names N , ranged over by m, n, . . .. Processes
are defined as follows:

P, Q ::= 0 | P | Q | νn P | ! P | n[ P ] | M.P | (n).P | 〈n〉

We describe here only the operators specific to ambients: n[ P ] is an ambient
named n containing process P ; M.P performs capability M before continuing
as P ; (n).P receives input on an anonymous channel, with the input name
replacing free occurrences of name n in P ; and finally 〈n〉 is a process which
outputs name n. Notice that output is asynchronous, that is, it has no con-
tinuation. Restriction and input are name-binding, which naturally yields the
definition of the free names fn(P ) of a given process P .

Capabilities are defined as follows:

M ::= in n | out n | open n

Capabilities allow movement of ambients (in n and out n) and dissolution of
ambients (open n).

We confine ourselves in this paper to communication of names, rather than
full communication including capabilities (as in [9]). This serves to streamline
the presentation; the results would also hold for full communication.

The reduction relation → is generated by the following rules:

(In) n[ in m.P | Q ] | m[ R ] → m[ n[ P | Q ] | R ]

(Out) m[ n[ out m.P | Q ] | R ] → n[ P | Q ] | m[ R ]

(Open) open n.P | n[ Q ] → P | Q
(MA Comm) 〈n〉 | (m).P → P{n/m}

(Amb)
P → P ′

n[ P ] → n[ P ′ ]
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together with rules (Par), (Res) and (Str) as given for πm. Structural congru-
ence is the least congruence generated by the following laws:

P | Q ≡ Q | P νn νm P ≡ νm νn P

(P | Q) | R ≡ P | (Q | R) νn (P | Q) ≡ P | νn Q if n /∈ fn(P )

P | 0 ≡ P νn m[ P ] ≡ m[ νn P ] if n 6= m

! P ≡ P | ! P νn 0 ≡ 0

together with α-conversion of bound names. Notice that movement in MA is
subjective: ambients move themselves using the in and out capabilities. The
most basic observation we can make of an MA process is the presence of an
unrestricted top-level ambient. A process P exhibits barb n, written as P ↓ n,
iff P ≡ ν ~m (n[ Q ] | R) with n /∈ ~m.

We shall be interested in various subcalculi: pure MA is MA without commu-
nication; public MA is MA without restriction; and boxed MA is MA without
the open capability. We also use these terms with a similar meaning when
discussing the other forms of ambient calculi we are about to introduce.

3.6 Safe Ambients

The calculus of Safe Ambients (SA) [16] is a variant of MA where new co-
capabilities are added to complement the existing in, out and open capabilities.
The syntax of processes is the same as for MA, except that capabilities are
defined as follows:

M ::= in n | out n | open n | in n | out n | open n

Structural congruence and the reduction relation → are defined as for MA,
except that rules (In), (Out) and (Open) are replaced by the following:

(Safe In) n[ in m.P | Q ] | m[ in m.R | S ] → m[ n[ P | Q ] | R | S ]

(Safe Out) m[ n[ out m.P | Q ] | out m.R | S ] → n[ P | Q ] | m[ R | S ]

(Safe Open) open n.P | n[ open n.Q | R ] → P | Q | R

Barbs are defined slightly differently from MA. A process P exhibits barb n,
written as P ↓ n, iff P ≡ ν ~m (n[ M.Q | R ] | S) with n /∈ ~m and M either in n
or open n.
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There is a standard encoding of MA into SA, as follows:

[[n[ P ]]]
df
= n[ ! in n | ! out n | open n | [[P ]] ]

(with [[−]] homomorphic on the remaining operators) [16] 1 .

3.7 The Push and Pull Ambient Calculus

The Push and Pull Ambient Calculus (PAC) [29,37] is a variant of MA where
the subjective moves enabled by the in and out capabilities are replaced by
objective moves whereby ambients can be pulled in or pushed out by other
ambients. The syntax of processes is the same as for MA. Capabilities are
defined as follows:

M ::= pull n | push n | open n

The reduction rules are the same as for MA, except that (In) and (Out) are
replaced by the following:

(Pull) n[ pull m.P | Q ] | m[ R ] → n[ P | Q | m[ R ] ]

(Push) n[ m[ P ] | push m.Q | R ] → n[ Q | R ] | m[ P ]

Barbs are defined as for MA.

3.8 Boxed Ambients

The calculus of Boxed Ambients (BA) [4,5] is derived from MA by removing
the open capability and allowing parent-child communication as well as same-
level communication. Processes are defined as follows:

P, Q ::= 0 | P | Q | νn P | ! P | n[ P ] | M.P | (~n)η.P | 〈~n〉η.P

Here ~n denotes a tuple of names, and η ranges over locations, defined as follows:

η ::= n | ↑ | ?

