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Master

Coin

Coin Coin

PayDon’t pay

agree  /
disagree

Example: the dining cryptographers
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Master =
P2

i=0 τ . mip . mi⊕1n . mi⊕2n . 0

+ τ.m0n . m1n . m2n . 0

Crypt i = mi(x) . ci,i(y) . ci,i⊕1(z) .

if x = p

then pay i . if y = z

then out idisagree

else out iagree

else if y = z

then out iagree

else out idisagree

Coini = τ .Head i + τ .Tail i

Head i = ci,ihead . ci"1,ihead . 0

Tail i = ci,itail . ci"1,itail . 0

DCP = (ν #m)(Master

| (ν#c)(Π2
i=0Crypt i | Π2

i=0Coini) )

Table 1. The dining cryptographer protocol specified in π-calculus.

uniformity we use here the π-calculus ([18]). We recall that + (
∑
) is the nondetermin-

istic sum and | (Π) is the parallel composition. 0 is the empty process. τ is the silent
(or internal) action. cm and c(x) are, respectively, send and receive actions on channel
c, where m is the message being transmitted and x is the formal parameter. ν is an
operator that, in the π-calculus, has multiple purposes: it provides abstraction (hiding),
enforces synchronization, and generates new names. For more details on the π-calculus
and its semantics, we refer to [18, 17].

In the code, given in Table 1,⊕ and" represent the sum and the subtractionmodulo
3. Messages p and n sent by the master are the requests to pay or to not pay, respectively.
pay i is the action of paying for cryptographer i.

We remark that we do not need all the expressive power of the π-calculus for this
program.More precisely, we do not need guarded choice (all the choices are internal be-

cause they start with τ ), and we do not need neither name-passing nor scope extrusion,
thus ν is used just like the restriction operator of CCS ([16]).

Let us consider the point of view of an external observer. The actions that are to be

hidden (set C) are the communications of the decision of the master and the results of
the coins (%m, %c). These are already hidden in the definition of the system DCP . The
anonymous users are of course the cryptographers, and the anonymous actions (set A)
is constituted by the pay i actions, for i = 0, 1, 2. The set B is constituted by the actions

of the form out iagree and out idisagree , for i = 0, 1, 2.

5

8

We start by considering a nondeterministicmaster, which is in a sense the basic case:

the fact that the master is nondeterministic means that we cannot assume any regularity

in its behavior, nobody has any information about it, not even a probabilistic one. The

anonymity system must then assure that this complete lack of knowledge be preserved

through the observations of the possible outcomes (except, of course, for gaining the

information on whether the payer is one of the cryptographers or not).

We use the probabilistic π-calculus (πp) introduced in [12, 19] to represent the prob-

abilistic system. The essential difference with respect to the π-calculus is the presence
of a probabilistic choice operator of the form

∑
i piαi.Pi, where the pi’s represents

probabilities, i.e. they satisfy pi ∈ [0, 1] and
∑

i pi = 1, and the αi’s are non-output

prefixes, i.e. either input or silent prefixes. (Actually, for the purpose of this paper, only

silent prefixes are used.) For the detailed presentation of this calculus we refer to [12,

19, 4].

The only difference with respect to the program presented in Section 3.1 is the

definition of the Coin i’s, which is as follows (ph and pt represent the probabilities of

the outcome of the coin tossing):

Coin i = phτ .Head i + ptτ .Tail i

It is clear that the system obtained in this way combines probabilistic and nondeter-

ministic behavior, not only because the master is nondeterministic, but also because the

various components of the system and their internal interactions can follow different

scheduling policies, selected nondeterministically (although it can be proved that this

latter form of nondeterminism is not relevant for this particular problem).

This kind of systems (combining probabilistic and nondeterministic choices) is by

now well established in literature, see for instance the probabilistic automata of [25],

and have been provided with solid mathematical foundations and sophisticated tools

for verification. In particular, we are interested here in the definition of the probability

associated to a certain observable. The canonical way of defining such a probability is

the following: First we solve the nondeterminism, i.e. we determine a function (sched-

uler) which, for each nondeterministic choice in the the computation tree, selects one

alternative. After pruning the tree from all the non-selected alternatives, we obtain a

fully probabilistic automaton, and we can define the probabilities of (measurable) sets

of runs (and therefore of the intended observables) in the standard way. See [4] for the

details.

One thing that should be clear, from the description above, is that in general the

probability of an observable depends on the given scheduler.

4 Probabilistic anonymity for nondeterministic users

In this section we propose our notion of probabilistic anonymity for the case in which

the anonymous user is selected nondeterministically.

The system in which the anonymous users live and operate is modeled as a prob-

abilistic automaton M ([25], see [4]. Following [24, 22] we classify the actions of M

7
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Crowds

• A crowd is a group of n nodes

• The initiator selects randomly a node (called forwarder) 
and forwards the request to it

• A forwarder:

• With prob. 1-pf selects
randomly a new node and
forwards the request to him

• With prob. pf  sends the
request to the server

server
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Common features of
information-hiding protocols

• There is information that we want to keep hidden
- the user who pays in D.C.

- the user who initiates the request in Crowds

• There is information that is revealed
- agree/disagree in D.C.

- the users who forward messages to a corrupted user in Crowds

• Protocols often use randomization to hide the link between 
anonymous and observable events

- coin tossing in D.C.

