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Abstract. Recently, using a limit schema, we presented an analog and machine independent
algebraic characterization of elementary functions over the real numbers in the sense of
recursive analysis.

In a different and orthogonal work, we proposed a minimalization schema that allows to
provide a class of real recursive functions that corresponds to extensions of computable
functions over the integers.

Mixing the two approaches we prove that computable functions over the real numbers in
the sense of recursive analysis can be characterized as the smallest class of functions that
contains some basic functions, and closed by composition, linear integration, minimalization
and limit schema.

1. Introduction

Recursive analysis, also called computable analysis, has been introduced by Turing [35], Grze-
gorczyk [16], Lacombe [19]. It has shown to provide a very robust concept of computability,
that enables to discuss most arguments of mathematical analysis from the computability point
of view: see e.g. monograph [36].
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In this framework, a function f : R → R over the reals is considered as computable, if there
is some computable functional, or Type 2 machine, that maps any sequence quickly converging
to some x to a sequence quickly converging to f(x), for all x. That means that this notion of
computability requests a priori to deal with functionals, or higher order Turing machines.

In a recent work [4, 6], extending some classes proposed by Campagnolo, Moore and Costa
[10, 11, 12] by a suitable limit schema, we proved that a particular subclass of computable
functions over the reals can be characterized algebraically in a machine independent way. Indeed,
elementary functions in the sense of recursive analysis were characterized as the smallest class
of functions that contains some basic functions, and closed by composition, linear integration,
and a simple limit schema.

This results was obtained by using deeply a result from Campagnolo, Moore, and Costa
[10, 11, 12] characterizing algebraically functions over the reals that extend elementar functions
over the integers.

However, an algebraic and machine characterization of the whole class of computable func-
tions over the real numbers was missing. If we were to follow the steps of the arguments of [4, 6],
the point was first to be able to find a minimalization schema that could provide a result similar
to the previous one for computable functions over the integers, and second to understand how
and whether it could be arranged with the arguments of [4, 6], to provide such a characterization.

The first step was solved recently in paper [5]. This journal paper presents detailed proofs
of the claims of [5], with several extensions. In particular, it characterizes also non-total func-
tions. More importantly, it proves that this is indeed possible to do the second step: mix these
constructions with the ones of [4, 6] to get a characterization of the whole class of computable
functions over the reals. This is done by extending the constructions of [4], and in particular
provides extensions of [4, 6] that allow to talk about functions defined on non-compact domains.

Indeed, computable functions over the reals are characterized in an algebraic and machine
independent way as the smallest class of functions that contains some basic functions, and closed
by composition, linear integration, minimalization and limit schema.

This result has several consequences. First, that proves that it is possible to define com-
putability in the sense of recursive analysis in a machine independent way, avoiding to talk
about higher order Turing machines, or functionals, nor less natural characterization such as [8].

Second, that proves that the study of mathematical concepts through recursive analysis
can be investigated by talking in terms of these algebraic classes and operators, providing a
rather natural continuous setting to deal with continuous problems, instead of needing to discuss
continuous problems with discrete models.

Third, it provides strong connections with several analog models. Indeed, the classes from
Campagnolo, Costa and Moore, are inspired from a class of functions over the reals, called real
recursive functions, introduced by Moore in [21]. Real recursive functions have been shown
(see [21] with corrections from Graça and Costa in [15]) to be strongly connected to functions
computable by the General Purpose Analog Computer (GPAC) of Shannon [33]. GPAC is in
turn an abstraction of some systems that really existed [34, 9, 7], or is an abstraction of easy
realizable systems using today’s electronic. Extensions of the GPAC have been discussed in [32]
and [20].

