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Abstract. In this paper we describe an experimental system called
d/dt for approximating reachable states for hybrid systems whose con-
tinuous dynamics is defined by linear differential equations. We use an
approximation algorithm whose accumulation of errors during the con-
tinuous evolution is much smaller than in previously-used methods. The
d/dt system can, so far, treat non-trivial continuous systems, hybrid
systems, convex differential inclusions and controller synthesis problems.

1 Introduction

The problem of calculating reachable states for continuous and hybrid sys-
tems has emerged as one of the major problems in hybrid systems research
[G96,GM98,DM98,KV97,V98,GM99,CK99,PSK99,HHMW99]. It constitutes a
prerequisite for exporting algorithmic verification methodology outside discrete
systems or hybrid systems with piecewise-trivial dynamics. For computer scien-
tists it poses new challenges in treating continuous functions and their approx-
imations and in applying computational geometry techniques to problems in
higher dimensional spaces. For control theorists and engineers the problem sug-
gests a fresh way of looking at systems with under-specified inputs and increases
their awareness to some practical computational aspects of controller design.

In this paper we describe an experimental system called d/dt which can
approximate reachable states for hybrid systems whose continuous dynamics is
defined by linear differential equations. The performance is much better than
the more general method of “face-lifting” we have used in the past [DM98].

The rest of the paper is organized as follows. In section 2 we define the prob-
lem of calculating reachable states and suggest a general procedure which solves
it iteratively. The basic computation step of the procedure cannot be performed
exactly and in section 3 we describe an over-approximation scheme for linear sys-
tems, having the advantage of not propagating errors from one step to another.
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Extensions of the algorithm to deal with hybrid systems, controller synthesis and
continuous disturbances are described in section 4 along with several examples.

2 The Basic Problem

Let T = R+ be a time domain, let X be a bounded subset of R
n and consider a

continuous dynamical system A over X defined by the equation ẋ = f(x). We
use the notation x t−→ x′ to indicate that the solution α of the equation with
x as an initial condition satisfies α[t] = x′. In words we say that x′ is reachable
from x in time t.

Definition 1 (Successors). Let A be a dynamical system defined by ẋ = f(x).
The successor operator δ : 2X → 2X is defined for a subset F of X and an
interval I ⊆ T as:

δI(F ) = {x′ : ∃x ∈ F ∃t ∈ I x t−→ x′}
We use the notation δr for δ[r,r] (states reachable after exactly r time), δ for
δ[0,∞) (all states reachable after any non-negative amount of time) and δI(x) for
δI({x}). Note that δ has the semi-group property, i.e. δI2(δI1(F )) = δI1⊕I2(F )
where ⊕ is the Minkowski sum, and in particular δ[0,r2](δ[0,r1](F )) = δ[0,r1+r2](F ).
In certain cases when the differential equation admits a closed-form solution,
one may characterize δ(F ) symbolically by a formula and then try to obtain a
closed-form solution by quantifier elimination. However, this works in rather ex-
ceptional cases (see for example [CV95,PLY99]). Instead we propose a numerical
algorithm which works by discretizing time into multiples of a fixed time step r.
The abstract algorithm for calculating δ(F ) is the following:

Algorithm 1 (Exact Calculation of δ(F ))

P 0 := F
repeat

P k+1 := P k ∪ δ[0,r](P k)
until P k+1 = P k

In order for a function to be computable by a discrete device its domain and range
need an effective representation as well as an effective and terminating procedure
which takes the representation of any element of the domain and transforms it
to a representation of its image by the function. For example, functions over
the integers can be computed by applying well-known algorithms for addition
and multiplication to unary, binary or decimal representations of numbers. The
mathematical real numbers pose a special problem in this respect, a problem
which we do not address here but assume to be solved for all practical purposes.
Our main concern here is to compute functions over subsets of X . From this
perspective Algorithm 1, when applied exactly suffers from the following two
problems:
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1. The exact calculation of δ[0,r] is not more feasible than the calculation of the
whole δ.

2. Even if δ[0,r] was computable, the algorithm usually does not terminate after
a finite number of steps.

To overcome these problems we resort to approximate calculation of δ[0,r] and
δ. In order to be effective, i.e. to do any computation at all, we can replace 2X

by a countable and effectively enumerable subset C whose union gives X , e.g.
the set of all polyhedra with rational vertices. Elements of 2X not in C are thus
either under- or over-approximated (see Figure 1-(a)). The type of approximation
which is used depends on the problem to be solved. If we want to characterize all
the possible behaviors starting from a given initial set, an over-approximation is
used. If we want to characterize the set of states from which a property can be
satisfied, under-approximation is preferred.