1 The original version has ! openn, but the replication can be omitted, as ambients
are opened at most once.
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The “local” location ? is elided. Notice that output 〈~n〉η.P is synchronous,
unlike in MA. Capabilities M are defined as for MA but without open. The
reduction rules are the same as for boxed MA, except for communication,
where the rule (MA Comm) is replaced by the following five rules:

(Local) (~m).P | 〈 ~m′〉.Q → P{ ~m′/~m} | Q
(Input n) (~m)n.P | n[ 〈 ~m′〉.Q | R ] → P{ ~m′/~m} | n[ Q | R ]

(Input ↑) n[ (~m)↑.P | Q ] | 〈 ~m′〉.R → n[ P{ ~m′/~m} | Q ] | R
(Output n) n[ (~m).P | Q ] | 〈 ~m′〉n.R → n[ P{ ~m′/~m} | Q ] | R
(Output ↑) (~m).P | n[ 〈 ~m′〉↑.Q | R ] → P{ ~m′/~m} | n[ Q | R ]

Clearly, rule (Local) extends rule (MA Comm), so that communication in BA
is at least as powerful as communication in MA. Note that pure BA is the
same as pure boxed MA.

Barbs are defined as for MA.

4 Leader Election in General Symmetric Networks

We present solutions to the leader election problem for symmetric networks in
a variety of calculi (Section 4.1), followed by results showing the impossibility
of solutions in other calculi (Section 4.2). We conclude the section by using
the preceding to obtain separation results (Section 4.3).

4.1 Calculi with Electoral Systems

In this section we present solutions to the leader election problem in symmet-
ric networks of any finite size in some fragments of the following calculi: CCS,
πm, MA, PAC and SA. The solutions are of course still valid in the respective
full calculi. The solutions for CCS and πm are the same, since CCS is a sub-
calculus of πm and therefore once a solution is proposed for CCS it trivially
implies that there is a solution for πm. This is equally true for MA and SA;
however, Theorem 4.11 presents an alternative solution for SA that uses the
co-capabilities. Such a solution seems only possible in SA. Below we report
the suitable fragments of the calculi cited above.

Definition 4.1 (1) Let π−ν
m be public πm.

(2) Let CCS−ν be public CCS.
(3) Let MAio be pure public boxed MA.
(4) Let PAC pp be pure public boxed PAC.
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(5) Let SAio be pure public boxed SA.
(6) Let SAiop be pure public SA without the out capability.

We start by defining a symmetric electoral system of size two in CCS−ν . Let
a network Net be defined as follows:

P0
df
= n1 + n0.ω0 P1

df
= n0 + n1.ω1 Net

df
= P0 | P1

(Here we omit the values passed, which are just dummies which play no rôle.)
The network is symmetric with respect to a single-orbit automorphism σ de-
fined as follows:

σ(n0) = n1 σ(n1) = n0 σ(ω0) = ω1 σ(ω1) = ω0.

with σ the identity on all other names. There are only two possible computa-
tions. One can be described as follows:

C : Net → ω1 ↓ ω1 Obs(C) = {ω1}

The other one is identical up to the renaming of σ. The values passed are just
dummies, which can be omitted; there is a crucial use of mixed choice to break
symmetry.

The previous solution can be generalised to networks of any size k. Before giv-
ing the formal definition, we provide an informal description of the algorithm.

Informal Description 4.2 At every step a pair of processes fight each other.
Winning an individual fight is achieved by sending a message to the loser.
Each time, the loser drops out of the contest. Eventually only one process is
left standing. It has defeated every other process and is therefore the winner.
Each node is composed of two parts:

(1) A process that either sends a message to another node and proceeds to
fight the remaining processes, or receives a message and will no longer
take part in the election process. In this latter case, it will announce to
every other node that it has lost.

(2) A counter, which collects all the messages of loss from the other processes,
and after k − 1 messages declares victory (so processes have to know the
size of the network).

One important feature in this implementation is the use of mixed choice, in
the description of the process that runs for the election.

Let
∏

i<k Pi stand for P0 | · · · | Pk−1.
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Theorem 4.3 For any k ≥ 1, in CCS−νthere exists a symmetric electoral

system of size k defined by Net
df
=

∏
i<k Pi where

Pi
df
= Electi | Counterk

i,0

Electi
df
= ni.Electi +

∑
0≤s<k,s 6=i ns.(

∏
0≤t<k,t6=i lostt)

Counterk
i,j

df
= losti.Counterk

i,j+1 (0 ≤ j < k − 1)

Counterk
i,k−1

df
= ωi. 2

Because CCS−ν can be regarded as a subcalculus of π−ν
m , the algorithm written

above is also a solution for π−ν
m . Hence:

Corollary 4.4 For any k ≥ 1 , in π−ν
m there exists a symmetric electoral

system of size k.

Clearly, since CCS without value passing is a subcalculus of πI, also πI admits
a electoral system.

Corollary 4.5 For any k, in πI there exists a symmetric electoral system of
size k.

We now turn to showing the existence of symmetric electoral systems in MA.
In fact we can use solely the fragment MAio. Before presenting a solution for
networks of arbitrary size, we present an electoral system of size two. Let

P0
df
= n0[ in n1.ω0[ out n0.out n1 ] ] P1

df
= n1[ in n0.ω1[ out n1.out n0 ] ]

Net
df
= P0 | P1 .