- random forwarding in Crowds to a corrupted user in Crowds

10
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Protocols as noisy channels

• We consider a probabilistic approach

• Inputs: elements of a random variable A

• Outputs: elements of a random variable O

• For each input ai, the probability that we obtain an observable 
oj is given by p(oj | ai)

• We assume that the protocol receives exactly one input at 
each session

• We want to define the degree of protection independently 
from the input’s distribution, i.e. the users

14
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Preliminaries of Information TheoryEntropy and Mutual Information

The entropy H(A) measures the uncertainty about the
anonymous events:

H(A) = −
∑

a∈A

p(a) log p(a)

The conditional entropy H(A|O) measures the uncertainty about
A after we know the value of O (after the execution of the

protocol).

The mutual information I(A;O) measures how much uncertainty
about A we lose by observing O:

I(A;O) = H(A) − H(A|O)

Chatzikokolakis, Palamidessi, Panangaden Anonymity Protocols as Noisy Channels17
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Opacity

• Necessity to give a quantitative measure of the 
degree of protection provided by a protocol

• We define Opacity as the converse of the Capacity 
of the channel:

• Note that this definition is independent from the 
distribution on the inputs, as desired

Fig. 1. An anonymity channel

probability of user a being the sender. In some cases all users might have the
same probability of being the sender, in other cases a particular user might send
messages more often than the others. Since the design of the protocol should
be independent from the particular users who will use it, the analysis of the
protocol should make no assumptions about the distribution on A. On the other
hand p(o|a) gives the probability of o when a is the sender, so it depends only on
the internal mechanisms of the protocol, not on of how often a sends messages.

To abstract from the probabilities of the anonymous events, we view an
anonymity protocol as a channel 〈A,O, p(·|·)〉 where the sets of anonymous
events A and observable events O are the input and output alphabets respec-
tively, and the matrix p(o|a) gives the probability of observing o when a is the
input. An anonymity channel is shown in Figure 1. Different distributions of the
input will give different values of I(A; O). We are interested in the worst possi-
ble case, so we define the loss of anonymity as the maximum value of I(A; O)
over all possible input distributions, that is the capacity of the corresponding
channel.

Definition 1. Let 〈A,O, p(·|·)〉 be an anonymity protocol. The loss of anonymity
C of the protocol is defined as

C = max
p(a)

I(A; O)

where the maximum is taken over all possible input distributions.

The loss of anonymity measures the amount of information about A that
can be learned by observing O in the worst possible distribution of anonymous
events. If it is 0 then, no matter what is the distribution of A, the attacker can
learn nothing more by observing the protocol. In fact, as we will see in section
5.1, this corresponds exactly to notions of perfect anonymity in literature [3, 11,
1]. However, as we discuss in section 5.3, our framework also captures weaker
notions of anonymity.

As with entropy, channel capacity is measured in bits. Roughly speaking,
1 bit of capacity means that after the observation A will have one bit less of
entropy, in another words the attacker will have reduced the set of possible users
by a factor 2, assuming a uniform distribution.

3.1 Relative Anonymity

So far, we have assumed that ideally no information about the anonymous events
should be leaked. However, there are cases where some information about the

6
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• Some information about  A may be revealed intentionally

• Example: elections

• We model the revealed information with a third random 
variable R

R = number of users who voted for c

Relative privacy

Fig. 2. A simple elections protocol

anonymous events is allowed to be revealed by design, without this leak be
considered as a flaw of the protocol. Consider, for example, the case of a simple
elections protocol, displayed in figure 2. For simplicity we assume that there
are only two candidates c and d, and that each user always votes for one of
them, so an anonymous event can be represented by the subset of users who
voted for candidate c. In other words, A = 2V where V is the set of voters.
The output of the protocol is the list of votes of all users, however, in order
to achieve anonymity, the list is randomly reordered, using for example some
MIXing technique. As a consequence, the attacker can see the number of votes
for each candidate, although he should not be able to find out who voted for
whom. Indeed, determining the number of votes of candidate c (the cardinality
of a), while concealing the vote expressed by each individual (the elements that
constitute a), is the purpose of the protocol.

So it is clear that after the observation only a fraction of the anonymous
events remains possible. Every event a ∈ A with |a| "= n where n is the number
of votes for candidate c can be ruled out. As a consequence H(A|O) will be
smaller than H(A) and the capacity of the corresponding channel will be non-
zero, meaning that some anonymity is lost. In addition, there might be a loss
of anonymity due to other factors, for instance, if the reordering technique is
not uniform. However, it is undesirable to confuse these two kind of anonymity
losses, since the first is by design and thus acceptable. We would like a notion
of anonymity that factors out the intended loss and measures only the loss that
we want to minimize.

In order to cope with the intended anonymity loss, we introduce a random
variable R whose outcome is the revealed information. In the example of the
elections protocol, the value of R is the cardinality of a. Since we allow to reveal
R by design, we can consider that R is known even before executing the protocol.
So, H(A|R) gives the uncertainty about A given that we know R and H(A|R, O)
gives the uncertainty after the execution of the protocol, when we know both
R and O. By comparing the two we retrieve the notion of conditional mutual
information I(A; O|R) defined as

I(A; O|R) = H(A|R) − H(A|R, O)

So, I(A; O|R) is the amount of uncertainty on A that we lose by observing O,
given that R is known. Now we can define the notion of relative loss of anonymity.

