
Safe Recursion and Calculus over an Arbitrary

Structure

Olivier Bournez, Paulin de Naurois ?, and Jean-Yves Marion

LORIA/INRIA,
615 rue du Jardin Botanique, BP 101,

54602 Villers-lès-Nancy Cedex, Nancy, France.
email: {bournez, denauroi, marionjy}@loria.fr

Abstract. In this paper, we show that the Bellantoni and Cook char-
acterization of polynomial time computable functions in term of safe
recursive functions can be transfered to the model of computation over
an arbitrary structure developped by L. Blum, M. Shub and S. Smale.
Hence, we provide an implicit complexity characterization of functions
computable in polynomial time over any arbitrary structure.

1 Introduction

Since the development of classical complexity theory, several attempts have been
done to provide nice formalisms to characterize functions computable in poly-
nomial time. An important contribution to this field is the work of Neil Jones,
found in [Jon97] and [Jon99], based on some programming languages properties.
Another thread of results, called implicit complexity, has its roots in the work
of S. Bellantoni and S. Cook, found in [BC92], with a viewpoint more related to
the notion of recursion, and formal definition of functions, leading to a hierarchy
of subsets of the set of primitive recursive functions.

In their seminal paper [BSS89], Lenore Blum, Mike Shub and Steve Smale
introduced a model of computation over the real numbers which was later on
extended to a computational model over any arbitrary logical structure [Poi95].
Complexity classes like PTIME and NPTIME can be defined, and complete
problems in these classes can be shown to exist [Poi95,BCSS98]. On many as-
pects, this is an extension of the classical complexity theory since complexity
classes correspond to classical complexity classes when dealing with booleans or
integers. In addition, this new model provides new insights for understanding
complexity theory when dealing with structures over other domains [BCSS98].
Several results have been obtained for this model in the last decade, including
separation of complexity classes over specific structures [BCSS98].

Our goal here is to make a junction between these two different fields, yielding
some notion of implicit complexity not only over the booleans, or the integers,

? This author has been partially supported by City University of Hong Kong SRG
grant 7001290

i.e. in the classical setting, but over any arbitrary structure. This is, to the best
of our knowledge, the first attempt to do so.

Indeed, in this paper, we present a characterization of primitive recursive
functions over arbitrary structures, and we present a general definition of safe
recursion, which gives in the classical case the classical notion of safe recursion
over the natural numbers. We then show our main result:

Main Theorem: Over any structure

K = (IK, op1, . . . , opk, =, rel1, . . . , rell, 0, 1), the set of safe recursive functions

over K is exactly the set of functions computed in polynomial time by a BSS

machine over K.

This characterization extends the one from Bellantoni and Cook since its
corresponds to the original one of [BC92] when dealing with structures over the
booleans or the integers.

In Section 2, we recall what BSS-computability and complexity theory are.
In Section 3, we give a characterization of primitive recursive functions over an
arbitrary structure. We introduce our notion of safe recursive function in Section
4. We give the proof of the Main Theorem in Section 5. Section 6 is a conclusion.

2 Computing over an Arbitrary Structure

In this section, we introduce computability and complexity over an arbitrary
structure. See [BCSS98] for formal details.

A structure K = (IK, op1, . . . , opk, rel1, . . . , rell) is given by some underlying
set IK, some operators op1, . . . , opk with arities, and some relations rel1, . . . , rell
with arities. Constants are given by operators of arity 0. We will not distinguish
between operator and relation symbols and their corresponding interpretations
as functions and relations respectively over the underlying set IK.

Assume that some structure K is fixed. We assume that equality relation
= is one relation of the structure, and that there are at least two different
constants 0 and 1 in the structure. A good example for such a structure is
K = (IR, +,−, ∗, =,≤, 0, 1). Another one, corresponding to classical complexity
and computability theory is K = ({0, 1},∨,∧, =, 0, 1).

A BSS-machine over K is essentially a Turing Machine, which is able to
perform the basic operations op1, . . . , opk and the basic tests rel1, . . . , rell at
unit cost, and whose tape cells can hold arbitrary elements of the underlying set
IK [Poi95,BCSS98].

More formally.

BSS-machine over K: Let IK∗ =
⋃

i∈IN IKi denote the set of words over al-
phabet IK.

An instantaneous description of a k-tapes BSS-machine is given by some
internal state q, belonging to some fixed finite set Q of possible internal states,
also called “nodes”, and by instantaneous descriptions of the k-tapes of the
machine. An instantaneous description of a tape i is given by the position of the

head i of the machine, and by two words wi
l , w

i
r ∈ IK∗ that give the content of

tape i at left and right of the head.