Fourth, these results show that the provided class of functions does not exhibit super-Turing
phenomena such as [21, 3, 2, 17, 14], and benefits from all the robustness results that have been
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established for computable functions in recursive analysis.
The paper is organized as follows. In Section 2, we recall some basic mathematical properties

that we will use, as well as basic definitions from classical recursion theory. Section 3 recalls
recursive analysis. Section 4 recalls some results established by Campagnolo, Costa and Moore.
Section 5 introduced our proposed minimalization schema, and shows that adding this schema
provides a class that corresponds to extensions of computable functions over the integers. Section
6 discuss some alternative to our minimalization schema. Section 7 presents our limit schema,
and proves our main result.

2. Preliminaries

2.1. Mathematical preliminaries

Let Z, N, Q, R, R≥0 denote the set of integers, natural integers, the set of rational numbers, the
set of real numbers, and the set of non-negative real numbers respectively. Given x ∈ Rn, we
write −→x to emphasize that x is a vector.

Lemma 2.1. (Bounding Lemma for Linear Differential Equations (see e.g. [1]))
For linear differential equation −→x ′ = A(t)−→x , if A is defined and continuous on interval I = [a, b],
where a ≤ 0 ≤ b, then, for all −→x 0, the solution of −→x ′ = A(t)−→x with initial condition −→x (0) = −→x 0

is defined and unique on I. Furthermore, we know that the solution satisfies

‖−→x (t)‖ ≤ ‖−→x 0‖ exp( sup
τ∈[0,t]

‖A(τ)‖t).

Lemma 2.2. (Implicit Functions Theorem (see e.g. [30]))
Let f : D × I ⊂ Rk+1 → R where D × I is a product of closed intervals be a function of class1

Ck, for k ≥ 1. Assume that for all −→x ∈ D, the equation f(−→x , y) = 0 has exactly one solution y0

and that this y0 belongs to the interior of I. Assume for all −→x that

∂f

∂y
(−→x , y0) 6= 0

in the corresponding root y0. Then function g : Rk → R that maps −→x to the corresponding root
y0 is defined over D and also of class Ck.

Lemma 2.3. (Basic fact (see e.g. [6]))
Let F : R × V ⊂ Rk+1 → Rl be a function of class C1, and β(−→x ) : V → R, K(−→x ) : V → R be
some continuous functions. Assume that for all t and −→x ,

‖∂F
∂t

(t,−→x )‖ ≤ K(−→x ) exp(−tβ(−→x )).

Let D be the subset of the −→x ∈ V with β(−→x ) > 0.
Then,

1Recall that function f : D ⊂ Rk → Rl, k, l ∈ N, is said to be of class Cr if it is r-times continuously differentiable
on D. It is said to be of class C∞ if it is of class Cr for all r.
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• for all −→x ∈ D, F (t,−→x ) has a limit L(−→x ) in t = +∞.

• Function L(−→x ) is a continuous function.

• Furthermore

‖F (t,−→x )− L(−→x )‖ ≤ K(−→x ) exp(−tβ(−→x ))
β(−→x )

.

2.2. Classical Recursion Theory

Classical recursion theory deals with functions over integers. Most classes of classical recursion
theory can be characterized as closures of a set of basic functions by a finite number of basic
rules to build new functions [13, 31, 27, 28]: given a set F of functions and a set O of operators
on functions (an operator is an operation that maps one or more functions to a new function),
[F ;O] will denote the closure of F by O [13].

Proposition 2.1. (Classical settings: see e.g. [31, 27, 28])
Let f be a function from Nk to N for k ∈ N. Function f is

• elementar iff it belongs to E = [0, S, U,+,	; COMP,BSUM,BPROD];

• primitive recursive iff it belongs to PR = [0, S, U ; COMP,REC];

• recursive2 iff it belongs to Rec = [0, S, U ; COMP,REC,MU].

A function f : Nk → Nl is elementar (resp: primitive recursive, recursive) iff its projections
are elementar (resp: primitive recursive, recursive).