7
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• We use the notion of conditional mutual information

• And define the conditional capacity similarly

Relative privacy

Fig. 2. A simple elections protocol

anonymous events is allowed to be revealed by design, without this leak be
considered as a flaw of the protocol. Consider, for example, the case of a simple
elections protocol, displayed in figure 2. For simplicity we assume that there
are only two candidates c and d, and that each user always votes for one of
them, so an anonymous event can be represented by the subset of users who
voted for candidate c. In other words, A = 2V where V is the set of voters.
The output of the protocol is the list of votes of all users, however, in order
to achieve anonymity, the list is randomly reordered, using for example some
MIXing technique. As a consequence, the attacker can see the number of votes
for each candidate, although he should not be able to find out who voted for
whom. Indeed, determining the number of votes of candidate c (the cardinality
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7

Proposition

An anonymity protocol satisfies strong probabilistic anonymity iff

C = 0.

Example: Dining cryptographers

100 010 001 111
a1 1/4 1/4 1/4 1/4
a2 1/4 1/4 1/4 1/4
a3 1/4 1/4 1/4 1/4

Relative Anonymity

• Some information about A may be revealed intentionally.

• Example: elections

• The revealed information can be modeled with a third random
variabe R.

• We use the notion of conditional mutual information

I(A; O|R) = H(A|R) − H(A|O, R)

• And we define the conditional capacity similarly

CR = max
p(a)

I(A; O|R)

3
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Information-hiding protocols as opaque channels

Partitions: a special case of relative privacySpecial case of Relative Anonymity: Partition

We say that R partitions X iff p(r|x) is either 0 or 1 for every r, x

Examples: elections, group anonymity

Theorem

If R partitions A and O then the transition matrix of the protocol is of

the form
O1 O2 . . . Ol

A1 M1 0 . . . 0

A2 0 M2 . . . 0

...
...

...
. . .

...

Al 0 0 . . . Ml

and

CR ≤ d ⇔ Ci ≤ d,∀i ∈ 1..l

where Ci is the capacity of matrix Mi.

Chatzikokolakis, Palamidessi, Panangaden Anonymity Protocols as Noisy Channels
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Information-hiding protocols as opaque channels

Relation with existing notionsRelation to existing notions

Strong probabilistic anonymity

p(a) = p(a|o) ∀a, o [Chaum, 88], aka “conditional

anonymity” [Halpern and O’Neill, 03].

p(o|ai) = p(o|aj) ∀o, i, j [Bhargava and Palamidessi, 05]

Proposition

An anonymity protocol satisfies strong probabilistic anonymity iff

C = 0.

Example: Dining cryptographers

100 010 001 111

a1 1/4 1/4 1/4 1/4
a2 1/4 1/4 1/4 1/4
a3 1/4 1/4 1/4 1/4

Chatzikokolakis, Palamidessi, Panangaden Anonymity Protocols as Noisy Channels
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Information-hiding protocols as opaque channels

• Express the protocol in your favorite formalism

• Establish the anonymous events (inputs) and the observable 
events (outputs)

• The matrix of the channel (i.e. the conditional probabilities) 
is completely determined by the protocol and can be 
computed either by hand or by model checking

• The capacity is completely determined by the matrix and 
can be approximated by using the Arimoto-Blahut 
algorithm. In some particular cases is given by a formula

How to compute the capacity of the 
channel associated to a protocol
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Master =
P2

i=0 τ . mip . mi⊕1n . mi⊕2n . 0

+ τ.m0n . m1n . m2n . 0

Crypt i = mi(x) . ci,i(y) . ci,i⊕1(z) .

if x = p

then pay i . if y = z

then out idisagree

else out iagree

else if y = z

then out iagree

else out idisagree

Coini = τ .Head i + τ .Tail i

Head i = ci,ihead . ci"1,ihead . 0

Tail i = ci,itail . ci"1,itail . 0

DCP = (ν #m)(Master

| (ν#c)(Π2
i=0Crypt i | Π2

i=0Coini) )

Table 1. The dining cryptographer protocol specified in π-calculus.

uniformity we use here the π-calculus ([18]). We recall that + (
∑
) is the nondetermin-

istic sum and | (Π) is the parallel composition. 0 is the empty process. τ is the silent
(or internal) action. cm and c(x) are, respectively, send and receive actions on channel
c, where m is the message being transmitted and x is the formal parameter. ν is an
operator that, in the π-calculus, has multiple purposes: it provides abstraction (hiding),
enforces synchronization, and generates new names. For more details on the π-calculus
and its semantics, we refer to [18, 17].

In the code, given in Table 1,⊕ and" represent the sum and the subtractionmodulo
3. Messages p and n sent by the master are the requests to pay or to not pay, respectively.
pay i is the action of paying for cryptographer i.

We remark that we do not need all the expressive power of the π-calculus for this
program.More precisely, we do not need guarded choice (all the choices are internal be-

cause they start with τ ), and we do not need neither name-passing nor scope extrusion,
thus ν is used just like the restriction operator of CCS ([16]).

Let us consider the point of view of an external observer. The actions that are to be

hidden (set C) are the communications of the decision of the master and the results of
the coins (%m, %c). These are already hidden in the definition of the system DCP . The
anonymous users are of course the cryptographers, and the anonymous actions (set A)
is constituted by the pay i actions, for i = 0, 1, 2. The set B is constituted by the actions

of the form out iagree and out idisagree , for i = 0, 1, 2.