To each node q ∈ Q, is associated some instruction among the following
possibilities:

1. move: move head left (respectively: right) of tape i and go to node q′,

2. operation: replace the element in front of the head of tape i by op(wj
1, . . . , w

j
n)

and go to node q′, where wj
r = w

j
1.w

j
2.w

j
a . . . is the right content of tape

j, op is some operation of the structure K, and n its arity.

3. relation: test whether rel(wi
1, . . . , w

i
n) is true and go to node q′ or node q′′

accordingly, where wi
r = wi

1.w
i
n . . . is the right content of tape i, rel is

some relation of the structure K and n its arity.

Two particular nodes q0 and qacc are termed as initial and terminal respec-
tively. A language L is a subset of IK∗. The language is said to be recognized by
the machine if it corresponds to the subset of the words that are accepted: an
input w ∈ IK∗ is accepted iff the machine started in node q0 with w on its first
tape, and its other tapes blank, and evolving according to its program, eventually
reaches node qacc. The input w is said to be accepted in time T , if the compu-
tations requires T instructions. Machine M computes function f : IK∗ → IK∗

iff started in node q0 with w ∈ IK∗ on its first tape, its other tapes blank, and
evolving according to its program, it eventually reaches node qacc with its first
tape equal to f(w).

Class PTIME: The length of an input w ∈ IK∗, denoted by |w| is the length of
word w considered as a word over alphabet IK.

A problem P ⊂ IK∗ is in class PTIME (respectively a function f : IK∗ → IK∗

is in class FPTIME), if there exists a polynomial p and a machine M , so that
for all w ∈ IK∗, M stops in time p(|w|), and for all w ∈ IK∗, M accepts iff w ∈ P

(respectively: M computes function f).

This notion of computability corresponds to the classical one for structures
over the boolean or the integers, and corresponds to the one from Blum Shub
and Smale over the real numbers.

Proposition 1.

1. Class PTIME is the classical one over structure K = ({0, 1},∨,∧, =, 0, 1).

2. Class PTIME is the class PTIME of Blum Shub and Smale over structure
K = (IR, +,−, ∗, =,≤, 0, 1).

The reader can refer to [BCSS98] for a monograph presenting the model
and some results about complexity in this model for structures over real and
complex numbers, or to the monograph [Poi95] for considerations about more
general structures.

3 Partial Recursive and Primitive Recursive Functions

As in the classical settings, alternative presentations exists. In particular, com-
putable functions can be characterized algebraically, in terms of the smallest set
of functions containing some initial functions and closed by composition, primi-
tive recursion and minimization. This was done for the first time in the original
paper [BSS89] for computability over the real numbers.

In this section, we present a characterization that works over any arbitrary
structure, and that we think nicer than the original one when applied on real
numbers. See comments at the end of this section.

We define a set of functions: (IK∗)
k → IK∗, taking as inputs arrays of words

of elements in IK, and returning as output a word of elements in IK. In our
notations, words of elements in IK will be represented with overlined letters,
while simple elements in IK will be represented by simple letters. For instance,
a.x stands for the word in IK∗ whose first letter is a and which ends with the
word x. When the output of a function is undefined, we use the symbol ⊥.

Definition 1. The set of primitive recursive functions over IK is the smallest
set of functions: (IK∗)

k → IK∗, containing the basic functions, and closed under
the operations of

– composition
– primitive recursion

Definition 2. The set of partial recursive functions over IK is the smallest set
of partial functions: (IK∗)

k → IK∗, containing the basic functions, and closed
under the operations of

– composition
– primitive recursion
– minimization

Our basic functions are of three kinds:

– functions making elementary manipulations of words of elements in IK.1 For
any a ∈ IK, x, x1, x2 ∈ IK∗:

hd(a.x) = a

hd(∅) = ∅

tl(a.x) = x

tl(∅) = ∅

cons(a.x1, x2) = a.x2

1 The formal definition of functions hd and tl given here is actually a primitive re-
cursive definition with no recurrence argument. However, when we introduce the
notion of safe recursion in section 4, these functions hd and tl need to be given as
a priori functions in order to be applied to safe arguments, and not only to normal
arguments. For the sake of coherence, we give them here as a priori functions as
well.