The basic functions 0, (Um
i )i,m∈N, S,+,	 and the operators BSUM, BPROD, COMP, REC,

MU are given by

1. 0 is the constant 0; Um
i : Nm → N, Um

i : (n1, . . . , nm) 7→ ni; S : N → N, S : n 7→ n + 1;
+ : N2 → N, + : (n1, n2) 7→ n1 + n2; 	 : N2 → N, 	 : (n1, n2) 7→ max(0, n1 − n2);

2. BSUM : bounded sum. Given f , h = BSUM(f) is defined by h : (−→x , y) 7→
∑

z<y f(−→x , z);
BPROD : bounded product. Given a function f , the bounded product h = BPROD(f) is
defined by h : (−→x , y) 7→

∏
z<y f(−→x , z);

3. COMP : composition. Given f1, . . . , fp and g, h = COMP(f1, . . . , fp, g) is defined as the
function verifying h(−→x ) = g(f1(−→x ), . . . , fp(−→x ));

4. REC : primitive recursion . Given f and g, h = REC(f, g) is defined as the function
verifying h(−→x , 0) = f(−→x ) and h(−→x , n+ 1) = g(−→x , n, h(−→x , n));

5. MU : minimalization. Given a function f , function µf is defined on all −→x for which there is
a y such that ∀z ≤ y, f(−→x , z) is defined and f(−→x , y) = 0. For such −→x , the minimalization
of f is µf : −→x 7→ inf{y; f(−→x , y) = 0}.

2This class is often called partial recursive since it contains partial functions as opposed to the class of total
recursive functions.
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Observe that minimalization operator can actually be reinforced into a unique minimalization
operator as follows:

Proposition 2.2. A function f from Nk to Nl, for k, l ∈ N, is recursive iff its projections belong
to [0, U, S; COMP,REC,UMU] where operator UMU is defined as follows:

1. UMU: unique minimalization. Given f , that satisfies that for all −→x , there is at most one y
with f(−→x , y) defined and equal to 0, the unique minimalization of f , denoted by !µ(f)(−→x ),
is defined on all −→x for which there is a (unique) y with f(−→x , y) = 0. For such −→x , !µ(f)(−→x )
is defined as that unique y.

Proof:
The inclusion [0, U, S; COMP,REC,UMU] ⊂ Rec is easy: given f with !µ(f) defined, given −→x ,
!µ(f)(−→x ) can be computed by testing in parallel for all y whether f(−→x , y) = 0 until one finds
the correct y, if it exists.

Conversely, let φ be a function from Rec. It is well known [18, 31] that φ can be written as
φ = χ ◦µ(ψ) with χ and ψ in E and such that for all −→x on which φ is defined, there is at least a
y with ψ(−→x , y) = 0. Let σ be the elementar function defined by σ(m,n) =

∏
z<n ψ(m, z). Given

m, let us note n0 = µ(ψ)(m). We have ∀n ≤ n0, σ(m,n) 6= 0 and ∀n > n0, σ(m,n) = 0.Let
κ(m,n) = sgn(max(1	 σ(m,n), σ(m,n+ 1))).

We have clearly ∀n < n0, κ(m,n) = 1, κ(m,n0) = 0 and ∀n > n0, κ(m,n) = 1, hence
µ(κ) =!µ(κ) = µ(ψ). κ is an elementar function and we have φ = χ◦!µ(κ), hence φ belongs to
[0, U, S; COMP,REC,UMU]. ut

We have E ⊆ PR ⊆ Rec, and the inclusions are known to be strict [31, 27, 28]. If TIME(t)
and SPACE(t) denote the classes of functions that are computable with time and space t, then,
E = TIME(E), and PR = TIME(PR) = SPACE(PR) [31, 27, 28]. Class PR corresponds to
functions computable using For-Next programs. Class E corresponds to computable functions
bounded by some iterate of the exponential function [31, 27, 28]. At most two nested For-Next
loops are required for a function of class E , whereas general functions from class PR may require
an arbitrary high number of such nested loops.

In classical computability, more general objects than functions over the integers can be
considered, in particular functionals, i.e. functions Φ : (Nm)N × Nk → Nl. A functional will be
said to be elementarily (or primitive recursively, recursively) computable when it belongs to the
corresponding3 class.