5

Example: D.C. in the probabilistic asynchronous π-calculus

24

We start by considering a nondeterministicmaster, which is in a sense the basic case:

the fact that the master is nondeterministic means that we cannot assume any regularity

in its behavior, nobody has any information about it, not even a probabilistic one. The

anonymity system must then assure that this complete lack of knowledge be preserved

through the observations of the possible outcomes (except, of course, for gaining the

information on whether the payer is one of the cryptographers or not).

We use the probabilistic π-calculus (πp) introduced in [12, 19] to represent the prob-

abilistic system. The essential difference with respect to the π-calculus is the presence
of a probabilistic choice operator of the form

∑
i piαi.Pi, where the pi’s represents

probabilities, i.e. they satisfy pi ∈ [0, 1] and
∑

i pi = 1, and the αi’s are non-output

prefixes, i.e. either input or silent prefixes. (Actually, for the purpose of this paper, only

silent prefixes are used.) For the detailed presentation of this calculus we refer to [12,

19, 4].

The only difference with respect to the program presented in Section 3.1 is the

definition of the Coin i’s, which is as follows (ph and pt represent the probabilities of

the outcome of the coin tossing):

Coin i = phτ .Head i + ptτ .Tail i

It is clear that the system obtained in this way combines probabilistic and nondeter-

ministic behavior, not only because the master is nondeterministic, but also because the

various components of the system and their internal interactions can follow different

scheduling policies, selected nondeterministically (although it can be proved that this

latter form of nondeterminism is not relevant for this particular problem).

This kind of systems (combining probabilistic and nondeterministic choices) is by

now well established in literature, see for instance the probabilistic automata of [25],

and have been provided with solid mathematical foundations and sophisticated tools

for verification. In particular, we are interested here in the definition of the probability

associated to a certain observable. The canonical way of defining such a probability is

the following: First we solve the nondeterminism, i.e. we determine a function (sched-

uler) which, for each nondeterministic choice in the the computation tree, selects one

alternative. After pruning the tree from all the non-selected alternatives, we obtain a

fully probabilistic automaton, and we can define the probabilities of (measurable) sets

of runs (and therefore of the intended observables) in the standard way. See [4] for the

details.

One thing that should be clear, from the description above, is that in general the

probability of an observable depends on the given scheduler.

4 Probabilistic anonymity for nondeterministic users

In this section we propose our notion of probabilistic anonymity for the case in which

the anonymous user is selected nondeterministically.

The system in which the anonymous users live and operate is modeled as a prob-

abilistic automaton M ([25], see [4]. Following [24, 22] we classify the actions of M

7
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Nondeterministic 
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associated to a certain observable. The canonical way of defining such a probability is

the following: First we solve the nondeterminism, i.e. we determine a function (sched-

uler) which, for each nondeterministic choice in the the computation tree, selects one
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fully probabilistic automaton, and we can define the probabilities of (measurable) sets
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of a probabilistic choice operator of the form

∑
i piαi.Pi, where the pi’s represents

probabilities, i.e. they satisfy pi ∈ [0, 1] and
∑

i pi = 1, and the αi’s are non-output

prefixes, i.e. either input or silent prefixes. (Actually, for the purpose of this paper, only

silent prefixes are used.) For the detailed presentation of this calculus we refer to [12,

19, 4].

The only difference with respect to the program presented in Section 3.1 is the

definition of the Coin i’s, which is as follows (ph and pt represent the probabilities of

the outcome of the coin tossing):

Coin i = phτ .Head i + ptτ .Tail i

It is clear that the system obtained in this way combines probabilistic and nondeter-

ministic behavior, not only because the master is nondeterministic, but also because the

various components of the system and their internal interactions can follow different

scheduling policies, selected nondeterministically (although it can be proved that this

latter form of nondeterminism is not relevant for this particular problem).

This kind of systems (combining probabilistic and nondeterministic choices) is by

now well established in literature, see for instance the probabilistic automata of [25],

and have been provided with solid mathematical foundations and sophisticated tools

for verification. In particular, we are interested here in the definition of the probability

associated to a certain observable. The canonical way of defining such a probability is

the following: First we solve the nondeterminism, i.e. we determine a function (sched-

uler) which, for each nondeterministic choice in the the computation tree, selects one

alternative. After pruning the tree from all the non-selected alternatives, we obtain a

fully probabilistic automaton, and we can define the probabilities of (measurable) sets

of runs (and therefore of the intended observables) in the standard way. See [4] for the

details.

One thing that should be clear, from the description above, is that in general the

probability of an observable depends on the given scheduler.

4 Probabilistic anonymity for nondeterministic users

In this section we propose our notion of probabilistic anonymity for the case in which

the anonymous user is selected nondeterministically.