Then Net is symmetric with respect to a single-orbit automorphism σ defined
as follows:

σ(n0) = n1 σ(n1) = n0 σ(ω0) = ω1 σ(ω1) = ω0.

There are only two possible computations. We shall present the first one in
detail:

C : n0[ in n1.ω0[ out n0.out n1 ] ] | n1[ in n0.ω1[ out n1.out n0 ] ] →

n1[ n0[ ω0[ out n0.out n1 ] ] | in n0.ω1[ out n1.out n0 ] ] →

n1[ ω0[ out n1 ] | n0[ ] | in n0.ω1[ out n1.out n0 ] ] →

ω0[ ] | n1[ n0[ ] | in n0.ω1[ out n1.out n0 ] ] ↓ ω0
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Thus we conclude Obs(C) = {ω0}. The other computation is identical up to
renaming via σ. Notice that symmetry is broken by one ambient entering the
other.

The general solution for a network of any size is more complex, and before
introducing the technical solution we shall provide an informal description
which covers both MA and PAC.

Informal Description 4.6 The basic idea of the algorithm is that winning
the election is achieved by having all the opponents inside. Each node in the
network is composed of two ambients: one that runs for the election and the
other that has the rôle of a counter. Any ambient entering another one has
lost the election. It will release an ambient called lose, which will eventually
appear at the top level, where the counters are. The winning ambient is left on
its own, at the top level, while all the other ambients are inside the winner.
The counter will declare the winner once every loser has entered it.

Theorem 4.7 [28] In MAio, for any k ≥ 1 there exists a symmetric electoral

system of size k, defined by Net
df
=

∏
i<k Pi where

Pi
df
= ni[

∏
j 6=i in nj.losei[ Outn ] ] | ci[ Ci,i+1 ]

Outn
df
=

∏
j<k ! out nj

Ci,i
df
= ωi[ out ci ]

Ci,j
df
= in losej.out losej.Ci,j+1 (j 6= i) 2

In the preceding theorem we use addition modulo k.

We dualise the construction given in the proof of Theorem 4.7, essentially
replacing in by pull and out by push.

Theorem 4.8 [28] In PAC pp, for any k ≥ 1 there exists a symmetric electoral

system of size k, defined by Net
df
=

∏
i<k Pi where

Pi
df
= ni[

∏
j 6=i(pull nj.losej[ ] | push losej) ] | ci[ Ci,i+1 ]

Ci,i
df
= ωi[ ] | push ωi

Ci,j
df
= pull losej.push losej.Ci,j+1 (j 6= i) 2

We now consider electoral systems in fragments of SA. We can take the sym-
metric electoral system in the statement of the proof Theorem 4.7 and adapt
it for SAio using the standard encoding (Section 3.6), with the one change that
we omit the open n from the encoding of n[ P ].
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Corollary 4.9 In SAio, for any k ≥ 1 there exists a symmetric electoral sys-
tem of size k. 2

In constructing electoral systems in MAio, we use the in capability to break
symmetry and the out to report the winner at the top level. An interesting
feature of SA is that we can also construct electoral systems using just the in
and the open capabilities, with the open enabling the reporting of the winner.

Here is a symmetric electoral system of size two in SAiop:

P0
df
= open n0 | n0[ in n1 | in n0.open n0.ω0[ open ω0 ] ]

P1
df
= open n1 | n1[ in n0 | in n1.open n1.ω1[ open ω1 ] ]

Net
df
= P0 | P1.

The first process to perform an in reduction loses.

For the solution for arbitrary sizes we provide an informal description first.

Informal Description 4.10 Similarly to the algorithm for MA and PAC,
each node in the network is composed of two ambients: one that runs for the
election and the counter. Any ambient in the network that gets entered is a
loser (the opposite of what happens in the solution for two processes given
above). After being entered, an ambient can be opened and then forced to re-
lease the ambient lose, which will help to decrease the counter. In fact, the
counter decrements by opening the ambient lose. The winning ambient is left
on its own after the losing ambients have all been opened. The counter declares
the winner after having opened all the lose ambients.

Theorem 4.11 [28] In SAiop, for any k ≥ 1 there exists a symmetric electoral

system of size k defined by Net
df
=

∏
i<k Pi where

Pi
df
= open ni | Ci,i+1 | ni[ in ni.open ni.losei[ open losei ] |

∏
j 6=i in nj ]

Ci,i
df
= ωi[ open ωi ]

Ci,j
df
= open losej.(losej[ open losej ] | Ci,j+1) (j 6= i) 2

Before concluding, we present one last algorithm for MAio, which is slightly
simpler than the one presented in Theorem 4.7; however correctness is more
difficult to prove, and it is not clear how to dualise the construction for PAC.

Informal Description 4.12 The idea is that the processes that take part in
the election can enter one another, until they form a linear stack. At this
point no further movement of the main ambient is possible, and the leader is
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the ambient which is at the top of the stack. A probe ambient ω can descend
to the bottom of the stack, and then ascend to the top of the stack. Finally ω
emerges at the top level and declares the winner.

