Information-hiding Protocols as Opaque Channels

Catuscia Palamidessi

Based on joint work with Kostas Chatzikokolakis and Prakash Panangaden

Supported by INRIA/DREI project PRINTEMPS and INRIA/ARC project ProNoBiS

Plan of the talk

2

Chatzikokolakis, Palamidessi and Panangaden

PLID'07

21/8/07

PLID'07

Plan of the talk

2

• Motivation

21/8/07

PLID'07

Plan of the talk

2

- Motivation
- Protocols as channels

21/8/07

PLID'07

Plan of the talk

- Motivation
- Protocols as channels
- Preliminary notions of Information Theory

21/8/07

PLID'07

Plan of the talk

2

- Motivation
- Protocols as channels
- Preliminary notions of Information Theory
- Opacity as converse of channel capacity

21/8/07

PLID'07

Plan of the talk

- Motivation
- Protocols as channels
- Preliminary notions of Information Theory
- Opacity as converse of channel capacity
- Intended leak of information

21/8/07

PLID'07

Plan of the talk

- Motivation
- Protocols as channels
- Preliminary notions of Information Theory
- Opacity as converse of channel capacity
- Intended leak of information
- Relation with other notions in literature

 $\langle 5 | C \rangle$

21/8/07

PI ID'07

Plan of the talk

- Motivation
- Protocols as channels
- Preliminary notions of Information Theory
- Opacity as converse of channel capacity
- Intended leak of information
- Relation with other notions in literature
- Computing the capacity of the protocol/channel

Plan of the talk

- Motivation
- Protocols as channels
- Preliminary notions of Information Theory
- Opacity as converse of channel capacity
- Intended leak of information
- Relation with other notions in literature
- Computing the capacity of the protocol/channel

2

• Statistical inference and Bayesian risk

PLID'07

21/8/07

 $\langle \exists | E \rangle$

 $\langle \exists | \Box \rangle$

2 /8/07

PI ID'07

Plan of the talk

- Motivation
- Protocols as channels
- Preliminary notions of Information Theory
- Opacity as converse of channel capacity
- Intended leak of information
- Relation with other notions in literature
- Computing the capacity of the protocol/channel

2

- Statistical inference and Bayesian risk
- Conclusion and future work

Information-hiding

Chatzikokolakis, Palamidessi and Panangaden

PLID'07

21/8/07

Information-hiding Privacy

Chatzikokolakis, Palamidessi and Panangaden

PLID'07

21/8/07

21/8/07

PI ID'07

Information-hiding Privacy

• Ability of an individual or group to stop information about themselves from becoming known to people other than those they choose to give the information to [Wikipedia]

21/8/07

Information-hiding Privacy

- Ability of an individual or group to stop information about themselves from becoming known to people other than those they choose to give the information to [Wikipedia]
 - Protection of private data (credit card number, personal info etc.)

3

PI ID'07

21/8/07

Information-hiding Privacy

- Ability of an individual or group to stop information about themselves from becoming known to people other than those they choose to give the information to [Wikipedia]
 - **Protection of private data** (credit card number, personal info etc.)

3

PI ID'07

• **Anonymity**: protection of identity

21/8/07

Information-hiding Privacy

- Ability of an individual or group to stop information about themselves from becoming known to people other than those they choose to give the information to [Wikipedia]
 - **Protection of private data** (credit card number, personal info etc.)

PI ID'07

- **Anonymity**: protection of identity
- Unlinkability: protection of link between information and user

3

 $\langle \exists | \Box \rangle$

21/8/07

Information-hiding Privacy

- Ability of an individual or group to stop information about themselves from becoming known to people other than those they choose to give the information to [Wikipedia]
 - **Protection of private data** (credit card number, personal info etc.)
 - **Anonymity**: protection of identity
 - Unlinkability: protection of link between information and user
 - Unobservability: impossibility to determine what the user is doing

3

PI ID'07

 $\langle \exists | E \rangle$

21/8/07

Information-hiding Privacy

- Ability of an individual or group to stop information about themselves from becoming known to people other than those they choose to give the information to [Wikipedia]
 - **Protection of private data** (credit card number, personal info etc.)
 - **Anonymity**: protection of identity
 - Unlinkability: protection of link between information and user
 - Unobservability: impossibility to determine what the user is doing