The system in which the anonymous users live and operate is modeled as a prob-

abilistic automaton M ([25], see [4]. Following [24, 22] we classify the actions of M

7
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Probabilistic automaton associated to the 
probabilistic π program for the D.C.
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Information-hiding protocols as opaque channels

• Dining cryptographers, while varying the probability p of the 
coins to give heads

• p = 0.5

• p = 0.7

Examples of channel matrices

daa ada aad ddd aaa dda dad add
c1 1/4 1/4 1/4 1/4 0 0 0 0
c2 1/4 1/4 1/4 1/4 0 0 0 0
c3 1/4 1/4 1/4 1/4 0 0 0 0
m 0 0 0 0 1/4 1/4 1/4 1/4

daa ada aad ddd aaa dda dad add
c1 0.37 0.21 0.21 0.21 0 0 0 0
c2 0.21 0.37 0.21 0.21 0 0 0 0
c3 0.21 0.21 0.37 0.21 0 0 0 0
m 0 0 0 0 0.37 0.21 0.21 0.21

Fig. 4. The channel matrices for probability of head p = 0.5 (left) and p = 0.7 (right)

possible combinations of announcements, that is O = {aaa, aad, . . . , ddd} where
a means agree and d means disagree.

If some information about the anonymous events is revealed intentionally
then we should consider using relative anonymity (see Section 3.1). In the dining
cryptographers, the information about whether the payer is a cryptographer or
not is revealed by design (this is the purpose of the protocol). If, for example,
the attacker observes aaa then he concludes that the anonymous event that
happened is m since the number of disagree is even. To model this fact we use
relative anonymity and we take R = {m, c} where m means that the master is
paying and c that one of the cryptographers is paying.

After defining A,O,R we should model the protocol in some formal prob-
abilistic language. In our example, we modeled the dining cryptographers in
the language of the PRISM model-checker, which is essentially a formalism to
describe Markov Decision Processes. Then the channel matrix of conditional
probabilities p(o|a) must be computed, either by hand or using a automated
tool like PRISM. In the case of relative anonymity, the probabilities p(o|r) and
p(o|a, r) are needed for all a, o, r. However, in our example, R partitions A and O,
so by Theorem 1 we can compute the relative loss of anonymity as the maximum
capacity of the sub-channels for each value of R individually. For R = m the
sub-channel has only one input value, hence its capacity is 0. Therefore the only
interesting case is when R = c. In our experiments, we use PRISM to compute
the channel matrix, while varying the probability p of each coin giving head.
PRISM can compute the probability of reacing a specific state starting from a
given one. Thus, each conditional probability p(o|a) is computed as the proba-
bility of reaching a state where the cryptographers have announced o, starting
from the state where a is chosen. In Fig. 4 the channel matrix is displayed for
p = 0.5 and p = 0.7.

Finally, from the matrix, the capacity can be computed in two different ways.
Either using the general Arimoto-Blahut algorithm, or using Theorem 3 which
can be applied because the matrix is partially symmetric. The resulting graph
is displayed in Fig. 5. As expected, when p = 0.5 the protocol is strongly anony-
mous and the relative loss of anonymity is 0. When p approaches to 0 or 1, the
attacker can deduce the identity of the payer with increasingly high probability,
so the capacity increases. In the extreme case where the coins are totally biased
the attacker can be sure about the payer, and the capacity takes its maximum
value of log 3.
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Information-hiding protocols as opaque channels

• General case: using the Arimoto-Blahut algorithm

• Approximates the capacity to a given precision

• In particular cases we can exploit the protocol’s symmetries

• Symmetric channel: all rows and all columns are
permutations of each other

• In a symmetric channel:

• Can be extended to weaker notions of symmetry

Computing the capacity from the matrix

The following result is from literature:

Theorem 2 ([6], page 189). Let 〈A,O, p(·|·)〉 be a channel. If p(·|·) is weakly
symmetric then the channel’s capacity is given by a uniform input distribution
and is equal to

C = log |O|− H(r)

where r is a row of the matrix and H(r) is the entropy of r.

Note that symmetric channels are also weakly symmetric so Theorem 2 holds
for both classes.

In anonymity protocols, we expect all rows of the protocol’s matrix to be
permutations of each other since all users are executing the same protocol. On
the other hand, the columns are not necessarily permutations of each other.
Some symmetry is expected: if an observable o1 is produced with probability
p under user a1, it is reasonable to assume that under a2 there will be some
other observable o2 produced with the same probability. However, we can have
observables that are produced with equal probability by all users. Clearly, these
“constant” columns cannot be the permutation of a non-constant one so the
resulting channel matrix will not be symmetric (and not even weakly symmetric).

To cope with this kind of channels we define a more relaxed kind of symmetry
called partial symmetry. In this class we allow some columns to be constant and
we require the sub-matrix, composed only by the non-constant columns, to be
symmetric. A weak version of this symmetry can also be defined.

Definition 4. A matrix is partially symmetric (resp. weakly partially symmet-
ric) if some columns are constant (possibly with different values in each column)
and the rest of the matrix is symmetric (resp. weakly symmetric).

Now we can extend Theorem 2 to the case of partial symmetry.

Theorem 3. Let 〈A,O, p(·|·)〉 be a channel. If p(·|·) is weakly partially symmet-
ric then the channel’s capacity is given by

C = ps log
|Os|

ps
− H(rs)

where Os is the set of symmetric output values, rs is the symmetric part of a
row of the matrix and ps is the sum of rs.

Note that Theorem 3 is a generalization of Theorem 2. A (weakly) symmetric
channel can be considered as (weakly) partially symmetric with no constant
columns. In this case Os = O, rs = r, ps = 1 and we retrieve Theorem 2 from
Theorem 3.