3Formally, a function f over the integers can be considered as functional f : (V,−→n ) 7→ f(−→n ). Similarly, an
operator Op on functions f1, . . . , fm over the integers can be extended to an operator over functionals by fixing
first argument Op(F1, . . . , Fm) : (V,−→n ) 7→ Op(f1(V, .), . . . , fm(V, .))(−→n ).
In that spirit, given some set F of basic functions Nk → Nl and a set O of operators on functions over the integers,
we will still (abusively) denote by [f1, . . . , fp; O1, . . . , Oq] for the smallest class of functionals that contains basic
functions f1, . . . , fp, plus the functional Map : (V, n) → Vn, the nth element of sequence V , and which is closed
by the operators O1, . . . , Oq. For example, a functional will be said elementarily computable iff it belongs to
E = [Map, 0, S, U, +,	; COMP, BSUM, BPROD].



6 O. Bournez, E. Hainry /Recursive Analysis Characterized as a Class of Real Recursive Functions

3. Computable Analysis

The idea sustaining computable analysis, also called recursive analysis, is to define computable
functions over real numbers by considering functionals over fast-converging sequences of rationals
[35, 19, 16, 36].

Let νQ : N → Q be the following representation4 of rational numbers by integers:

νQ(〈p, r, q〉) 7→ p− r

q + 1
,

where 〈., ., .〉 : N3 → N is a computable bijection.
A sequence of integers (xi) ∈ NN represents a real number x if (νQ(xi)) converges quickly

toward x (denoted by (xi)  x) in the following sense : ∀i, |νQ(xi)− x| < exp(−i). For a
sequence of k-tuples (−→x i) ∈ (Nk)N, we write (−→x i) −→x when it holds componentwise.

Note that many sequences can represent the same real number and also that the chosen
bound is arbitrary and could be replaced by another function converging fast toward 0. In
particular, our notion of computability is equivalent to the one of [36], or [12].

Definition 3.1. (Recursive analysis [36])
A function f : Rk → R is said computable (or real computable) if there exists a recursive

functional Φ : (Nk)N × N → N such that for all −→x ∈ Rk, for all sequence X = (−→x n) ∈ (Nk)N,
we have (Φ(X, j))j  f(−→x ) whenever X  −→x . A function f : Rk → Rl, with l > 1, is said
computable if all its projections are.

A function f will be said elementary whenever the corresponding functional Φ is elementarily
computable. The class of computable (respectively elementary ) functions over the reals will be
denoted by Rec(R) (resp. E(R)).

4. Real sub-recursive and sub-recursive functions

Campagnolo, Moore and Costa proposed in [10, 11, 12] to consider the following class, built in
analogy with elementar functions over the integers.

Definition 4.1. ([12, 11])
Let us define L as being the class of functions f : Rk → Rl, for some k, l ∈ N, defined by
L = [0, 1,−1, π, U, θ3; COMP,LI] where the basic functions 0, 1, −1, π, (Um

i )i,m∈N, θ3 and the
schemata COMP and LI are the following:

1. 0, 1,−1, π are the corresponding constants; Um
i : Rm → R are, as in the classical settings,

projections: Um
i : (x1, . . . , xm) 7→ xi;

2. θ3 : R → R is defined as θ3 : x 7→ x3 if x ≥ 0, 0 otherwise;

3. COMP: composition is defined as in the classical settings: Given f1, f2, . . . , fp and g,
h = COMP(f1, . . . , fp; g) is defined by h(−→x ) = g(f1(−→x ), . . . , fp(−→x ));

4Many other natural representations of rational numbers can be chosen and provide the same class of computable
functions: see [36].
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4. LI: linear integration. From g and h, LI(g, h) is the maximal solution of the linear differ-
ential equation ∂f

∂y (−→x , y) = h(−→x , y)f(−→x , y) with f(−→x , 0) = g(−→x ).

