
Separation of synchronous and
asynchronous communication via

testing

Diletta Cacciagrano Flavio Corradini

 Catuscia Palamidessi

Separation of Synchronous and asynchronous communicationSan Francisco, 28/8/05

Plan of the talk
Classical encodings of the output prefix of π

Must semantics

Impossibility of a must-preserving encoding

Discussion

2

Separation of Synchronous and asynchronous communicationSan Francisco, 28/8/05

Classical encodings of the output prefix of π

At the beginning of the 90’s various researchers (Boudol and Honda-
Tokoro) proposed independently elegant encodings of the output-prefix
of the π-calculus into the asynchronous π-calculus

The idea was not new, based on rendezvous protocol, but the presence
of the new operator allowed for a solution particularly elegant and
modular (which would not be possible, for instance, in CCS)

This encodings contributed to show the expressiveness of the
asynchronous π-calculus and helped significantly its popularity

Despite the importance of this result, the formal properties of the
encodings were not explored much. The aim of this paper is to show that
these encodings (and in fact any encoding from π into asynchronous π)
does not preserve certain semantics properties

This result has nothing to do with [Palamidessi 97]: here we consider a
language without choice

3

Separation of Synchronous and asynchronous communicationSan Francisco, 28/8/05

Input x(y).P
x〈z〉−→ P{z/y} where x, y ∈ N

Output/Tau α.P
α−→ P where α = x̄y or α = τ

Open
P

x̄y−→ P ′

(νy)P
x̄〈y〉−→ P ′

x $= y Res
P

µ−→ P ′

(νy)P µ−→ (νy)P ′
y $∈ n(µ)

Par
P

µ−→ P ′

P |Q µ−→ P ′ |Q
bn(µ) ∩ fn(Q) = ∅

Com
P

x〈y〉−→ P ′, Q
x̄y−→ Q′

P |Q τ−→ P ′ |Q′
Close

P
x〈y〉−→ P ′, Q

x̄〈y〉−→ Q′

P |Q τ−→ (νy)(P ′ |Q′)

Bang
P

µ−→ P ′

!P µ−→ P ′ | !P

Cong
P ≡ P ′ P ′ µ−→ Q′ Q′ ≡ Q

P
µ−→ Q

Table 1: Early operational semantics for Ps terms.

2.2 The asynchronous π-calculus

The set Pa of processes of the asynchronous π-calculus is generated by the
following grammar:

P ::= 0 x(y).P τ.P x̄y P | P (νx)P ! P

The operational semantics of Pa is given by the rules in Table 1, with the
rule Output/Tau replaced by the rules Output and Tau in Table 3. The axioms
defining the structural congruence are the same as the ones in Table 2.

The definitions and notation given in the synchronous setting are assumed
in the asynchronous one as well. Note that the asynchronous π-calculus is a
sub-set of the π-calculus. Indeed, the output-action process x̄y can be thought
as the special case of output prefix x̄y.0.

5

Classical encodings of the output prefix of π

The source language: The synchronous π-calculus w/o
choice

The target language: The asynchronous π-calculus

4

2 The π-calculus and the asynchronous π-calculus

In this section we briefly recall the basic notions about the (choiceless) π-
calculus and the asynchronous π-calculus.

2.1 The π-calculus

Let N (ranged over by x, y, z, . . .) be a set of names. The set Ps (ranged over
by P,Q,R, . . .) of processes is generated by the following grammar:

P ::= 0 x(y).P τ.P x̄y.P P | P (νx)P ! P

The input prefix y(x).P , and the restriction (νx)P , act as name binders for
the name x in P . The free names fn(P) and the bound names bn(P) of P are
defined as usual. The set of names of P is defined as n(P) = fn(P) ∪ bn(P).
Whenever fn(P) = ∅, P is said closed.

The operational semantics of processes is given via a labelled transition
system, whose states are the process themselves. The labels (ranged over by
µ, γ, . . .) correspond to prefixes, input x〈y〉, output x̄y and tau τ , and to the
bounded output x̄〈y〉 (which models scope extrusion). If µ = x〈y〉 or µ = x̄y
or µ = x̄〈y〉 we define sub(µ) = x and obj(µ) = y. The functions fn, bn and n
are extended to cope with labels as follows:

bn(x〈y〉) = {y} bn(x̄〈y〉) = {y} bn(x̄y) = ∅ bn(τ) = ∅
fn(x〈y〉) = {x} fn(x̄〈y〉) = {x} fn(x̄y) = {x, y} fn(τ) = ∅

The transition relation is given in Table 1. The symbol ≡ used in Rule Cong
stands for the structural congruence. This is the smallest congruence over the
set Ps induced by the axioms in Table 2.

Definition 2.1 (Weak transitions) Let P and Q be Ps processes. Then:

- P
ε=⇒ Q if and only if there exist P0, P1, . . . , Pn ∈ Ps, n ≥ 0, such that

P = P0
τ−→ P1

τ−→ . . .
τ−→ Pn = Q ;

- P
µ=⇒ Q if and only if there exist P1, P2 ∈ Ps such that

P
ε=⇒ P1

µ−→ P2
ε=⇒ Q .