An effective approximation of Algorithm 1 can thus be implemented by re-
placing all the operations (Boolean operations, equivalence testing and calcu-
lation of δ[0,r]) by their approximated versions.1 If the approximate algorithm
terminates, the result is an over-approximation of δ(F ).

(a) (b) (c)
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Fig. 1. (a) A set F and over- and under-approximated by polyhedra. (b) The
same set approximated by orthogonal polyhedra. (c) Accumulation of errors in
nave approximate computation.

The termination of the procedure, however, cannot be guaranteed since there
are infinitely many polyhedral sets. Moreover, the implementation is very com-
plicated because the sets P k can be very complex non-convex polyhedra for
which there is no useful canonical form and the test P k+1 = P k is very ex-
pensive. Hence we restrict further the class of sets to be what we call griddy
polyhedra, i.e. 2B where B is the set of all closed unit hypercubes with integer
leftmost corners. Using this finite class of sets guarantees convergence of Al-
gorithm 2 (provided we restrict our analysis to bounded domains) and allows

1 Note that if the class C is closed under Boolean operations, only δ[0,r](F ) needs to be
approximated. This holds for arbitrary polyhedral sets but not for convex polyhedra
or ellipsoids.
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us to benefit from a relatively-efficient canonical representation for both convex
and non-convex sets [BMP99], supported by an experimental software package.
The price, however, for using orthogonal polyhedra is that the quality of the
approximation they provide in terms of Haussdorf distance per vertex is poorer
than that of arbitrary polyhedra (zero-order vs. first-order in the approximation
jargon) but such a compromise seems unavoidable.

A nave approximate version of Algorithm 1 is guaranteed to converge to a
superset of δ(F ) after finitely many steps. However, the distance between the
result and δ(F ) might be too big for the result to be useful. The reason is that
over-approximation errors accumulate dramatically as illustrated in Figure 1-(c)
where we try to calculate successors of the set D. Since x′ is reachable from x
we must include the whole box D′ in the set of successors. This box contains
points such as y not really reachable from D, which bring in the next iteration
new points, such as y′, and we end up adding boxes such as D′′ which are not
reachable from D at all. This over-approximation error can propagate fast and
the result might cover the whole space unless some hardly-formalizable hacking
is used [DM98,GM99]. Similar phenomena are exhibited, for example, in abstract
interpretation of programs over the integers [CC92] where over-approximation
is called widening. This is why there is not much hope in finding finite quotients
of continuous systems, except for special cases such as timed automata [AD94].

Here we need to find the right compromise between the desire to converge and
the accumulation of errors. We propose a method, specialized for linear systems
of the form ẋ = Ax which achieves this trade-off. The basic idea here is to
separate the accumulation and storage of states reachable in one step (and those
must contain an approximation error) from the computation of states reachable
in the next step (see also [GM99]). The main attraction of this method compared
to traditional ways to treat linear systems is in its adaptability to hybrid systems
and to systems with under-specified input.

3 The Approximate Method for Linear Systems

Let conv({x1, . . . ,xm}) be the convex hull of a set of points, i.e. {x : x =
λ1x1 + · · · , λmxm} for non-negative λi whose sum is 1. For linear systems we
have δt(x) = eAtx and the matrix exponential, as a linear operator, preserves
convexity:

δt(conv({x1, . . . ,xm})) = conv({δt(x1), . . . , δt(xm)}).

This means that for a convex set F = conv(V) where V = {x1, . . . ,xm},
and for every t, the states reachable from F can be determined by the states
reachable from V (see Figure 2-(a)). We exploit this property to approximate
δ[0,r](conv(V)) based on the set of points V ∪ δr(V) where δr(V) is computed
from V by a finite number of matrix exponentiations or numerical integration
steps. Our approximation scheme consists of three steps:
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1. Compute G = conv(V, δr(V)) (see Figure 2-(b)). This set is an approx-
imation of δ[0,r](conv(V)) but neither an over-approximation nor under-
approximation. The convex-hull algorithm provides us with information con-
cerning the orientation of the faces which is used in the next step.2

2. Push the faces of G outward to obtain a bloated convex polyhedron G′

which is guaranteed to contain the required set (Figure 2-(c)). The amount
of pushing is determined by the time step r and the matrix A (see the analysis
in the appendix). Pushing inward will result in an under-approximation.