3

PI ID'07

More precise definition @ www.freehaven.net/anonbib/cache/terminology.pdf

Privacy in Global/Pervasive Computing

4

Chatzikokolakis, Palamidessi and Panangaden

PLID'07

21/8/07

21/8/07

Privacy in Global/Pervasive Computing

4

• Issue of privacy protection exacerbated by orders of magnitude:

Chatzikokolakis, Palamidessi and Panangaden

PLID'07

21/8/07

PI ID'07

Privacy in Global/Pervasive Computing

- Issue of privacy protection exacerbated by orders of magnitude:
 - Electronic devices and their continuous interaction with users

4

21/8/07

PI ID'07

Privacy in Global/Pervasive Computing

- Issue of privacy protection exacerbated by orders of magnitude:
 - Electronic devices and their continuous interaction with users \Rightarrow possibility to gather and store a huge amount of information

Privacy in Global/Pervasive Computing

- Issue of privacy protection exacerbated by orders of magnitude:
 - Electronic devices and their continuous interaction with users \Rightarrow possibility to gather and store a huge amount of information
 - Profiling / data mining techniques

21/8/07

PI ID'07

Privacy in Global/Pervasive Computing

- Issue of privacy protection exacerbated by orders of magnitude:
 - Electronic devices and their continuous interaction with users \Rightarrow possibility to gather and store a huge amount of information
 - Profiling / data mining techniques
 ⇒ precise definition of the individual's preferences

21/8/07

PI ID'07

Privacy in Global/Pervasive Computing

- Issue of privacy protection exacerbated by orders of magnitude:
 - Electronic devices and their continuous interaction with users \Rightarrow possibility to gather and store a huge amount of information
 - Profiling / data mining techniques
 ⇒ precise definition of the individual's preferences
 - Personal information on consumers perceived as asset

21/8/07

PI ID'07

Privacy in Global/Pervasive Computing

- Issue of privacy protection exacerbated by orders of magnitude:
 - Electronic devices and their continuous interaction with users \Rightarrow possibility to gather and store a huge amount of information
 - Profiling / data mining techniques
 ⇒ precise definition of the individual's preferences
 - Personal information on consumers perceived as asset
 ⇒ often subject matter of commercial transactions

21/8/07

PI ID'07

Privacy in Global/Pervasive Computing

- Issue of privacy protection exacerbated by orders of magnitude:
 - Electronic devices and their continuous interaction with users \Rightarrow possibility to gather and store a huge amount of information
 - Profiling / data mining techniques
 ⇒ precise definition of the individual's preferences
 - Personal information on consumers perceived as asset
 ⇒ often subject matter of commercial transactions

21/8/07

PI ID'07

Privacy in Global/Pervasive Computing

- Issue of privacy protection exacerbated by orders of magnitude:
 - Electronic devices and their continuous interaction with users \Rightarrow possibility to gather and store a huge amount of information
 - Profiling / data mining techniques
 ⇒ precise definition of the individual's preferences
 - Personal information on consumers perceived as asset
 ⇒ often subject matter of commercial transactions
- Result:

21/8/07

Privacy in Global/Pervasive Computing

- Issue of privacy protection exacerbated by orders of magnitude:
 - Electronic devices and their continuous interaction with users \Rightarrow possibility to gather and store a huge amount of information
 - Profiling / data mining techniques
 ⇒ precise definition of the individual's preferences
 - Personal information on consumers perceived as asset
 ⇒ often subject matter of commercial transactions
- Result:
 - A tremendous amount of information on the individual is gathered, processed, exchanged, used

PLID'07

21/8/07

Privacy in Global/Pervasive Computing

- Issue of privacy protection exacerbated by orders of magnitude:
 - Electronic devices and their continuous interaction with users \Rightarrow possibility to gather and store a huge amount of information
 - Profiling / data mining techniques
 ⇒ precise definition of the individual's preferences
 - Personal information on consumers perceived as asset
 ⇒ often subject matter of commercial transactions

• Result:

- A tremendous amount of information on the individual is gathered, processed, exchanged, used
- The individual often has not consented to this processing

PLID'07

- Issue of privacy protection exacerbated by orders of magnitude:
 - Electronic devices and their continuous interaction with users \Rightarrow possibility to gather and store a huge amount of information
 - Profiling / data mining techniques
 ⇒ precise definition of the individual's preferences
 - Personal information on consumers perceived as asset
 ⇒ often subject matter of commercial transactions