Notation 2.1 Sometimes we write P
µ−→ (P µ=⇒) to mean that there exists

P ′ such that P
µ−→ P ′ (P µ=⇒ P ′) and we write P

ε=⇒ µ−→ to mean that there
are P ′ and Q such that P

ε=⇒ P ′ and P ′ µ−→ Q. We say that P diverges,
notation P ↑, if there exists an infinite sequence of τ transitions from P , i.e.
P = P0

τ−→ P1
τ−→ . . . Pi

τ−→ Pi+1
τ−→ . . . for some P0, P1, . . . Pi, Pi+1, In

the opposite case, i.e. if P, ↑, we say that P converges, notation P ↓.

4

Separation of Synchronous and asynchronous communicationSan Francisco, 28/8/05

Classical encodings of the output prefix of π

The encoding of Boudol [1992]

5

!"#$%&"'()*+($,)-,)(-.+/&0

1 2*+(+"#$%&"'($/(3$,%$4
3$,%$4 567789(-.$:&%+%()*+(/$44$;&"'(+"#$%&"'($/(! <;&)*$,)(#*$&#+=(&")$!>?(@(2*+(&%+>(&A()$(
/$.#+(B$)*(->.)"+.A()$(-.$#++%($"4C(;*+"(&)(&A(A,.+()*>)()*+(#$DD,"&#>)&$"(#>"()>E+(-4>#+F(
BC(,A&"'(>(A$.)($/(.+"%+GH:$,A -.$)$#$4

1 3$,%$4 -.$:+%()*&A(+"#$%&"'(A$,"%(;.))*+(I$..&A($.%+.&"'

1 !"#$%&'#(J+/&"+(>"(+"#$%&"'(;*&#*()>E+A($"4C();$(A)+-A(&"A)+>%()*>"()*.++?(<K,#*(>(E&"%($/(
+"#$%&"'(;>A(%+/&"+%(BC(L$"%>H2E.$ 567789?=

M>.&AF(6N(J+#+DB+.(8OOP IMQR(S$,.A+($"(S$"#,..+"#C T

Separation of Synchronous and asynchronous communicationSan Francisco, 28/8/05

Classical encodings of the output prefix of π

The encoding of Honda-Tokoro [1991]

6

!"#$%&"'()*+($,)-,)(-.+/&0

1 2*+(+"#$%&"'($/(3$"%452$6$.$
3$"%452$6$.$ 7899:;(%+/&"+%()*+(/$<<$=&"'(+"#$%&"'($/(! >=&)*$,)(#*$&#+?(&")$
!4@(&"(=*&#*()*+(#$AA,")&$"(-.$)$#$<()46+B()=$(B)+-B(&"B)+4%()*4"()*.++@(2*+(
&%+4(&B()$(<+)()*+(.+#+&C+.()46+()*+(&"&)&4)&C+(>&"B)+4%()*4"()*+(B+"%+.?

1 3$"%4(-.$C+%()*&B(+"#$%&"'(B$,"%(4"%(D4<A$B)E(#$A-<+)+(=.) 4(#+.)4&"(<$'<(
B+A4")&#B

1 3$"%452$6$.$ %+/&"+%(4<B$(4"$)*+.(+"#$%&"'($/(! >=&)*$,)(#*$&#+?(&")$(4(-$<F4%&#
C+.B&$"($/(!4@(&"(=*&#*()*+(#$AA,")&$"(-.$)$#$<()46+B()=$(B)+-B(4"%()*+(
B+"%+.()46+B()*+(&"&)&4)&C+@(2*&B(+"#$%&"'(=4B(B*$="(&"(G+#),.+(H@

I4.&BJ(8K(L+#+AM+.(:NNO PIQR(S$,.B+($"(S$"#,..+"#F T

Separation of Synchronous and asynchronous communicationSan Francisco, 28/8/05

Classical encodings of the output prefix of π

Both these encodings have been proved correct with respect certain
weak semantics (Morris preorder for the Boudol’s encoding, and a
sort of weak bisimulation for the Honda-Tokoro encoding)

They are also may-preserving, in the sense that

P may o iff [[P]] may [[o]] [Cacciagrano & Corradini, 2001]

Both these encodings have the feature that one of the encoded
partners reaches before the other the continuation

We will see that this fact causes problems with respect to
preservation of the must semantics

7

Separation of Synchronous and asynchronous communicationSan Francisco, 28/8/05

The must semantics

Given a process P and a test o containing the special action
ω, we say that P must o if and only if for every maximal
computation of P | o we have that we reach a state where ω
is enabled

8

a1) P ≡ Q iff Q can be obtained from P by alpha-renaming
a2) (Ps/≡, | , 0) is a commutative monoid
a3) ((νx)P |Q) ≡ (νx)(P |Q), if x "∈ fn(Q)
a4) (νx)P ≡ P, if x "∈ fn(P)
a5) (νx)(νy)P ≡ (νy)(νx)P

Table 2: The structural congruence.