In this schema, if g goes to Rn, f = LI(g, h) goes to Rn+1 and h(−→x , y) is a (n+1)× (n+1)
matrix with elements in L.

Class L includes common functions like +,sin,cos,−,×,exp, or constants r for all r ∈ Q (see
[12, 11]), but contains only total functions [11]:

Proposition 4.1. ([11])
All functions from L are continuous, defined everywhere, and of class C2.

Actually, observing the proofs from [12, 11], schema LI can be strengthened as follows:

Proposition 4.2. Class L is also the class of functions f : Rk → Rl, for some k, l ∈ N, defined
by L = [0, 1,−1, π, U, θ3; COMP,CLI] where CLI is the following schema:

1. CLI: controlled linear integration. From g and h, and c, with h differentiable and norm5

of first partial derivatives of h bounded by c, CLI(g, h, c) is the maximal solution of the
linear differential equation ∂f

∂y (−→x , y) = h(−→x , y)f(−→x , y) with f(−→x , 0) = g(−→x ).

In this schema, if g goes to Rn, f = CLI(g, h, c) goes to Rn+1 and h(−→x , y) is a (n+1)×(n+1)
matrix with elements in L.

Class L can be related to the class E of elementar functions over the integers. A real extension
f̃ of a function f : Nk → Nl over the integers is a function f̃ from Rk to Rl whose restriction to
Nk is f . Observe that a function f̃ : Rk → Rl over the reals is an extension of a function over
the integers iff its preserves integers: f̃(Nk) ⊂ Nl.

Definition 4.2. (Discrete Part)
Given a class C of real functions, we denote by DP (C) the class of functions over the integers
that have a real extension in C.

Proposition 4.3. ([12, 11])
E = DP (L). I.e.:

• If a function from L preserves integers, then its restriction to integers is elementar.

• Any elementar function over the integers, has a real extension that belongs to L.

Actually, class L can also be partially related to the class E(R) of functions over the real
numbers elementary in the sense of recursive analysis: any function from L is in E(R) [12, 11].
We proved in [4] that the inclusion is actually strict, but that adding a limit schema to class L,
allows us to capture the whole class E(R) for functions defined over a compact domain.

5Say sup norm. All norms would provide equivalent results.
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5. Real recursive and recursive functions

We are now going to extend the class L with a minimalization schema in order to get a class
whose discrete part corresponds to recursive functions over the integers.

To do so, we need to introduce a zero-finding operator that permits to simulate the classical
discrete minimalization schema over the integers. However, this operator needs to be stricter
than a simple “return the smallest root” since this idea, investigated in [21], has shown to be the
source of numerous problems, including ill-defined problems and super-Turing Zeno phenomena.
These problems are discussed, and pointed in [12, 11, 23, 22, 21]. Papers [23, 25] do provide
well-defined alternatives, replacing minimalizations by limit-takings. We propose here to keep
to a minimalization schema, not as general as the one from [21]. Compared to the approach
from Costa and Mycka, our schemata are also more restricted than theirs.

Our idea is to use the alternative UMU schema which is equivalent to schema MU for classical
computability, but has real counterparts which turn out to preserve real computability. It means
that in a discrete context, the search of a unique zero is sufficient to capture the whole class of
discrete recursive functions, and moreover in this continuous context, computing a unique zero
does not demonstrate the over-power of the standard minimalization operator.

Indeed, motivated by Proposition 2.2, by Lemma 2.2, and by results from recursive analysis
about the computability of zeros (see e.g. [36] where theorems 6.3.5 and 6.3.8 state that the
search of a unique zero is computable), we define our unique-zero-finding operator UMU as
follows:

Definition 5.1. Given a differentiable function f from (D × I) ⊂ Rk+1 to R where D × I is
a product of closed intervals, if for all −→x ∈ D, y 7→ f(−→x , y) is a non-decreasing function with
a unique root y0 on I such that y0 is in the interior of I and ∂f

∂y (−→x , y0) > 0, then UMU(f) is
defined on D as follows:

UMU(f) :

{
D −→ R
−→x 7→ y0 such that f(−→x , y0) = 0.