9
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Information-hiding protocols as opaque channels

• Fair coins: the protocol is strongly anonymous (C=0)

• Totally biased coins: the payer can be always identified 
(maximum capacity C = log 3)

Test-case: dining cryptographers
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Fig. 5. The degree of anonymity in the Dining Cryptographers as a function of the
coins’ probability to give head.
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Information-hiding protocols as opaque channels

• Opacity as converse of Capacity.                     
Ok, it seems ‘reasonable’.                                
But is it the most natural notion?

• An uncontroversially natural notion is be the 
‘probability of error’ of an adversary trying to 
infer the hidden information (input) from the 
observables (output)

Privacy and Statistical Inference 
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Information-hiding protocols as opaque channels

• o = o1,o2,...,on  : a sequence of n observations

• f : the function used by the adversary to infer the input from a 
sequence of observations

• Error region of  f  for input a:

• Probability of error for input a: 

• Probability of error for f :

4 Testing anonymous events

In this section we illustrate the relation between the channel’s matrix and the
possibility for the attacker of guessing the anonymous event from the consequent
observable event. This problem is known in statistics literature as hypothesis
testing. The idea is that we have a set of data or outcomes of an experiment, and
a set of possible alternative explanations (hypotheses). We have to infer which
hypothesis holds from the data, possibly by repeating the experiment, and try to
minimize the probability of guessing the wrong hypothesis (probability of error).

We assume that the same hypothesis holds through the repetition of the ex-
periment, which corresponds to allowing the attacker to force the user to redo
the action. For instance, in Crowds, the attacker can intercept the message and
destroy it, thus obliging the sender to resend it. We also assume that the ran-
dom variables corresponding to the outcomes of the experiments are indepen-
dent. This corresponds to assuming that the protocol is memoryless, i.e. each
time it is reactivated, it works according to the same probability distribution,
independently from what happened in previous sessions.

In statistics there are several frameworks and methods for hypothesis testing.
We consider here the Bayesian approach, which requires the knowledge of the
matrix of the protocol and of the a priori distribution of the hypotheses, and
tries to infer the a posteriori probability of the actual hypothesis w.r.t. a given
observation or sequence of observations. The first assumption (knowledge of the
matrix of the protocol) is usually granted in an anonymity setting, since the way
the protocol works is public. The second assumption may look too strong, since
the attacker does not usually know the distribution of the anonymous actions. We
show, however, that under certain conditions the a priori distribution becomes
less and less relevant with the repetition of the experiment, and, at the limit, it
does not matter at all.

Let us introduce some notation. Given an anonymous event a, consider the
situation in which the attacker forces the users to execute the protocol n times
with the same a as input event, and tries to infer a from the n observable outputs
of the protocol executions. Let O1, O2, . . . , On represent the random variables
corresponding to the observations made by the attacker, and let o denote a
sequence of observed outputs o1, o2, . . . on. As stated above, we assume that O1,
O2, . . . , On are independent, hence the distribution of each of them is given by
p(·|a), and their conjoint distribution p : On → [0, 1] is given by

p(o|a) =
n

∏

i=1

p(oi|a) (1)

Let fn : On → A be the decision function adopted by the adversary to infer the
anonymous action from the sequence of observables. Let En : A → On be the
function that gives the error region of fn when a ∈ A has occurred, namely:

Ef (a) = {o ∈ On | f(o) #= a}

10

Finally, let ηn : A → [0, 1] be the function that associates to each a ∈ A the
probability of inferring the wrong input event on the basis of f when a ∈ A has
occurred, namely:

η(a) =
∑

o∈Ef (a)

p(o|a)

We are now ready to introduce the probability of error associated to anonymous
action testing on a given anonymity protocol, following the lines of the Bayesian
approach (see for instance [6], Section 12.8).

Definition 5. Given an anonymity protocol 〈A,O, p(·|·)〉, a sequence of n ex-
periments, and a decision function fn, the Bayesian probability of error Pfn is
defined as the probability weighted sum over A of the individual probabilities of
error. Namely:

Pfn =
∑

a∈A

p(a)η(a)

In the Bayesian framework, the best possible decision function is given by the
so-called maximum a posteriori rule, which, given the sequence of observables
o ∈ On, tries to maximize the a posteriori probability of the hypothesis a w.r.t.
o. The a posteriori probability of a w.r.t. o is given by Bayes theorem (aka Bayes
Inversion Rule):

p(a|o) =
p(o|a)p(a)

p(o)

We now define a class of decision functions based on the above approach.

Definition 6. Given an anonymity protocol 〈A,O, p(·|·)〉, and a sequence of n
experiments, a decision function fn is a Bayesian decision function if for each
o ∈ On, fn(o) = a implies p(o|a)p(a) ≥ p(o|a′)p(a′) for every a′ ∈ A.

The above definition is justified by the following result which is a straight-
forward consequence of known results in literature.

Proposition 1. Given an anonymity protocol 〈A,O, p(·|·)〉, a sequence of n ex-
periments, and a Bayesian decision function fn, for any other decision function
hn we have that Pfn ≤ Phn .

4.1 Independence from the input distribution

The definition of the Bayesian decision functions depends on the a priori proba-
bility distribution of A. This might look artificial, since in general such distribu-
tion is unknown. We will show, however, that under a certain condition on the
matrix of the protocol, for n large enough, the Bayesian decision functions and
the associated Bayesian probability of error do not depend on the distribution
of A.