Theorem 4.13 [28] In MAio, for any k ≥ 1 there exists a symmetric electoral

system Net
df
=

∏
i<k Pi of size k, defined as follows: for i < k, let Sk

i = {nj :
j < k, j 6= i}, and let T k

i be the set of all strings of length k − 1 using the
members of Sk

i exactly once each. Given an element s of T k
i we denote by s−

the string which is s in reverse order. By in (s) we mean the sequence of in nj

capabilities for each successive nj ∈ s (similarly for out). We set:

Pi
df
= ni[

∏
j 6=i

in nj |
∏

s∈T k
i

ωi[ in (s).out (s−).out ni ] ] 2

4.2 Calculi without Electoral Systems

In this section we shall show that there are calculi that do not admit a sym-
metric electoral system. We shall see that certain operators are needed to
break symmetry and for a solution to be possible. For π-calculus and CCS
the crucial operator is the mixed choice operator. In fact, both π-calculus and
CCS with separate choice cannot solve the problem of electing a leader in any
graph. For MA and SA the in capability is the symmetry-breaking operator,
while for PAC the pull capability is necessary.

The proof of the impossibility of leader election in a symmetric network has
different technical details according to the different formalisms, but there is
a common structure. The idea is that whenever a process takes a step, this
step can be imitated symmetrically by all the other processes, completing a
“round”, at the end of which symmetry is restored. In this way we construct a
maximal computation which preserves, at the end of each round, the invariant
property of being in a symmetric state. For this maximal computation, election
fails either because no one declares himself the winner or, if anybody declares
himself a winner, the other processes in the network can do the same, during
the same round. The proof method just described is very much inherited from
a classical result in distributed computing [17, Chapter 3.2].

To make this more concrete we consider an example in πs.

P0
df
= n0〈z〉.ω0 | n1(z) P1

df
= n1〈z〉.ω1 | n0(z) Net

df
= P0 | P1.

The network of size two written above is symmetric with the standard auto-
morphism that swaps 1 and 0, but it is not an electoral system. To see this it
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is sufficient to follow one maximal computation:

C : P0 | P1 → ω0 | n1(z) | n1〈z〉.ω1 → ω0 | ω1 ↓ ω1, ω0.

This example shows that, after the initial step breaking symmetry made by
P0 in trying to declare himself the winner, P1 can respond in a similar way,
which leads to a symmetric network again. Finally, no leader is elected because
there is more than one winner: Obs(C) = {ω1, ω0}. The proof for the general
case follows closely such reasoning; each time a step is made by a process (or
pair of processes), all other processes can mimic this step, in such a way that
symmetry is reached again, and no winner is possible.

There is no solution to the leader election problem in πs:

Theorem 4.14 [26] Let Net = [P0 | · · · | Pk−1] with k ≥ 2 be a symmetric
network in πs. Then Net cannot be an electoral system. 2

A corollary of Theorem 4.14 would be a similar result for CCS with separate
choice; however, unlike πs, such a calculus has never been considered, and
therefore we leave out the statement. It is clear that the mixed choice operator
is the key for the expressiveness result in the π-calculus. In MA and SA, the in
capability is crucial in order to break the symmetry; in fact, if this is removed,
the leader election problem cannot be solved. For PAC the removal of the pull
defines a calculus that cannot elect a leader in any graph.

Definition 4.15 (1) Let MA−in denote MA without the in capability.
(2) Let SA−in be SA without the in capability.
(3) Let PAC−pull be PAC without the pull capability.

Theorem 4.16 [28] Let k ≥ 2.

(1) Let Net = [P0 | · · · | Pk−1] be a symmetric network in MA−in. Then Net
cannot be an electoral system.

(2) Let Net = [P0 | · · · | Pk−1] be a symmetric network in PAC−pull. Then Net
cannot be an electoral system.

(3) Let Net = [P0 | · · · | Pk−1] be a symmetric network in SA−in. Then Net
cannot be an electoral system. 2

4.3 Separation Results

By Lemma 2.10, a uniform observation-respecting encoding maps symmet-
ric electoral systems (with no globally bound names) to symmetric electoral
systems. So for instance we can now deduce that there can be no uniform
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observation-respecting encoding from πm into πs, since the former has a sym-
metric electoral system of at least size two (from Corollary 4.4) and the latter
does not (Theorem 4.14).

We can tabulate the positive results of Section 4.1 and the negative results of
Section 4.2 in the following diagram:

CCS−ν π−ν
m πI MAio PAC pp SAio SAiop

πs MA−in PAC−pull SA−in

All calculi above the line have symmetric electoral systems for any finite size.
Those below the line do not have symmetric electoral systems for any size
greater than one. Therefore there is no uniform, observation-respecting en-
coding from any calculus above the line to any below the line, giving us many
separation results.

On the calculi above the line we have considered the smallest fragment which
solves leader election problems. Clearly, the full calculus of each fragment
above solves leader election problems as well. On the other hand for the calculi
below the line, we have considered the largest fragment that does not admit
a solution to the problem. Our diagram above also highlights which operators
in each calculus make the difference in expressiveness: for the π-calculus (and
CCS) it is mixed choice; for MA and SA it is in and for PAC it is pull.