We also slightly modify CLI schema, by allowing not-necessarily maximal solutions of linear
differential equations to be considered. By abuse of notation, CLI will denote this schema in
what follows.

Definition 5.2. (CLI schema)
From g and h, and c, with h differentiable and the norm6 of first partial derivatives of h bounded
by c, CLI(g, h, c) is any solution defined on a product of closed intervals of the the linear differ-
ential equation ∂f

∂y (−→x , y) = h(−→x , y)f(−→x , y) with f(−→x , 0) = g(−→x ).
In this schema, if g goes to Rn, f = CLI(g, h, c) goes to Rn+1 and h(−→x , y) is a (n+1)×(n+1)

matrix with elements in L.

Definition 5.3. (Class L+!µ)
Let L+!µ be the set of functions defined by

L+!µ = [0, 1, U, θ3; COMP,CLI,UMU].
6Say sup norm. All norms would provide equivalent results.
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Remark 5.1. The previous schema CLI yields a function in the class from g,h and c in the
class. The reason why the first partial derivative of h is required to be bounded by c in the
schema is to ensure computability of f from computability of g, h and c. Notice that the bound
is on the derivative of h, and not on h, and hence functions like exponential can still be defined.
Notice, that when UMU operator is not present, it follows from Campagnolo, Moore and Costa
[10, 11, 12], that there is always some such function c in the class, and hence that there is no
need to require this bound.

Lemma 5.1. L ⊂ L+!µ.

Proof:
(sketch) We only need to prove that constants −1 and π are in L+!µ. Indeed, −1 is the unique
root of x 7→ x + 1, and π = 4 arctan(1), where arctan(x) is the solution of linear differential
equation arctan(0) = 0 and arctan′(x) = 1

1+x2 , and x 7→ 1
1+x2 can be obtained by applying UMU

on x, y 7→ (1 + x2)y − 1. ut

Lemma 5.2. All functions from L+!µ are of class C2 and defined on a product of closed intervals.

Proof:
By structural induction. Basic functions U , θ3 are defined on Rk and of class C2. Now, the
properties on the domain are preserved by the definition of composition, linear integration, and
schema UMU. The C2 property is also preserved by Lemma 2.2 for schema UMU, and classical
results about differential equations (see e.g. [1]) for schema CLI. ut

It follows in particular, that there is no way to obtain functions such as x 7→ 1/x defined
on (0,+∞). It can be shown that any restriction to a closed interval of this function is in class
L+!µ.

Now, observe that operator UMU preserves real computability.

Lemma 5.3. ([36])
Given f : D × I −→ R real computable, if UMU(f) is defined, then UMU(f) is also real
computable.

Proof:
We reprint here mostly a restatement of a (slight generalization of) Corollary 6.3.9 from [36],
that we think helpful in order to understand next remark.

Write I = [a, b] with a and b possibly infinite, where I is as in the definition of schema UMU.
Given −→x ∈ D, let y0 ∈ I be the unique y0 with f(−→x , y0) = 0. Since f(−→x , .) is continuous,

non-decreasing, and with a unique root, we have f(−→x , y) < 0 for y < y0, and f(−→x , y) > 0 for
y > y0.

There exists m ∈ N, such that f(−→x ,max(a,−m)) < 0 and f(−→x ,min(m, b)) > 0: one just
need to take any integer m with −m < y0 < m. Actually, such an m can be computed as follows.

m = 1
Repeat

Compute f1 = f(−→x ,min(b,m)) and f2 = f(−→x ,max(a,−m))) at p r e c i s i o n ±2−m
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m = m+ 1
Until (f1 > 2−m and f2 < −2−m )
Return m

Indeed, given any integer m0 ∈ N with −m0 < y0 < m0, (for example b|y0|c+1), we have for
all m ≥ m0, f(−→x ,min(m, b)) ≥ f(−→x ,m0) > 0 and f(−→x ,max(a,−m)) ≤ f(−→x ,−m0) < 0. Now,
for m big enough (i.e. m ≥ m0, 2−m ≤ |f(−→x ,max(a,−m0))|, and 2−m ≤ |f(−→x ,min(b,m0))|) we
have f1 > 2−m and f2 < −2−m and the process halts with an m such thatf(−→x ,max(a,−m)) < 0
and f(−→x ,min(m, b)) > 0.