• Result:

- A tremendous amount of information on the individual is gathered, processed, exchanged, used
- The individual often has not consented to this processing
- In the worst scenario, he is not even aware of it

Chatzikokolakis, Palamidessi and Panangaden

PLID'07

- Issue of privacy protection exacerbated by orders of magnitude:
 - Electronic devices and their continuous interaction with users \Rightarrow possibility to gather and store a huge amount of information
 - Profiling / data mining techniques
 ⇒ precise definition of the individual's preferences
 - Personal information on consumers perceived as asset
 ⇒ often subject matter of commercial transactions

• Result:

- A tremendous amount of information on the individual is gathered, processed, exchanged, used
- The individual often has not consented to this processing
- In the worst scenario, he is not even aware of it

Chatzikokolakis, Palamidessi and Panangaden

PLID'07

21/8/07

RFID tags may be everywhere... **Faxed hair** model #4456 Artificial leg model #459382 C OC **Bakunin** letters 5 x \$100 banknotes Serial #: 597387,389473... Lingerie model Penelope Bras (Size 4) Coutesy by: Giuseppe Bianchi

5

Chatzikokolakis, Palamidessi and Panangaden

21/8/07

Example: the dining cryptographers

7

PLID'07

 $Master = \sum_{i=0}^{2} \tau \cdot \overline{m}_i \mathsf{p} \cdot \overline{m}_{i\oplus 1} \mathsf{n} \cdot \overline{m}_{i\oplus 2} \mathsf{n} \cdot 0$ $+ \tau.\overline{m}_0 n.\overline{m}_1 n.\overline{m}_2 n.0$ $Crypt_i = m_i(x) \cdot c_{i,i}(y) \cdot c_{i,i\oplus 1}(z)$. if x = pthen \overline{pay}_i . if y = zthen \overline{out}_i disagree else $\overline{out}_i aqree$ else if y = zthen \overline{out}_i agree else $\overline{out}_i disagree$ $Coin_i = p_h \tau$. $Head_i + p_t \tau$. $Tail_i$ $Head_i = \overline{c}_{i,i}head \cdot \overline{c}_{i\ominus 1,i}head \cdot 0$ $Tail_i = \overline{c}_{i,i} tail \cdot \overline{c}_{i\ominus 1,i} tail \cdot 0$ $DCP = (\nu \vec{m})(Master$ $| (\nu \vec{c})(\Pi_{i=0}^2 Crypt_i | \Pi_{i=0}^2 Coin_i))$

Chatzikokolakis, Palamidessi and Panangaden

PLID'07

21/8/07

8

 $\langle \neg | \rangle$

- A crowd is a group of n nodes
- The initiator selects randomly a node (called forwarder) and forwards the request to it

- A forwarder:
 - With prob. I-p_f selects randomly a new node and forwards the request to him
 - With prob. p_f sends the request to the server

PLID'07

 $\langle 5 | 5 \rangle$

21/8/07

21/8/07

• There is information that we want to keep hidden

- the user who pays in D.C.
- the user who initiates the request in Crowds
- There is information that is revealed
 - agree/disagree in D.C.
 - the users who forward messages to a corrupted user in Crowds
- Protocols often use randomization to hide the link between anonymous and observable events

10

PLID'07

- coin tossing in D.C.
- random forwarding in Crowds to a corrupted user in Crowds

Protocols as channels

Chatzikokolakis, Palamidessi and Panangaden

PLID'07 21/8/07

21/8/07

Protocols as noisy channels

12

PLID'07

The protocol of the dining cryptographers

13

Chatzikokolakis, Palamidessi and Panangaden

PLID'07

21/8/07

21/8/07

Protocols as noisy channels

- We consider a probabilistic approach
 - Inputs: elements of a random variable A
 - Outputs: elements of a random variable O
 - For each input a_i, the probability that we obtain an observable o_j is given by p(o_j | a_i)
- We assume that the protocol receives exactly one input at each session
- We want to define the degree of protection independently from the input's distribution, i.e. the users

14

PI ID'07

21/8/07

The conditional probabilities

15

PLID'07

21/8/07

The channel is completely characterized by the array of conditional probabilities