Output x̄y
x̄y−→ 0 Tau τ.P

τ−→ P

Table 3: The rules for Output and Tau in Pa.

3 Must preorder

In this section we briefly summarize the basic definitions behind the testing
machinery for the π-calculi. In the following, P will denote either Ps or Pa.

Definition 3.1 (Observers)

- Let N ′ = N ∪{ω} be the set of names. By convention we let fn(ω) = {ω},
bn(ω) = ∅ and sub(ω) = ω. The action ω is used to report success.

- The set O (ranged over by o, o′, o′′, . . .) of observers is defined like P,
where the grammar is extended with the production P ::= ω.P .

- The operational semantics of P is extended to O by adding the rule
ω.o

ω−→ o .

In the following we will use 〈P 〉 to denote some restricted version of P , i.e.
any process of the form (νx1)(νx2) . . . (νxn)P , for some x1, . . . , xn ∈ fn(P).

Definition 3.2 (Maximal computations) Given P ∈ P and o ∈ O, a maximal
computation from P | o is either an infinite sequence

P | o = 〈P0 | o0〉
τ−→ 〈P1 | o1〉

τ−→ 〈P2 | o2〉
τ−→ . . .

or a finite sequence

P | o = 〈P0 | o0〉
τ−→ 〈P1 | o1〉

τ−→ . . .
τ−→ 〈Pn | on〉 "

τ−→ .

We are now ready to present the definition of must testing preorder.

Definition 3.3 (Must relation) Given a process P ∈ P and an observer o ∈ O,
define P must o if and only if for every maximal computation P |o = 〈P0 |o0〉

τ−→
〈P1 | o1〉

τ−→ . . . 〈Pn | on〉 [τ−→ . . .] there exists i ≥ 0 such that 〈Pi | oi〉
ω−→.

6

ω

Separation of Synchronous and asynchronous communicationSan Francisco, 28/8/05

The main result

Given an encoding such that

 is compositional with respect to the prefixes

There exists such that (i.e. has a
computation consisting of an infinite sequence of ’s)

Then cannot be must-preserving, namely there exists a
process and a test such that

while

9

o

[[·]] : π → asynchronous π

[[·]]

[[P]][[P]] ↑P

[[·]]
P

P must o [[P]] !must [[o]]

τ

Separation of Synchronous and asynchronous communicationSan Francisco, 28/8/05

Proof of the main result (outline)

10

Let P be a process such that [[P]] ↑. Then consider

1) Process x(y).P with test x̄z.ω

2) Process x̄z.P with test x(y).ω

1) [[x(y).P]] must [[x̄z.ω]]

2) [[x̄z.P]] must [[x(y).ω]]

By contr: If [[·]] were must-preserving we should have

1) x(y).P must x̄z.ω

2) x̄z.P must x(y).ω

Note that in both cases we have

Separation of Synchronous and asynchronous communicationSan Francisco, 28/8/05

Proof of the main result (outline)

11

Because of compositionality we have [[x(y).P]] = Cx(y)[[[P]]]
and analogously for the other prefixes. Hence

1) [[x(y).P]] | [[x̄z.ω]] = Cx(y)[[[P]]] | Cx̄z[[[ω]]] → . . . → [[P]] |Q | a.[[[ω]]] →∗

or

In the second case, we just have to consider the other pair:

2) [[x̄z.P]] | [[x(y).ω]] = Cx̄z[[[P]]] | Cx(y)[[[ω]]] → . . . → [[P]] |Q | b.[[[ω]]] →∗

1) [[x(y).P]] | [[x̄z.ω]] = Cx(y)[[[P]]] | Cx̄z[[[ω]]] → . . . → b.[[[P]]] |Q | [[ω]] . . .
ω
→

Separation of Synchronous and asynchronous communicationSan Francisco, 28/8/05

Discussion
What does the result really mean?

The π-calculus (even with no choice) is more expressive than the
asynchronous π-calculus w.r.t. testing semantics

However the result heavily depends on some features of the testing
semantics that may be considered not too essential

The result does not hold in the following variants of the testing semantics

1. Success is declared only if ω is actually performed

2. Success is declared if at some point ω is available or there are infinitely many
points from which one can reach a point where ω is available (fair testing,
[Natarajan and Cleaveland, 1995] and [Brinksma, Rensink and Vogler, 1995])

12

Separation of Synchronous and asynchronous communicationSan Francisco, 28/8/05

Future work
Study a notion of testing semantics with a limited
form of fairness (essentially, a fairness which
guarrantees only the delivery of the outputs)

fair testing is “too coarse” for our purposes: we
do not want to identify processes like P and P | !τ

Prove positive results (encodings preserving the
testing semantics) w.r.t. this limited fairness
variant

13

Separation of Synchronous and asynchronous communicationSan Francisco, 28/8/05 14

Thank you !