– functions of structure K: for any operator opı or relation relı of arity nı we
have the following initial functions:

Opı(a1.x1, . . . , anı
.xnı

) = (opı(a1, . . . , anı
)).xnı

Relı(a1.x1, . . . , anı
.xnı

) =

{

(1.xnı
) if relı(a1, . . . , anı

)
(0.xnı

) otherwise

– test function :2

C(a.x, y, z) =

{

y if a = 1
z otherwise

Operations mentioned above are:

– Composition: Suppose f : (IK∗)
k
→ IK∗ and g1, . . . , gk: (IK∗)

lı → IK∗ are

given partial functions. Then the composition g ◦ f : (IK∗)
l1+...+lk → IK∗ is

defined by
g ◦ f(x1, . . . , xl1+...+lk) = f(g1(x1, . . . , xl1), . . . , gk(xl1+...+lk−1+1, . . . , xlk)).

– primitive recursion 3: Suppose f : IK∗ → IK∗ and g: (IK∗)
3
→ IK∗ are given

partial functions. Then h: (IK∗)
2
→ IK∗ is defined with primitive recursion

if h satisfies:

h(∅, x) = f(x)

h(a.y, x) =

{

g(y, h(y, x), x) if h(y, x) 6=⊥
⊥ otherwise

– minimization: Suppose f : (IK∗)
2
→ IK∗. One can define minimization on

the first argument of f as a function g: IK∗ → IK∗ where we note g(y) =
µx (f(x, y)):

µx (f(x, y)) =

{

⊥ if ∀t ∈ IN : hd(f(0t, y)) 6= 0
0k : k = min{t | hd(f(0t, y)) = 0} otherwise

2 One may wonder if we do not need projection and identity. These are actually triv-
ially given by this test function:

id(x) = C(1, x, whatever)

prleft(x, y) = C(1, x, y)

prright(x, y) = C(0, x, y)

3 In this definition, the variable a in front of the recurrence argument a.y does not
appear as argument of the function g. The first reason for this is the need of consis-
tency among argument types: a is a single element in IK whereas all arguments need
to be words in IK∗. The second reason is that g still depends on the value of the first
element of y. Therefore, one can define a recursive function h′ such that h′(0.a.y, x)
gives the expected result.

Note 1. The only operation producing the ⊥ symbol, used to represent an unde-
fined output, is minimization. Therefore, primitive recursive functions are total
functions, whereas partial recursive functions may be partial functions.

Note 2. The operation of minimization on the first argument of f returns the
smallest word made only of 0 letters satisfying one property. The reason why it
does not return a smallest word made of any letter in IK is to ensure determinism,
and therefore calculability. On a structure where we have P 6= NP, such a non-
deterministic minimization may very well not be computable by a BSS machine,
which is in essence deterministic.

Note 3. Our definition of primitive recursion and of minimization is sightly dif-
ferent from the one found in [BSS89]. In this paper, the authors introduce a
special integer argument for every function, which is used to control recursion
and minimization, and consider the other arguments as simple elements in IK.
Their functions are of type: IN ∗ IKk → IKl. Therefore, they only capture fi-
nite dimensional functions. It is known that, on the real numbers with +,−, ∗
operators, finite dimensional functions are equivalent to non-finite dimensional
functions (see [Mic89]), but this is not true over other structures, for instance
ZZ2. Our choice is to consider arguments as words of elements in IK, and to use
the length of the arguments to control recursion and minimization. This allows
us to capture non-finite dimensional functions, thus we consider it to be a more
general and natural way to define computable functions, and moreover closer to
the way BSS machines over IK really work.

Before going any further, let us state the following technical result:

Proposition 2. Simultaneous primitive recursion as in the following schema:

h1(∅, x), . . . , hk(∅, x) = f1(x), . . . , fk(x)

h1(a.y, x) =

{

g1(y, h1(y, x), . . . , hk(y, x), x) if h(y, x) 6=⊥
⊥ otherwise

...

hk(a.y, x) =

{

gk(y, h1(y, x), . . . , hk(y, x), x) if h(y, x) 6=⊥
⊥ otherwise

is definable with primitive recursive functions.

Now we can state a theorem similar to the one found in [BSS89]:

Theorem 1. Over any structure K = (IK, op1, . . . , opk, =, rel1, . . . , rell, 0, 1),
The set of partial recursive functions over K is exactly the set of functions

computed by a BSS machine over K.