3. Over-approximate G′ by a griddy polyhedron δ′[0,r](F ) (Figure 2-(d)).

The approximate algorithm for calculating δ(F ) for F = conv(V) is defined
below:

Algorithm 2 (Approximate Calculation of δ(F ) for Linear Systems)

P 0 := F ; V0 := V; k:=0;
repeat

k := k + 1;
Vk := δr(Vk−1);
Gk := conv(Vk−1 ∪ Vk);
Gk := bloat(Gk);
Gk := griddy(Gk);
P k := P k−1 ∪ Gk

until P k = P k−1

There are two types of errors accumulated in the process of calculating P k:
from the actual set to its bloated convex hull and from there to the griddy poly-
hedron. However these errors do not propagate to the next step which computes
P k+1 based on Vk ∪ Vk+1 and not on P k (Figure 2-(e)). Recall that our or-
thogonal polyhedra package [BMP99] maintains δ′[0,2r](F ) as a single canonical
object and not as a union of convex polyhedra or ellipsoids (Figure 2-(f)). The
algorithm can be fine-tuned by changing the time step r and the size of the
hypercubes.

Result 1 (Computation of Reachable States for Linear Systems)There
exists an implemented algorithm for over-approximating the reachable sets of sys-
tems defined by linear differential equations.

The reason this result is not a theorem is due to the following facts:

1. There is always a trivial over-approximation of any subset F of X , namely
X itself.

2. The smallest polyhedral or griddy set which contains δ(F ) is as impossible
to compute as δ(F ).

2 We use the convex-hull algorithm supplied with the LEDA library [MV99].
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Fig. 2. (a) A set F = conv({x1,x2}) and its exact successors for time inter-
vals [0, r] and [r, 2r]. (b) Approximating δ[0,r](F ) by convex hull. (c) Bloat-
ing the convex polyhedron to obtain a polyhedral over-approximation. (d)
Rectangulating the polyhedron into δ′[0,r](F ). (e) Repeating the same proce-
dure in the next time step to obtain δ′[r,2r](F ). (f) The accumulated states
δ′[0,2r](F ) = δ′[0,r](F ) ∪ δ′[r,2r](F ).
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3. Like in many other numerical problems, the best upper-bounds which can be
easily proved on the approximation error are much larger than what happens
in practice.

So let us be content with the fact that the method gives reasonable approx-
imation in rather short time. So far we were able to calculate rather easily the
reachable states of non-trivial systems with up to 6 dimensions (in fact, the mea-
sure of complexity for such problems depends on the dimensionality, the coupling
of the variables and the granularity of the discretization). Figure 3 shows the
states reachable from

F = [0.025, 0.05]× [0.1, 0.15]× [0.05, 0.1]

by the 3-dimensional system defined by

A =


−1.0 −4.0 0.0

4.0 −1.0 0.0
0.0 0.0 0.5




Fig. 3. Calculating reachable states for a 3-dimensional system.

4 Extensions and Applications

4.1 Piecewise-Linear Systems

For purely continuous linear systems there are classical methods, more efficient
than ours, for solving certain problems such as stability or controller synthesis.



Approximate Reachability Analysis of Piecewise-Linear Dynamical Systems 27

However the main advantage of our approach is manifested in the analysis and
controller synthesis for linear hybrid automata which may switch between several
“modes” and hence define piecewise-linear dynamical systems. We demonstrate
the adaptation of our method to such systems informally using the hybrid au-
tomaton of Figure 4, which consists of two continuous variables, and two discrete
states. In each discrete state the continuous variables evolve according to the
corresponding linear dynamics and when some switching conditions (transition
guards) are satisfied, the system moves from one state to another.

Starting from an initial set (q0, F ) the reachable states are calculated as
follows: we apply our procedure to F with the A0 dynamics and calculate forward
δ0(F ). Then we calculate the intersection of the result with the guard to obtain
a set F ′, move to state q1 with F ′ as the set of initial states, calculate δ1(F ′)
and so on and so forth. This method is similar to the one used in tools such
as KRONOS [DOTY96] for timed automata and HyTech [HHW97] for hybrid
automata with constant derivatives [ACH+95].

The main technical difficulty in applying our vertex-based approximation
technique to such systems is that not all trajectories departing from the vertices
reach a transition guard simultaneously (some may not reach it at all). Hence we
have to calculate δ(F ) and intersect it with the guard to obtain the new initial
set. Unfortunately, this set is already an over-approximation and, moreover,
it might have many vertices and the reduction of their number might require
further approximation. The bottom line is that we can avoid propagation of
over-approximation errors during the continuous evolution but not while doing
transitions.

An example run of d/dt on the hybrid automaton of Figure 4 where

A0 =
(−2.0 −3.0

3.0 −2.0

)
and A1 =

(
0.0 −0.6
3.0 0.0

)

and the initial set is F = {q0} × [0.3, 0.6] × [−0.2, 0.2], appears in Figure 5.
Initially the successors by A0 (a “center” dynamics) are calculated until they
all intersect the guard x1 ≤ −0.15 (a). Then dynamics A1 is applied, shrinking
the set until intersection with the guard x1 ≥ −0.02 (b). From this guard the
dynamics A0 induces a “ring” of states which stay in q0 forever (c).