The following definition establishes the condition on the matrix.
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MAP decision functions

• MAP: Maximum Aposteriory Probability

• Applicable when the input’s distribution is known.                    
Use Bayes theorem: 

p(a | o)  =  ( p(o | a) p(a) ) / p(o)

• f  is a MAP decision function if  f(o) = a implies  

p(o | a) p(a)  >=  p(o | a’) p(a’)     for all a, a’ and o 

• Proposition: the MAP decision functions minimize the 
probability of error (which in this case is called Bayesian risk)
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Information-hiding protocols as opaque channels

Independence from the input 
distribution

• Under certain conditions, for large sequences of 
observations the input distribution becomes negligible:

• Proposition:  A  MAP decision function  f  can be 

approximated by a function  g  such that g(o) = a  implies

p(o | a)  >  p(o | a’)      for all a, a’ and o

• “approximated” means that the more observations we 
make, the smaller is the difference in the error probability 
of  f  and  g 
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Bayesian Risk and Information Theory
• Object of study since decades

• Philosophical and                                                                            
practical                                                            
motivations
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Figure 2. Ternary hypothesis testing. The solid curve represents the Bayes risk for the channel in Example 4.4, while

the dotted curve represents the Santhi-Vardy bound 1 − 2−H(A|O).

input distribution. In fact

Pe(!x) = 1 −
∑

o maxj p(o|aj)xj

= 1 −
∑

j

∑
o p(o|aj)xj

= 1 −
∑

j xj = 0

Capacity 0 The case in which the capacity of the channel

is 0 is by definition obtained when I(A; O) = 0 for all pos-
sible input distributions of A. From information theory we
know that this is the case iff A and O are independent (cfr.

[8], page 27). Hence we have the following characteriza-

tion:

Proposition 5.1 Given an anonymity system 〈A,O, p(·|·)〉,
the capacity of the corresponding channel is 0 iff all the

rows of the channel matrix are the same, i.e. p(o|a) =
p(o|a′) for all o, a, a′.

The condition p(o|a) = p(o|a′) for all o, a, a′ has been
called strong probabilistic anonymity in [1] and it is equiv-

alent to the condition p(a|o) = p(a) for all o, a. The latter
was considered as a definition of anonymity in [4] and it is

called conditional anonymity in [12].

Capacity 0 is the optimal case also w.r.t. the capability of
the adversary of inferring the hidden information. In fact,

we can prove that the Bayes risk achieves its highest possi-

ble value, for a given n (cardinality ofA), when the rows of

the matrix are all the same and the distribution is uniform.

In this case, we have

Pe( 1
n , 1

n , . . . , 1
n ) = 1 −

∑
o maxj p(o|aj)xj

= 1 −
∑

o p(o|a) 1
n

= 1 − 1
n

∑
o p(o|a)

= n−1
n

An example of protocol with capacity 0 is the dining
cryptographers in a connected graph [4], under the assump-

tion that it is always one of the cryptographers who pays,

and that the coins are fair.

6 Application: Crowds

In this section we discuss how to compute the channel

matrix for a given protocol using automated tools, and use

it to improve the bound for the probability of error. We

illustrate our ideas on a variation of Crowds, a well-known

anonymity protocol from the literature.

In this protocol, introduced by Reiter and Rubin in [21],

a user (called the initiator) wants to send a message to a

web server without revealing its identity. To achieve that, he

routes the message through a crowd of users participating in

the protocol. The routing is performed using the following

protocol: in the beginning, the initiator selects randomly a

10
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input distribution. In fact
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∑

o maxj p(o|aj)xj

= 1 −
∑
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∑
o p(o|aj)xj

= 1 −
∑

j xj = 0

Capacity 0 The case in which the capacity of the channel

is 0 is by definition obtained when I(A; O) = 0 for all pos-
sible input distributions of A. From information theory we
know that this is the case iff A and O are independent (cfr.

[8], page 27). Hence we have the following characteriza-

tion:

Proposition 5.1 Given an anonymity system 〈A,O, p(·|·)〉,
the capacity of the corresponding channel is 0 iff all the

rows of the channel matrix are the same, i.e. p(o|a) =
p(o|a′) for all o, a, a′.

The condition p(o|a) = p(o|a′) for all o, a, a′ has been
called strong probabilistic anonymity in [1] and it is equiv-

alent to the condition p(a|o) = p(a) for all o, a. The latter
was considered as a definition of anonymity in [4] and it is

called conditional anonymity in [12].

Capacity 0 is the optimal case also w.r.t. the capability of
the adversary of inferring the hidden information. In fact,

we can prove that the Bayes risk achieves its highest possi-

ble value, for a given n (cardinality ofA), when the rows of

the matrix are all the same and the distribution is uniform.

In this case, we have

Pe( 1
n , 1

n , . . . , 1
n ) = 1 −

∑
o maxj p(o|aj)xj

= 1 −
∑

o p(o|a) 1
n

= 1 − 1
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o p(o|a)

= n−1
n

An example of protocol with capacity 0 is the dining
cryptographers in a connected graph [4], under the assump-

tion that it is always one of the cryptographers who pays,

and that the coins are fair.

6 Application: Crowds

In this section we discuss how to compute the channel

matrix for a given protocol using automated tools, and use

it to improve the bound for the probability of error. We

illustrate our ideas on a variation of Crowds, a well-known

anonymity protocol from the literature.