16

PLID'07

21/8/07

Preliminaries of Information Theory

• The entropy H(A) measures the uncertainty about the anonymous events:

$$H(A) = -\sum_{a \in \mathcal{A}} p(a) \log p(a)$$

- The conditional entropy H(A|O) measures the uncertainty about A after we know the value of O (after the execution of the protocol).
- The mutual information I(A; O) measures how much uncertainty about A we lose by observing O:

17

$$I(A; O) = H(A) - H(A|O)$$

PLID'07

21/8/07

- Necessity to give a quantitative measure of the degree of protection provided by a protocol
- We define Opacity as the converse of the Capacity of the channel:

$$C = \max_{p(a)} I(A; O)$$

Note that this definition is independent from the distribution on the inputs, as desired

18

PI ID'07

21/8/07

Relative privacy

- Some information about A may be revealed intentionally
- Example: elections

• We model the revealed information with a third random variable R

19

R = number of users who voted for c

PLID'07

Relative privacy

• We use the notion of conditional mutual information

I(A; O|R) = H(A|R) - H(A|R, O)

• And define the conditional capacity similarly

$$C_R = \max_{p(a)} I(A; O|R)$$

20

Chatzikokolakis, Palamidessi and Panangaden

PLID'07

21/8/07

21/8/07

Partitions: a special case of relative privacy

- We say that *R* partitions \mathcal{X} iff p(r|x) is either 0 or 1 for every r, x
- Examples: elections, group anonymity

Theorem

If *R* partitions \mathcal{A} and \mathcal{O} then the transition matrix of the protocol is of the form

and

$$C_R \leq d \quad \Leftrightarrow \quad C_i \leq d, \forall i \in 1..l$$

2

PI ID'07

where C_i is the capacity of matrix M_i .

21/8/07

Relation with existing notions

Strong probabilistic anonymity

$p(a) = p(a o) \forall a, o$	L /			"conditional O'Neill, 03].
$p(o a_i) = p(o a_j) \forall o, i, j$	[Bhargava	and Pa	lamide	ssi, 05]

Proposition

An anonymity protocol satisfies strong probabilistic anonymity iff C = 0.

Example: Dining cryptographers

	100	010	001	111
a_1	1/4	1/4	1/4	1/4
a_2	1/4	1/4	1/4	1/4
<i>a</i> ₃	1/4	1/4	1/4	1/4

22

Chatzikokolakis, Palamidessi and Panangaden

PLID'07

S E

21/8/07

- Express the protocol in your favorite formalism
- Establish the anonymous events (inputs) and the observable events (outputs)
- The matrix of the channel (i.e. the conditional probabilities) is completely determined by the protocol and can be computed either by hand or by model checking
- The capacity is completely determined by the matrix and can be approximated by using the Arimoto-Blahut algorithm. In some particular cases is given by a formula

23

PLID'07

Example: D.C. in the probabilistic asynchronous π -calculus

 $Master = \sum_{i=0}^{2} \tau \cdot \overline{m}_i \mathsf{p} \cdot \overline{m}_{i\oplus 1} \mathsf{n} \cdot \overline{m}_{i\oplus 2} \mathsf{n} \cdot 0$ $+ \tau.\overline{m}_0 n.\overline{m}_1 n.\overline{m}_2 n.0$ $Crypt_i = m_i(x) \cdot c_{i,i}(y) \cdot c_{i,i\oplus 1}(z)$. if x = pthen \overline{pay}_i . if y = zthen \overline{out}_i disagree else \overline{out}_i agree else if y = zthen $\overline{out}_i agree$ else \overline{out}_i disagree $Coin_i = p_h \tau \cdot Head_i + p_t \tau \cdot Tail_i$ $Head_i = \overline{c}_{i,i}head \cdot \overline{c}_{i\ominus 1,i}head \cdot 0$ $Tail_i = \overline{c}_{i,i} tail \cdot \overline{c}_{i\ominus 1,i} tail \cdot 0$ $DCP = (\nu \vec{m})(Master)$ $| (\nu \vec{c})(\Pi_{i=0}^2 Crypt_i \mid \Pi_{i=0}^2 Coin_i))$ Example: D.C. in the probabilistic asynchronous π -calculus