Separation results test the ability to reach an agreement in a fully distributed
way, provided that every node in the network is programmed identically. While
this is an important feature in distributed systems, and a valuable metric to
evaluate concurrent models of computation, our method says nothing on other
aspects of the model, for instance Turing completeness or expressiveness of
name passing.

5 Leader Election in Symmetric Rings

In distributed computing, one standard network topology is a ring, where
each process can only communicate with its left-hand and right-hand neigh-
bours. As far as leader election is concerned, this means that algorithms which
assume that all processes are directly linked to all other processes (as consid-
ered in Section 4) will no longer work. In this section we examine whether
enhanced leader election algorithms which can handle rings are available for
the languages we are considering. This will enable us to separate some of the
languages in the top row of the diagram in Section 4.3.
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One possible way to conduct leader election in rings is what we shall call the
two-phase method. This starts by using an algorithm to create links between
all processes. Symmetry is preserved during this first (or link-creation) phase.
Once this is done, in the second (or election) phase a leader election algorithm
devised for fully connected networks (as in Section 4) can be used to produce
the leader.

The π-calculus has the power to create new links; we shall see that the link-
creation phase referred to above can be carried out in πm (in fact it can be
done in πs). Since πm can solve leader election for fully connected networks,
it can therefore perform leader election on rings using the two-phase method.
By contrast, CCS does not have the power to create new links, and it can
be shown that CCS cannot perform leader election on rings with composite
(non-prime) size. We need the compositeness condition because our method
depends on partitioning the ring into equal-sized sets of non-adjacent nodes.

We now consider the ambient world. In MA, SA and PAC, the communication
primitives have the same operational semantics as the π-calculus, except that
they are anonymous, in the sense that there are no channels on which commu-
nication happens (in the π-calculus one would write m(x).P for an input on
the channel m, while in MA one would write (x).P for an anonymous input).
Since communication primitives in ambients are very similar to those of the
π-calculus, it would be not surprising if the two-phase method could be for-
mulated in MA, SA and PAC, since they all solve the leader election problem
in fully connected networks. It turns out that the leader election problem for
symmetric rings of any size is solved without the use of communication prim-
itives. This means that link passing, in this case, is somehow simulated, since
there is no explicit way of passing names in the absence of communication.
The open capability is crucial in this setting. It is, in fact, the capability that
simulates link passing, since it can be shown that MA, SA and PAC with-
out the open capability do not admit a solution for leader election problems
in rings of composite size. The situation is different for BA, where the open
capability is missing as a design choice. Communications between parent and
child ambients are allowed, and the synchronous choice-free π-calculus can be
encoded, and with that, clearly, the power of creating new links. Thus it can
be shown that in BA the leader election problem in a ring of any size can be
solved by converting the ring into a fully connected network and then using
the algorithm of Theorem 4.7 (or that of Theorem 4.13).

5.1 Rings and Independence Preservation

We start by providing a general framework for leader election problems in
rings, augmenting that presented in Section 2.2.
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Given a network Net = ν~n (P0 | · · · | Pk−1), we can associate a graph with Net
by letting the set of nodes be {0, . . . , k−1} and letting i, j < k be adjacent iff
fn(Pi) ∩ fn(Pj) 6= ∅. A network forms a ring if the processes can be arranged
in a cycle, and each node i is adjacent to at most its two neighbours in the
cycle.

Definition 5.1 A ring is a network Net = ν~n (P0 | · · · | Pk−1) which has a
single-orbit automorphism σ such that for all i, j < k, if fn(Pi) ∩ fn(Pj) 6= ∅
then one of i = j, σ̂(i) = j or σ̂(j) = i must hold. A ring is symmetric if it is
symmetric with respect to such an automorphism σ.

Notice that the definition bans links between non-adjacent nodes in the ring,
but does not require the existence of links between adjacent nodes. Thus a
completely disconnected network is in fact a ring.

Also note that the definition says nothing about the direction of communica-
tion in a ring, which can therefore be in either direction. Thus, in distributed
systems terms, we are defining bidirectional rings rather than unidirectional
ones. Some of our algorithms are in fact unidirectional in character, but this
extra information plays no part in obtaining separation results.

Recall that an independent set in a graph is a set of nodes such that no two
nodes of the set are adjacent.

Definition 5.2 Two processes P and Q are independent if they do not share
any free names: fn(P ) ∩ fn(Q) = ∅.

Definition 5.3 Let σ be an automorphism on a network Net = ν~n (P0 | · · · |
Pk−1). Then Net is independent with respect to σ if every orbit forms an
independent set, in the sense that if i, j < k are in the same orbit of σ̂ with
i 6= j, then Pi and Pj are independent.

Unlike in Section 4, in this section we shall consider encodings which map
rings to rings. We therefore need a further property on top of uniformity and
the preservation of the observables. This property will guarantee that the
connectivity of the original network is not increased.

Definition 5.4 An encoding is independence-preserving if for any processes
P , Q, if P and Q are independent then [[P ]] and [[Q]] are also independent.