In this protocol, introduced by Reiter and Rubin in [21],

a user (called the initiator) wants to send a message to a

web server without revealing its identity. To achieve that, he

routes the message through a crowd of users participating in

the protocol. The routing is performed using the following

protocol: in the beginning, the initiator selects randomly a
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Capacity 0 The case in which the capacity of the channel

is 0 is by definition obtained when I(A; O) = 0 for all pos-
sible input distributions of A. From information theory we
know that this is the case iff A and O are independent (cfr.

[8], page 27). Hence we have the following characteriza-

tion:

Proposition 5.1 Given an anonymity system 〈A,O, p(·|·)〉,
the capacity of the corresponding channel is 0 iff all the

rows of the channel matrix are the same, i.e. p(o|a) =
p(o|a′) for all o, a, a′.

The condition p(o|a) = p(o|a′) for all o, a, a′ has been
called strong probabilistic anonymity in [1] and it is equiv-

alent to the condition p(a|o) = p(a) for all o, a. The latter
was considered as a definition of anonymity in [4] and it is

called conditional anonymity in [12].

Capacity 0 is the optimal case also w.r.t. the capability of
the adversary of inferring the hidden information. In fact,

we can prove that the Bayes risk achieves its highest possi-

ble value, for a given n (cardinality ofA), when the rows of

the matrix are all the same and the distribution is uniform.

In this case, we have
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An example of protocol with capacity 0 is the dining
cryptographers in a connected graph [4], under the assump-

tion that it is always one of the cryptographers who pays,

and that the coins are fair.

6 Application: Crowds

In this section we discuss how to compute the channel

matrix for a given protocol using automated tools, and use

it to improve the bound for the probability of error. We

illustrate our ideas on a variation of Crowds, a well-known

anonymity protocol from the literature.

In this protocol, introduced by Reiter and Rubin in [21],

a user (called the initiator) wants to send a message to a

web server without revealing its identity. To achieve that, he

routes the message through a crowd of users participating in

the protocol. The routing is performed using the following

protocol: in the beginning, the initiator selects randomly a
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Capacity 0 The case in which the capacity of the channel

is 0 is by definition obtained when I(A; O) = 0 for all pos-
sible input distributions of A. From information theory we
know that this is the case iff A and O are independent (cfr.

[8], page 27). Hence we have the following characteriza-

tion:

Proposition 5.1 Given an anonymity system 〈A,O, p(·|·)〉,
the capacity of the corresponding channel is 0 iff all the

rows of the channel matrix are the same, i.e. p(o|a) =
p(o|a′) for all o, a, a′.

The condition p(o|a) = p(o|a′) for all o, a, a′ has been
called strong probabilistic anonymity in [1] and it is equiv-

alent to the condition p(a|o) = p(a) for all o, a. The latter
was considered as a definition of anonymity in [4] and it is

called conditional anonymity in [12].

Capacity 0 is the optimal case also w.r.t. the capability of
the adversary of inferring the hidden information. In fact,

we can prove that the Bayes risk achieves its highest possi-

ble value, for a given n (cardinality ofA), when the rows of

the matrix are all the same and the distribution is uniform.

In this case, we have
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= 1 −
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An example of protocol with capacity 0 is the dining
cryptographers in a connected graph [4], under the assump-

tion that it is always one of the cryptographers who pays,

and that the coins are fair.

6 Application: Crowds

In this section we discuss how to compute the channel

matrix for a given protocol using automated tools, and use

it to improve the bound for the probability of error. We

illustrate our ideas on a variation of Crowds, a well-known

anonymity protocol from the literature.

In this protocol, introduced by Reiter and Rubin in [21],

a user (called the initiator) wants to send a message to a

web server without revealing its identity. To achieve that, he

routes the message through a crowd of users participating in

the protocol. The routing is performed using the following

protocol: in the beginning, the initiator selects randomly a

10

• Relation with Conditional Entropy    H(A|O)

• Bounds by Rény ’66, Hellman-Raviv ’70, Santhi-Vardy ‘06

• Tighter bound obtained by studying the ‘corner points’

33



PLID’07Chatzikokolakis, Palamidessi and Panangaden 21/8/07

Information-hiding protocols as opaque channels

What about the relation between the 
Probability of error and Capacity ?

34



PLID’07Chatzikokolakis, Palamidessi and Panangaden 21/8/07

Information-hiding protocols as opaque channels

What about the relation between the 
Probability of error and Capacity ?

• p(a|o)   vs   H(A|O)

34



PLID’07Chatzikokolakis, Palamidessi and Panangaden 21/8/07

Information-hiding protocols as opaque channels

What about the relation between the 
Probability of error and Capacity ?

• p(a|o)   vs   H(A|O)

• p(a|o) / p(a)   vs   H(A|O) - H(A)   ? 
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Future work

• Explore more in depth the relation between the capability of 
inferring info about the input and the capacity, or other 
quantitative notions depending on the channel’s matrix.

• Inference of the input distribution without the power of 
forcing the input to remain the same through the observations

• Characterizations of other (weaker) notions of privacy which 
are easy to model check, in the sense that they do not require 
to analyze the capacity as a function of the input distribution

• Develop a logic for efficient model checking
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Thank you !
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