ẋ = A1x

x1 ≥ −0.02

ẋ = A0x

q0q1
x1 ≤ −0.15

Fig. 4. A hybrid automaton.
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q0 q1 q0

(a) (b) (c)

Fig. 5. The 3 stages in the calculation of δ(F ) of the hybrid automaton of
Figure 4.

4.2 Under-Approximation, Backward Reachability and Control

The δ operator is a basic ingredient in forward reachability analysis. Other ver-
ification and synthesis problems require different variants of this operator.

The reader might have guessed that calculating under-approximations is done
by a slight variation of the algorithm, i.e. pushing the faces of the polyhedron
inside and finding an orthogonal under-approximation. Backward reachability,
that is, finding all the points from which a set F is reachable can be performed
by computing δ for the reversed system ẋ = −Ax.

For the purpose of controller synthesis for hybrid systems [ABDPM00] we
need an under-approximation of the “F Until G” operator, which returns the
points from which you can stay within the set F either forever or until you
reach a set G (which is typically the guard of a transition to another state). A
similar operator is needed for analyzing hybrid systems with invariants. Consider
F = [−0.1, 0.1]× [−0.030.1], G = [0.02, 0.06]× [−0.05,−0.02] and a dynamics

A =
(−0.5 4.0
−3.0 −0.5

)

The two parts of F Until G, as calculated by d/dt appear in Figure 6.

4.3 Continuous Disturbances

Consider systems of the form ẋ = Ax+Bu where u ranges inside a convex set U .
It has been suggested in [V98] to use the maximum principle from optimal control
to find δr(F ) of a convex set F = conv(V) under all possible input signals. We
have implemented this procedure and incorporated it into our system. We have
tested it on a 4-dimensional example adapted from example 4.5.1 of [KV97], pp.
279-285, where ellipsoids are used instead of polyhedra. The system is defined



Approximate Reachability Analysis of Piecewise-Linear Dynamical Systems 29

(a) (b)

Fig. 6. The Until operator: (a) The states which can stay in F forever. (b) The
states which can stay in F until reaching G.

by:

A =




0.0 1.0 0.0 0.0
−8.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0
0.0 0.0 −4.0 0.0


 B = 1

F = [0.02.0]× [−1.01.0]× [0.0, 2.0]× [−1.0, 1.0]

U = [−0.5, 0.5]× [−0.005, 0.005]× [−0.5, 0.5]× [−0.005, 0.005]

In Figure 7 one can see the evolution of the projection on dimensions 3 and 4 over
time, similar to the results in [KV97]. Further work on these technique might
suggest effective methods for approximate strategies for differential games.

Fig. 7. The evolution of a 4-dimensional convex differential inclusion over time
(projected on dimensions 3 and 4).
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5 Discussion

In this work we have advanced the state-of-the-art in computer-aided reachabil-
ity analysis for continuous and hybrid systems. We have implemented the tool
d/dt and tested it over reproducible non-trivial examples. We are currently
investigating various improvements and studying the trade-offs between accu-
racy and computational efficiency. We hope that such techniques and tools will
be used in the future by control engineers.
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Appendix: Conservative Approximation

As we have already mentioned when describing the approximate method for
linear systems, the set G = conv(V, δr(V)) is not an over-approximation of
δ[0,r](conv(V)) and should be replaced by its ε-neighborhood (or something big-
ger) in order to become such an over-approximation. Here we calculate the ε
that should be used.

Consider an arbitrary point p0 ∈ conv(V) and a trajectory pt starting from
this point. We have pr = erAp0. This point belongs to δr(V) and hence to G. By
convexity so does all the line segment [p0, pr]. Let us estimate now the distance
between points of the true trajectory pt for t ∈ [0, r] and this line segment. In
fact pt may be approximated by linear interpolation between p0 and pr. The
result of this interpolation is

p̂t = p0 +
t

r
(pr − p0), 0 ≤ t ≤ r

and by construction it belongs to the segment [p0, pr]. The error of this interpo-
lation can be written as follows:

ε(p0, t) = ||p̂t − pt|| = ||p0 +
t

r
(erA − I)p0 − etAp0||.

Since

etA = I + At +
1
2
A2t2 +

∞∑
i=3

1
n!

Aiti

and 0 ≤ t ≤ r we find after obvious simplifications the bound of the error:

ε(p0, t) ≤ ε = M
1
8
||A||2r2 + M

∞∑
i=3

1
n!
||A||iri,

where M is a constant bounding the norm ||p0||.
Hence, for every r, one can find a ε = O(r2) such that all the points reachable

from conv(V) in time r are in ε-neighborhood of G. In order to over-approximate
the set we just replace G by its ε-neighborhood.
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