The property above states that such an encoding “does not increase the level
of connectivity of the network”. Not all encodings preserve independence. For
instance, Zimmer’s [39] encoding of the synchronous π-calculus without choice
into pure SA introduces a new global ambient whose name is shared by all
processes.
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Lemma 5.5 [30] Suppose [[−]] : L → L′ is a uniform, observation-respecting
and independence-preserving encoding. Suppose that Net is a symmetric ring
of size k ≥ 1 which is an electoral system. Then [[Net]] is also a symmetric
ring of size k which is an electoral system. 2

5.2 Calculi with Electoral Systems for Rings

In this section we show that we can solve leader election on symmetric rings in
πm and in ambient calculi. The solution for MA can be carried over to SA by
a standard encoding. There is a fundamental difference between the solution
for PAC and the others: the PAC solution works for a ring of any size with
a single uniform definition for each component, so that the processes do not
need to know the size of the ring.

We start with a solution to the leader election problem for rings in both πm

and BA; we consider both calculi at once because at some level of abstraction
the algorithm is the same. We provide an informal explanation first.

Informal Description 5.6 The algorithm has two phases. In phase one the
processes pass names around the ring so that every process becomes directly
connected to every other process. Here there is an essential use of the π-
calculus, though without any use of choice.

We define a symmetric ring P0 | · · · | Pk−1 which is an electoral system.
Suppose that process Pi has a channel ni initially known only to itself, and can
send messages to Pi−1 along channel xi. Then the names ni are passed around
the ring so that all processes share them and can use them in the election
phase. We have to be careful that for each Pi the outputs occur in the same
order as the inputs, so that names do not get confused. We therefore allocate
to each Pi a “synchroniser” name yi which ensures that each successive output
is completed before the next one is enabled. We elide the dummy names passed
along yi.

For 0 ≤ i ≤ k, we let Pi
df
= P 0

i 〈xi, xi+1, yi, ni〉, where for 0 ≤ j ≤ k − 2 we let

P j
i (xi, xi+1, yi, ni, . . . , ni+j)

df
= x̄i〈ni+j〉.ȳi | xi+1(ni+j+1).yi.P

j+1
i 〈xi, xi+1, yi, ni, . . . , ni+j+1〉

and P k−1
i (xi, xi+1, yi, ni, . . . , ni−1)

df
= Qi〈ni, . . . , ni−1〉. Here Qi is a process

which has acquired all the ni and is ready to carry out the election phase.
Once Qi is reached, the names xi, xi+1 and yi are no longer required.
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For πm, we have seen what the Qi would look like in Theorem 4.3, and therefore
we can state the following theorem:

Theorem 5.7 (cf. [26]) For any k ≥ 1, there is a symmetric ring of size k
which is an electoral system in π−ν

m . 2

For BA, since it is possible to encode choice-free synchronous π-calculus [5], we
can carry out the link-creation phase in BA. We use the following translation
of the π-calculus input and synchronous output:

[[x(y).P ]]
df
= (y, z)x.(z[ 〈〉 ] | [[P ]])

[[x̄〈y〉.P ]]
df
= x[ 〈y, z〉 ] | ()z.[[P ]]

where z is fresh in the translation of output (i.e., when translating particular
networks from the π-calculus into BA we choose each of the zs to be distinct
from each other and from any other names used). This translation is adapted
from [5], which used restriction. Note that we do not need restriction, since in
our particular setting there is no harm in introducing fresh public names. We
need to define the Qi. We could use the process defined in Theorem 4.7 or the
one defined in Theorem 4.13. Therefore we have the following theorem:

Theorem 5.8 [30] For any k ≥ 1, there is a symmetric ring of size k which
is an electoral system in public BA. 2

We next turn to PAC. We show that using push and pull we can build a sym-
metric ring of processes which can elect a leader. Moreover, the construction
is such that individual processes do not know the size of the ring.

This algorithm is different from all the others because each node can be de-
scribed without knowing (either in advance or as a result of the computation)
the size of the network. In other words, no counter is necessary for this solu-
tion.

Informal Description 5.9 The gist of the algorithm is that communication
goes in one direction only, for instance, from left-hand neighbours to right-hand
neighbours. The right-hand neighbour is pulled and opened, reducing the size
of the ring; if the left-hand neighbour is opened then this means that there are
no other processes left, and therefore the last-standing ambient is the winner.

Theorem 5.10 [30] For any k ≥ 1, there is a symmetric ring of size k which

is an electoral system in pure public PAC, defined by Net
df
=

∏
i<k Pi where

Pi
df
= ni[ Qi | pull ni+1 | open ni+1 ]

Qi
df
= ni[ ωi[ ] ] | push ωi 2
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We now discuss the solution to the leader election problem for rings in pure
public MA.

Informal Description 5.11 We use the two-phase method. In the link-creation
phase we send ambients round the ring which contain the appropriate capabil-
ities. These are opened by their intended recipients, which then can exercise
these capabilities. We already know how to carry out the election phase from
Theorems 4.7 and 4.13, though in fact we use a different algorithm, which is
easier to set up via the link-creation phase.