Nondeterministic $Master = \sum_{i=0}^{2} \tau \cdot \overline{m}_{i} \mathsf{p} \cdot \overline{m}_{i\oplus 1} \mathsf{n} \cdot \overline{m}_{i\oplus 2} \mathsf{n} \cdot 0$ choice $+ \tau.\overline{m}_0 \mathsf{n}.\overline{m}_1 \mathsf{n}.\overline{m}_2 \mathsf{n}.0$ $Crypt_i = m_i(x) \cdot c_{i,i}(y) \cdot c_{i,i\oplus 1}(z)$. if x = pthen \overline{pay}_i . if y = zthen \overline{out}_i disagree else \overline{out}_i agree else if y = zthen $\overline{out}_i agree$ else \overline{out}_i disagree $Coin_i = p_h \tau . Head_i + p_t \tau . Tail_i$ $Head_i = \overline{c}_{i,i}head \cdot \overline{c}_{i\ominus 1,i}head \cdot 0$ $Tail_i = \overline{c}_{i,i} tail \cdot \overline{c}_{i\ominus 1,i} tail \cdot 0$ $DCP = (\nu \vec{m})(Master)$ $| (\nu \vec{c})(\Pi_{i=0}^2 Crypt_i \mid \Pi_{i=0}^2 Coin_i))$

Example: D.C. in the probabilistic asynchronous π -calculus

Nondeterministic $Master = \sum_{i=0}^{2} \tau \cdot \overline{m}_{i} \mathsf{p} \cdot \overline{m}_{i\oplus 1} \mathsf{n} \cdot \overline{m}_{i\oplus 2} \mathsf{n} \cdot 0$ choice $+ \tau.\overline{m}_0 \mathbf{n}.\overline{m}_1 \mathbf{n}.\overline{m}_2 \mathbf{n}.0$ $Crypt_i = m_i(x) \cdot c_{i,i}(y) \cdot c_{i,i\oplus 1}(z)$. if x = pthen \overline{pay}_i . if y = zthen \overline{out}_i disagree else \overline{out}_i agree else if y = zthen $\overline{out}_i agree$ else \overline{out}_i disagree $Coin_i = p_h \tau$. $Head_i + p_t \tau$. $Tail_i$ | Probabilistic choice $Head_i = \overline{c}_{i,i}head \cdot \overline{c}_{i\ominus 1,i}head \cdot 0$ $Tail_i = \overline{c}_{i,i} tail \cdot \overline{c}_{i\ominus 1,i} tail \cdot 0$ $DCP = (\nu \vec{m})(Master)$ $| (\nu \vec{c})(\Pi_{i=0}^2 Crypt_i \mid \Pi_{i=0}^2 Coin_i))$

Example: D.C. in the probabilistic asynchronous π -calculus

Example: D.C. in the probabilistic asynchronous π -calculus

21/8/07

Probabilistic automaton associated to the probabilistic π program for the D.C.

25

PLID'07

21/8/07

Examples of channel matrices

Dining cryptographers, while varying the probability p of the coins to give heads

		daa	ada	aad	ddd	aaa	dda	dad	add	
• _P = 0.5	c_1	1/4	1/4	1/4	1/4	0	0	0	0	
	c_2	1/4	1/4	1/4	1/4	0	0	0	0	
	c_3	1/4	1/4	1/4	1/4	0	0	0	0	
	m	0	0	0	0	1/4	1/4	1/4	1/4	
	-									
• p = 0.7		daa	ada	aad	ddd	aaa	dda	dad	add	
	c_1	0.37	0.21	0.21	0.21	0	0	0	0	
	c_2	0.21	0.37	0.21	0.21	0	0	0	0	
	c_3	0.21	0.21	0.37	0.21	0	0	0	0	
	m	0	0	0	0	0.37	0.21	0.21	0.21	

26

PLID'07

21/8/07

Computing the capacity from the matrix

- General case: using the Arimoto-Blahut algorithm
 - Approximates the capacity to a given precision
- In particular cases we can exploit the protocol's symmetries

27

PI ID'07

- Symmetric channel: all rows and all columns are permutations of each other
- In a symmetric channel: $C = \log |\mathcal{O}| H(\mathbf{r})$
- Can be extended to weaker notions of symmetry

21/8/07

Test-case: dining cryptographers

- Fair coins: the protocol is strongly anonymous (C=0)
- Totally biased coins: the payer can be always identified (maximum capacity C = log 3)

28

PLID'07

Privacy and Statistical Inference

29

Chatzikokolakis, Palamidessi and Panangaden

PLID'07

21/8/07

21/8/07

PLID'07

Privacy and Statistical Inference

29

Opacity as converse of Capacity.
 Ok, it seems 'reasonable'.
 But is it the most natural notion?