The idea of the proof is to build a set of partial recursive functions simulating
a BSS machine. This involves the same techniques as the proof of the Main
Theorem, and is not developped here. The fact that partial recursive functions
are computable by a BSS-machine is clear.

4 Safe Recursive Functions

In this section we define our set of safe recursive functions over IK, extending the
notion of safe recursive functions over the natural numbers found in [BC92]. Safe
recursive functions are defined in a quite similar manner as primitive recursive
functions however, for safe recursive functions, we define two different types of
arguments, each of which having different properties and different purposes. The
first type of argument, called “normal” arguments, is similar to the arguments of
our previously defined partial recursive and primitive recursive functions, since
it can be used to make basic computation steps or to control recursion. The
second type of argument is called “safe”, and can not be used to control recur-
sion. This distinction between safe and normal arguments ensures that our safe
recursive functions can be computed in polynomial time by a BSS machine. In
our notations, the two different types of arguments are separated by a semicolon
“;” : on the left part of the argument set we place the normal arguments and on
the right part the safe arguments. Let us define now our safe recursive functions:

Definition 3. The set of safe recursive functions over IK is the smallest set of
functions: (IK∗)

k → IK∗, containing the basic safe functions, and closed under
the operations of

– safe composition
– safe recursion

Our basic safe functions are the basic functions of section 3, their arguments
being all safe.

Operations mentioned above are:

– safe composition: Suppose g: (IK∗)
2
→ IK∗, h1 : IK∗ → IK∗ and h2 : (IK∗)

2
→

IK∗ are given functions. Then the composition of g with h1 and h2 is the
function f : (IK∗)

2
→ IK∗:

f(x; y) = g(h1(x); h2(x; y))

Note: it is possible to move an argument from the normal position to the
safe position, whereas the reverse is forbidden. Suppose g : (IK∗)

3
→ IK∗ is

a given function. One can then define with safe composition a function f :

f(x, y; z) = g(x; y, z)

but a definition like the following is not valid:

f(x; y, z) = g(x, y; z)

– safe recursion: Suppose f1, . . . , fk : (IK∗)
2
→ IK∗ and g1, . . . , gk : (IK∗)

k+3
→

IK∗ are given functions. Functions h1, . . . , hk : (IK∗)
3 → IK∗ can then be

defined by safe recursion:

h1(∅, x; y), . . . , hk(∅, x; y) = f1(x; y), . . . , fk(x; y)

h1(a.z, x; y) =

{

g1(z, x; h1(z, x; y), . . . , hk(z, x; y), y) if ∀ı hı(z, x; y) 6=⊥
⊥ otherwise

...

hk(a.z, x; y) =

{

gk(z, x; h1(z, x; y), . . . , hk(z, x; y), y) if ∀ı hı(z, x; y) 6=⊥
⊥ otherwise

Note 4. The operation of primitive recursion previously defined is a simple re-
cursion, whereas the operation of safe recursion is a simultaneous recursion, in
the sense that k different functions are defined simultaneously. As stated by
Proposition 2, it is possible, while using only primitive recursive functions, to
simulate a simultaneous recursion definition, whereas this does not seem to be
true with safe recursion. As shown in the simulation of a BSS machine by safe
recursive functions, we need to have a simultaneous recursion able to define
simultaneously three functions in order to prove our Main Theorem.

5 Proof of the Main Theorem

For the sake of readability, let us recall the result we want to prove here:

Main Theorem: Over any structure

K = (IK, op1, . . . , opk, =, rel1, . . . , rell, 0, 1), the set of safe recursive functions

over K is exactly the set of functions computed in polynomial time by a BSS

machine over K.

We prove this Main Theorem in two steps. First, we prove that a safe recursive
function can be computed by a BSS machine in polynomial time. Second, we
prove that all functions computable in polynomial time by a BSS machine over
IK can be expressed as safe recursive functions.

5.1 Polynomial time evaluation of a safe recursive function

This is proved by induction on the depth of the definition tree of our safe recursive
function. Let f be a safe recursive function:

– If f is a basic safe function, the result is straightforward.
– If g, h1, h2 are safe recursive functions computed in polynomial time by a

BSS machine (induction hypothesis), and if f(x; y) = g(h1(x); h2(x; y)), it
is easy to see that f can be computed in polynomial time.