Computing y0 then reduces to compute the unique root of function f(−→x , .) over a compact
[−m,m]∩I. The fact that this is indeed computable can be seen as a consequence of the results
in [36]. See [5] for a direct proof. ut

Remark 5.2. The proof is non constructive in the following sense: it follows from constructions
from [26] that there is no way to determine effectively from the code of f whether UMU(f) is
defined. Now, when it is, UMU(f) is real computable from previous arguments.

Lemma 5.4. Given h, g and c real computable, then f = CLI(g, h, c) is also real computable.

Proof:
Observing carefully [12, 11], if given −→x ∈ Rk and some y ∈ Q one can bound effectively the norms
of h(−→x , y), f(−→x , y), ∂2f

∂y2 (−→x , y) for |y| ≤ y, then f will be real computable: use the constructions
and bounds based on Euler’s method to prove preservation of elementarity by linear integration
in [12, 11], but replacing elementar bounds by computable bounds.

Now, from [36], it is known that one can bound effectively the norm of any real computable
function on a closed domain, and so we only need to care about f(−→x , y) and ∂2f

∂y2 (−→x , y). But the
norm of f(−→x , y) can be bounded effectively by Lemma 2.1 from bounds on the norms of g(−→x )
and h(−→x , y) on the corresponding domain, which are computable by previous argument. Now,

‖∂
2f

∂y2
(−→x , y)‖ = ‖(h2(−→x , y) +

∂h

∂y
(−→x , y))f(−→x , y)‖,

hence is bounded by (‖h2(−→x , y)‖ + ‖c(−→x , y))‖) × ‖f(−→x , y)‖. First factor can still be bounded
effectively since h2(−→x , y) and c(−→x , y) are particular real computable functions, and we just saw
that second factor can be bounded effectively. ut

From previous two Lemmas, the fact that basic functions are real computable and observ-
ing that composition is known to preserve real computability for functions defined over closed
intervals (see [36]), we obtain:

Theorem 5.1. Every function belonging to L+!µ is real computable.

Remark 5.3. As observed above, the proof is non-constructive. There is no way to obtain
effectively a functional that would compute a function f from the code of f . However, when f
belongs to L+!µ, there is one functional.
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Figure 1. Graphical representation of ω

We now prove the converse direction. The following lemma is a weaker form of Lemma 7.3.
It provides a “canonical extension” of all functions in L. This terminology comes from [24] where
a similar result is proved. The idea is to exhibit a function f̃ that matches f on each integer
points, but is kept controlled with respect to x and y on each square.

Lemma 5.5. Given f : R2 → R in L, there exists f̃ : R2 → R in L such that ∀(m,n) ∈ Z2,
∀(x, y) ∈ R2,

• f̃(m,n) = f(m,n)

• f̃(m, y) ∈ [f(m, byc), f(m, by + 1c)] (or [f(m, by + 1c), f(m, byc)]).

• f̃(x, n) ∈ [f(bxc, n), f(bx+ 1c, n)] (or [f(bx+ 1c, n), f(bxc, n)]).

Proof:
Let ζ = 3π

2 . Let ω : x 7→ ζθ3(sin(2πx)). ∀i,
∫ i+1
i ω = 1 and ω is equal to 0 on [i + 1

2 , i + 1] for
i ∈ Z. Let Ω its primitive equal to 0 at 0, and int : x 7→ Ω(x − 1

2). Function int is a function
similar to the integer part: ∀i ∈ Z, ∀x ∈ [i, i + 1

2 ], int(x) = i = bxc. Figures 1 and 2 show
graphical representations of ω and int.