We omit the precise details of the construction, as they are quite lengthy.

Theorem 5.12 [30] For any k ≥ 1 there is a symmetric ring of size k which
is an electoral system in pure public MA. 2

Corollary 5.13 For any k ≥ 1 there is a symmetric ring of size k which is
an electoral system in pure public SA.

5.3 Calculi without Electoral Systems for Rings

In this section, we consider the calculi that do not have electoral systems for
symmetric rings. In this case, the failure of the election is not related to the
ability of breaking the initial symmetry. In fact in CCS, πI or MAio, leader
election problems can be solved in fully connected networks. The separation re-
sults say something regarding the possibility of creating new shared resources.
In the π-calculus this phenomenon is present since channels can be values as
well; in MA, SA and PAC this phenomenon is simulated via the open capabil-
ity. In BA this phenomenon is simulated via the parent-child communication
primitives. It turns out that CCS, πI, boxed MA, boxed SA, boxed PAC and
pure BA do not admit a solution to the leader election problem in rings, at
least those of composite (non-prime) size.

As in the case of general networks, the proofs for the negative results differ in
their technical details in each formalism, but there is a common strategy. If a
ring is of composite size, then it is symmetric with respect to a permutation
with multiple independent orbits of the same size (greater than one). The
basic idea is to show that there is a maximal computation where, even though
symmetry may be broken in the ring as a whole, symmetry is maintained
within each orbit, and the nodes of each orbit remain independent. It remains
an open problem whether the result presented below still holds in networks
whose size is a prime number greater than three.

Theorem 5.14 [26,30] For any composite k > 1, CCS does not have a
symmetric ring of size k which is an electoral system. Similarly for πI, boxed
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MA, boxed PAC and boxed SA. 2

5.4 Separation Results

By Lemma 5.5, we can now deduce that there can be no uniform, observation-
respecting and independence-preserving encoding from πm into CCS, since
the former has a symmetric electoral system which is a ring of size four (from
Theorem 5.7) and the latter does not (Theorem 5.14).

Much as in Section 4.3, we can tabulate the results of Sections 5.2 and 5.3 as
follows:

π−ν
m pure public MA pure public PAC pure public SA public BA

CCS πI boxed MA boxed PAC boxed SA

All calculi above the line have symmetric electoral systems which are rings for
any finite size. Those below the line do not have symmetric electoral systems
which are rings for composite sizes greater than three. Therefore there is no
uniform, observation-respecting and independence-preserving encoding from
any calculus above the line to any below the line.

As in Section 4.3 we have considered here the particular versions of calculi
which which yield the strongest result. Each of the calculi above the line is
the smallest fragment that solves leader election problems in symmetric rings;
that of course implies that the full calculus does as well. On the other hand,
for the calculi below the line, we have considered the largest fragment that
does not admit a solution to the problem to make the results as strong as
possible. The diagram above highlights which operators in each calculus are
the key to the difference in expressiveness.

Our results shed light on the expressive power provided by creating new visible
channels. CCS cannot solve leader election problems in rings because it does
not allow the creation of new links. On the other hand, πI can create new
links, but they are bound and hence cannot be used outside the scope of the
process. In the case of MA, PAC and SA, new links between processes in a
network could be created with a process like (x).x[ P ]. However, such top-
level anonymous communication does not give us enough control over which
process receives which message, and it is easy to see that symmetry need not be
broken. Instead, in our election algorithms we pass around new links encased
in ambients. In order to use these links for interaction between processes they
need to be brought to the top level; this “unleashing” is achieved using the open
capability. Thus, our method says nothing about separation results between
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MA with communication primitives and pure MA. In this framework one could
regard them as equally expressive, since, when it comes to passing names
around, pure MA can do just as well as the full calculus.

In connection with the negative result for boxed SA (Theorem 5.14), we recall
that Zimmer [39] has encoded the synchronous choice-free π-calculus into pure
SA. We conjecture that for boxed SA such an encoding would not be possible,
even in the presence of communication. For if it were possible, then it would
seem that boxed SA could perform election on rings, much as shown for BA
(Theorem 5.8).

Observing that the algorithm devised in the previous section for PAC does not
require knowledge of the size of the network, a challenge for the future is to
show that calculi other than PAC either have, or cannot have, such uniform
solutions, as well as exploiting any differences to obtain further separation
results.

6 Discussion on approaches to expressiveness

In this section we wish to discuss and analyse other methods used in order to
compare concurrent calculi. The power to solve the leader election problem is
not the only way to differentiate computational models. Moreover, by using
different criteria one may well obtain different hierarchies. For instance, in [25]
it was shown that there exists an encoding from the separate choice π-calculus
into the asynchronous π-calculus that respects weak bisimulation; however
in [6] it was shown that this result does not hold if the must semantics is
considered.

In this section we will review the assumptions used in our work, and analyse
the strength and the weakness of other methods. We claim that whether or
not expressiveness results are meaningful depends on both the criteria and the
methods used to achieve them, and ultimately on the purpose of the results.