– The non-trivial case is the case of a function f defined with safe recursion.
In order to simplify the notations, we write

f(∅, x; y) = h(x; y)

instead of

f1(∅, x; y), . . . , fk(∅, x; y) = h1(x; y), . . . , hk(x; y)

and
f(a.z, x; y) = g(z, x; f(z, x; y), y)

instead of

f1(a.z, x; y) =

{

g1(z, x; f1(z, x; y), . . . , fk(z, x; y), y) if ∀ı fı(z, x; y) 6=⊥
⊥ otherwise

...

fk(a.z, x; y) =

{

gk(z, x; f1(z, x; y), . . . , fk(z, x; y), y) if ∀ı fı(z, x; y) 6=⊥
⊥ otherwise

The induction hypothesis states that functions g and h are computed in
polynomial time. We can now state the following technical result:

Lemma 1. Let f be any function defined with safe recursion. If we suppose
that y is already known (evaluated), the time needed to evaluate f(x; y) does
not depend on the value of y.

Proof. y is a safe argument in the expression f(x; y); therefore, in the syn-
tactic definition tree of f(x; y), strictly no safe recursion on the variable y

appears. The depth of this syntactic tree does not depend on y. ut

Let us apply this lemma to our function f defined with the safe recur-
sion operation. We get that the time needed to evaluate f(a.z, x; y) =
g(z, x; f(z, x; y), y) does not depend on f(z, x; y). It is in fact equal to the
evaluation time of g(z, x; . . . , . . .), which is, by induction, polynomial. If we
write Tpf(. . .)q the evaluation time of f(. . .), we get:

Tpf(a.z, x; y)q = Tpg(z, x; . . . , . . .)q + Tpf(z, x; y)q

We can reasonably suppose, without loss of generality: Tpg(a.z, x; . . . , . . .)q ≥
Tpg(z, x; . . . , . . .)q, and then it follows:

Tpf(a.z, x; y)q ≤ |a.z|Tpg(z, x; . . . , . . .)q

which means that f can be evaluated in polynomial time.

2

5.2 Simulation of a polynomial time BSS machine

Let M be a BSS machine over the structure K. In order to simplify our exposition
we assume, without any loss of generality, that M has a single tape. M computes
a partial function fM from IK∗ = IK∗. Moreover, we assume that M stops after
c|y|r computation steps, where y denotes the input of the machine M . Our goal
is to prove that fM can be defined as a safe recursive function.

In what follows, we represent the tape of the machine M by a couple a
variables (x, y) in (IK∗)

2
such that the non-empty part is given by xR.y, where

xR is the reversed word of x, and that the head of the machine is on the first
letter of y.

We also assume that the nodes in M are numbered with natural numbers,
node 0 being the initial node and node 1 the terminal node. In the following
definitions, node number q will be coded by the variable (word) 0q of length q.

Let q (q ∈ IN) be a move node. Three functions are associated with this node:

Gı(; x, y) = 0q′

Hı(; x, y) = tl(; x) or hd(; y).x
Iı(; x, y) = hd(; x).y or tl(; y)

according if one moves right or left.
Function Gı returns the encoding of the following node in the computation

tree of M , function Hı returns the encoding of the left part of the tape, and
function Iı returns the encoding of the right part of the tape.

Let q (q ∈ IN) be a node associated to some operation op of arity n of the
structure. We also write Op for the corresponding basic operation.

Functions Gı, Hı, Iı associated with this node are now defined as follows:

Gı(; x, y) = 0q′

Hı(; x, y) = x

Iı(; x, y) = cons(; Op(; hd(; y), . . . , hd(; tl(n−1)(; y))), tl(n)(; y))

Let q (q ∈ IN) be a node corresponding to a relation rel of arity n of the
structure.

The three functions associated with this node are now:

Gı(; x, y) = C(; rel(; hd(; x), . . . , hd(; tl(n−1)(; y))), 0q′

, 0q′′

)

Hı(; x, y) = x

Iı(; x, y) = y

It is easy to show that one can define without safe recursion a function Equalk
for any integer k such that:

Equalk(; x) =

{

1 if x = 0k

0 otherwise

We can now define the safe recursive functions nextstate, nextleft and
nextright which, given the encoding of a state and of the tape of the machine,
return the encoding of the next state in the computation tree, the encoding of
the left part of the tape and the encoding of the right part of the tape:

nextstate(; s, x, y) = C (; Equal0(; s),G0(; s, x, y), C (; Equal2(; s),G2(; s, x, y),
. . . C (; Equalm+n+2(; s),Gm+n+2(; s, x, y), ∅) . . .))

nextleft(; s, x, y) = C (; Equal0(; s),H0(; s, x, y), C (; Equal2(s),H2(; s, x, y),
. . . C (; Equalm+n+2(; s),Hm+n+2(; s, x, y), ∅) . . .))

nextright(; s, x, y) = C (; Equal0(; s), I0(; s, x, y), C (; Equal2(; s), I2(; s, x, y),
. . . C (; Equalm+n+2(; s), Im+n+2(; s, x, y), ∅) . . .))