21/8/07

Privacy and Statistical Inference

- Opacity as converse of Capacity.
 Ok, it seems 'reasonable'.
 But is it the most natural notion?
- An uncontroversially natural notion is be the 'probability of error' of an adversary trying to infer the hidden information (input) from the observables (output)

29

PI ID'07

Statistical inference

- $o = o_1, o_2, ..., o_n$: a sequence of n observations
- *f*: the function used by the adversary to infer the input from a sequence of observations
- Error region of f for input a:

$$E_f(a) = \{ \boldsymbol{o} \in \mathcal{O}^n \mid f(\boldsymbol{o}) \neq a \}$$

21/8/07

• Probability of error for input *a*:

$$\eta(a) = \sum_{\boldsymbol{o} \in E_f(a)} p(\boldsymbol{o}|a)$$

PLID'07

• Probability of error for f:

$$P_{f_n} = \sum_{a \in A} p(a)\eta(a)$$

30

MAP decision functions

- MAP: Maximum Aposteriory Probability
- Applicable when the input's distribution is known. Use Bayes theorem:

p(a | O) = (p(O | a) p(a)) / p(O)

- f is a MAP decision function if f(O) = a implies $p(O \mid a) p(a) \ge p(O \mid a') p(a')$ for all a, a' and O
- **Proposition:** the MAP decision functions minimize the probability of error (which in this case is called Bayesian risk)

3

Chatzikokolakis, Palamidessi and Panangaden

PLID'07

21/8/07

21/8/07

- Under certain conditions, for large sequences of observations the input distribution becomes negligible:
- Proposition: A MAP decision function f can be approximated by a function g such that g(0) = a implies
 p(0 | a) > p(0 | a') for all a, a' and 0
- "approximated" means that the more observations we make, the smaller is the difference in the error probability of f and g

32

PLID'07

Bayesian Risk and Information Theory

33

Chatzikokolakis, Palamidessi and Panangaden

PLID'07

21/8/07

21/8/07

PLID'07

Bayesian Risk and Information Theory

33

• Object of study since decades

21/8/07

PLID'07

Bayesian Risk and Information Theory

33

• Object of study since decades

Bayesian Risk and Information Theory

33

• Object of study since decades

 Philosophical and practical motivations

PLID'07

21/8/07

21/8/07

Bayesian Risk and Information Theory

• Object of study since decades

33

PLID'07

• Relation with Conditional Entropy H(A|O)

21/8/07

Bayesian Risk and Information Theory

• Object of study since decades

- Relation with Conditional Entropy H(A|O)
- Bounds by Rény '66, Hellman-Raviv '70, Santhi-Vardy '06

33

PLID'07

21/8/07

Bayesian Risk and Information Theory

• Object of study since decades

- Relation with Conditional Entropy H(A|O)
- Bounds by Rény '66, Hellman-Raviv '70, Santhi-Vardy '06
- Tighter bound obtained by studying the 'corner points'

33

PLID'07

21/8/07

PLID'07

What about the relation between the Probability of error and Capacity ?

34

21/8/07

PLID'07

What about the relation between the Probability of error and Capacity ?

34

• p(a|o) vs H(A|O)

21/8/07

What about the relation between the Probability of error and Capacity ?

• p(a|o) vs H(A|O)

• p(a|o) / p(a) vs H(A|O) - H(A) ?

34

PLID'07

 $\langle \Box | E \rangle$

21/8/07

Future work

- Explore more in depth the relation between the capability of inferring info about the input and the capacity, or other quantitative notions depending on the channel's matrix.
- Inference of the input distribution without the power of forcing the input to remain the same through the observations
- Characterizations of other (weaker) notions of privacy which are easy to model check, in the sense that they do not require to analyze the capacity as a function of the input distribution

35

PI ID'07

• Develop a logic for efficient model checking

21/8/07

36

PLID'07