In this work, we have taken the point of view that calculi can be differentiated
by their ability to solve increasingly harder problems. In particular we have
considered leader election problems in symmetric networks for both cliques
and rings. These are classic problems in the literature of distributed algo-
rithms, and they concern the ability to reach agreement in fully distributed
environments with different topologies of network. We know from the work in
distributed algorithms [1,17] that calculi that solve leader election problems in
symmetric networks cannot be implemented in a fully distributed way. There-
fore our work shows that the mixed choice operator in π-calculus and CCS, as
well as the in capability in ambient calculi, cannot be implemented in a fully
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distributed fashion if the parallel composition operator | is interpreted as dis-
tributed parallelism. On the other hand, with calculi, such as the asynchronous
π-calculus, that cannot perform leader election in symmetric networks, there
is the prospect that they can be implemented in a fully distributed fashion.
So our results shed light on a significant practical difference among models of
computation.

An alternative approach could have been to consider a different problem, or
to invent a problem from scratch, as done in [7]. In that paper, in order
to show that there is no divergence-free encoding from the π-calculus with
polyadic synchronisation to the standard π-calculus, a “matching” problem
was specially devised. Although there is in principle nothing wrong in devising
a new problem, one question is whether or not the problem is ‘reasonable’ or
general enough. Also conditions associated to the encoding depend on the
problem in hand, and whether those are also reasonable or acceptable remains
to be decided in each individual case.

A completely different approach would be to separate calculi just on the basis
of the semantic differences—i.e. without considering a problem. This means
that one could decide that there are some properties that an encoding has to
satisfy, and systematically work out which calculi can or cannot be related
by such encodings. This the approach taken for example by Gorla [12]. When
adopting this methodology, one always has to make arguments to establish
the usefulness of the conditions considered; they should not be merely devised
ad hoc to obtain a particular separation result.

In fact, with a strong enough set of conditions, one can always separate two
given calculi. As an example, consider the asynchronous π-calculus and CCS.
Everyone expects that the former cannot be encoded in the latter, since the
π-calculus, unlike CCS, is able to receive names as values (object position)
and then use them as channels (subject position). A simple-minded argument
could involve defining the set of ports of a process to be those names occurring
free in subject position, and requiring that no new ports can be created by

the encoding. As an example, if we let R
df
= a(x).x〈m〉 | a〈b〉, then R has the

single port a. So the CCS encoding [[R]] can have no port other than a by
our condition. If we then impose the further condition on encodings that weak
barbs are preserved (if P ⇓ n then [[P ]] ⇓ n), then we easily get an impossibility
result: clearly R → b〈m〉 and so R ⇓ b. However, the CCS process [[R]] cannot
create any new ports and so [[R]] 6⇓ b. But of course this result is open to
objections of both a technical and more intuitive nature. Technically it mixes
a notion related to strong barbs (i.e. ports) with weak barbs. From an intuitive
point of view it seems to use too directly the fact that CCS cannot create new
ports while the π-calculus can.

To sum up, we contend that there can be dangers in using arbitrary properties
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of encodings in an ad hoc way, and that, by contrast, there are advantages in
using properties designed around real computational problems such as leader
election.

In Section 2.3 we observed that there is no single set of conditions that defines
whether or not an encoding is good. In a similar way, perhaps it is not possible
to define a unique method to separate calculi or models of computations. Each
criterion is good enough for the purpose at hand.

7 Conclusions and Related Work

The first attempt to represent leader election problems in process algebra was
made by Bougé [3]. He formalised the notion of the leader election problem
in symmetric networks for CSP [13,14]. The most remarkable achievements
are the separation results between CSP with input and output guards and
CSP with input guards only, and between the latter and CSP without guards,
based on the notion of symmetric reasonable implementation.

A similar formalisation of the notion of leader election problem was made by
Palamidessi [26] for the π-calculus. Palamidessi proves formally that any sym-
metric network in the π-calculus with separate choice admits a computation
that never breaks the initial symmetry. This result is used to show that there
is no encoding of the π-calculus with mixed choice into the π-calculus with
separate choice. In her paper Palamidessi uses a graph framework, as in the
tradition of distributed algorithms [17,36,1,3], and she proves that CCS does
not admit a symmetric electoral system in a ring, as opposed to the π-calculus
with mixed choice. Using a similar approach, Ene and Muntean [11] show that
the π-calculus with broadcasting primitives cannot be encoded in the standard
π-calculus.

Finally, Phillips and Vigliotti used these proof techniques to separate MA from
the separate-choice π-calculus and MA without the in capability (MA−in) [28],
and to separate mixed choice π-calculus and MA from CCS and MA with-
out the open capability (boxed MA) [30]. This work was carried out in the
reduction semantics framework also used in this tutorial. This framework has
the advantage of uniformity across a range of process calculi. Our results
say nothing, with respect to leader election, on the relationship between the
mixed choice π-calculus and MA, or between CCS and boxed MA. These are
still open problems.

In this tutorial we have collected together results from different papers [26,28,30],
given a uniform presentation and highlighted the similarities and differences
between the various approaches to leader election problems. We have omitted
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proofs and lengthy details; however, those are available in the original papers.
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