From now on, we define with safe recursion the encoding of the state of the
machine reached after k computation nodes, where k is encoded by the word
0k ∈ IK∗, and we also define the encoding of the left part and the right part of
the tape. All this is done with functions compstate, compleft and compright as
follows:

compstate(∅; x, y) = ∅

compstate(0
k+1; x, y) =

nextstate

(

; compstate(0
k; x, y), compleft(0

k; x, y),
compright(0

k; x, y)
)

compleft(∅; x, y) = x

compleft(0
k+1; x, y) =

nextleft

(

; compstate(0
k; x, y), compleft(0

k; x, y),
compright(0

k; x, y)
)

compright(∅; x, y) = y

compright(0
k+1; x, y) =

nextright

(

; compstate(0
k; x, y), compleft(0

k; x, y),
compright(0

k; x, y)
)

In order to simplify the notations, we write the above as follows:

comp(∅; x, y) = ∅
comp(0k+1; x, y) = next

(

; comp(0k; x, y)
)

On input y, with the head originally on the first letter of y, the final state of
the computation of M is then reached after t computation steps, where

t = c|y|r

The reachability of this final state is given by the following lemma:

Lemma 2. For any c, d ∈ IN, one can write a function compd,c, where compd,c(y)
gives the encoding of the state and of the tape reached after c|y|d steps of com-
putation.

The encoding of the tape at the end of computation is then given by
compd,cleft

(y) and compd,cright
(y), ending here our simulation of the BSS ma-

chine M .

2

6 Conclusion

In this paper, we presented a recursion-theoric characterization of computable
functions and of polynomial time computable functions. Our characterization
of recursive functions extends the one from Blum Shub and Smale in [BSS89]
from real to arbitrary structures. Our characterization of functions computable
in polynomial time extends the characterization from Bellantoni and Cook in
[BC92] from the classical settings to arbitrary structures.

We think that this gives a nice setting to define complexity classes over
arbitrary structures. Indeed, previous characterizations were either based on
machine view, or based on generalization of results of finite model theory, also
called descriptive complexity, to structures over the real numbers.

Characterizations based on machines require, like in the classical setting,
rather intricate definitions of machines, and assumptions about the equivalence
of models, which need to be proved or understood before talking about com-
plexity classes. If this is done and well understood in the classical settings, this
is not so clear when talking about machines over arbitrary structures, where for
example the usual encoding considerations used in the classical settings are not
always possible. Our characterization permits to avoid this details and yields a
machine independent view of complexity over arbitrary structures.

Finite model theory presents in the classical setting a nice alternative. The
generalization of the classical setting to arbitrary structures have been studied
[BCSS98]. However, it requires rather unnatural considerations about types of
functions, some of them termed “number terms”, other termed “index term”, in
order to be able to use finiteness considerations over the models even in presence
of infinite underlying domains like the field of real numbers. Our characterization
does not suffer from the same problems.

Further work includes understanding how to translate other implicit complex-
ity characterizations of complexity classes from the classical setting to arbitrary
structures (one difficulty is that there is no valid notion of space complexity over
arbitrary structures: see [Mic89]), or if transfer theorems from classical results
to that setting may exist.

References

[BC92] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the
poly-time functions. Computational Complexity, 2:97–110, 1992.

[BCSS98] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity

and Real Computation. Springer Verlag, 1998.
[BSS89] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and

complexity over the real numbers: Np-completeness, recursive functions, and
universal machines. Bulletin of the American Mathematical Society, 21:1–46,
1989.

[Jon97] Neil Jones. Computability and complexity, from a programming perspective.
MIT Press, 1997.

[Jon99] Neil Jones. Logspace and ptime characterized by programming languages.
Theoretical Computer Science, 228:151–174, 1999.

[Mic89] Christian Michaux. Une remarque à propos des machines sur IR introduites
par Blum, Shub et Smale. In C. R. Acad. Sc. de Paris, volume 309 of 1,
pages 435–437. 1989.

[Poi95] Bruno Poizat. Les petits cailloux. aléas, 1995.