Let ∆(i, y) = f(i, y + 1)− f(i, y). Then for all i ∈ Z, y ∈ R, we have

ω(y)∆(i, int(y)) =

{
0 whenever y − byc ≥ 1/2

ω(y)∆(i, byc) otherwise.

Let G be the solution of the linear differential equation{
G(x, 0) = f(x, 0)
∂G
∂y (x, y) = ω(y)∆(x, int(y)).
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int(x)

Figure 2. Graphical representation of int

An easy induction on j then shows that G(i, j) = f(i, j) for all integer j. Furthermore, by
construction, ∀i ∈ Z, G(i, y) belongs to the interval delimited by G(i, byc) = f(i, byc) and
G(i, by + 1c) = f(i, by + 1c).

Now, let f̃ be the solution of the linear differential equation{
f̃(0, j) = G(0, j)
∂f̃
∂x (x, y) = ω(x)(G(int(x+ 1), y)−G(int(x), y)).

We have ∀(i, j) ∈ Z2, f̃(i, j) = f(i, j). And ∀i ∈ Z, f̃(i, y) belongs to the interval delimited by
f̃(i, byc) = f(i, byc) and f̃(i, by + 1c) = f(i, by + 1c). And also, ∀j ∈ Z, f̃(x, j) belongs to the
interval delimited by f̃(bxc, j) = f(bxc, j) and f̃(bx+ 1c, j) = f(bx+ 1c, j).

ut

Theorem 5.2. Every total recursive function over the integers has a real extension in L+!µ.
This also holds more generally for recursive functions defined on [a, b] ∩ N for some a, b

possibly infinite.

Proof:
Let φ be a function from Rec. Let D = [a, b] be its domain, taking a and b infinite if φ is total.

We have φ = χ◦!µ(κ) as in the proof of Proposition 2.2. Let

ι(m,n) = 2× (1	 σ(m,n)) + (1	 κ(m,n))

where σ is the same as in the proof of Proposition 2.2. ∀m ∈ N ∩ D, for n = n0 =!µ(κ)(m,n),
we have ι(m,n0) = 1, and before this n0, ι(m,n) is equal to 0 and after this n0, ι(m,n) is equal



O. Bournez, E. Hainry /Recursive Analysis Characterized as a Class of Real Recursive Functions 13

to 2. Let i be a real extension of ι in L given by Proposition 4.3. Let ĩ be the function from L
obtained by Lemma 5.5 on f(m,x) : m,x 7→ i(m,x)− 1.

∀m ∈ D∩N, there exists exactly one y ∈ R (given by y0 =!µ(κ)(m,n)) such that ĩ(m, y) = 0.
But, we can not directly apply schema UMU, since we have no assurance7 that it also holds for
non integer values m. However, from the constructions in the proof of Lemma 5.5, given m ∈ N,
we have ĩ(m, y) equal to −1 for y ≤ y0 − 1, and equal to Ω(y) for y ∈ [y0 − 1, y0 + 1], where Ω
is defined in that proof.

Consider M(x) = θ3(x + 1). We have M(x) = 0 if x ≤ −1 and M(x) ≥ 1 if x ≥ 0. Let us
define g̃ as the solution on [a, b]× R of the differential equation{

g̃(x, 0) = −1
∂g̃
∂y (x, y) = αM(̃i(x, y)).

Let us choose α (maple says α = 1024
2609) such that α

∫ 0
−1M(Ω(x))dx = 1. We have ∀m ∈ N,

g̃(m, y) = 0 ⇔ y =!µ(κ)(m,n).
Then define g as the solution on [a, b] × R of the linear differential equation g(x, 0) = −1,

∂g
∂y (x, y) = βM(g̃(x, y)). If we choose β adequately8 (maple says β = aπ4

bπ4−cπ2+d
for some integers

a, b, c, d) , we will still have ∀m ∈ N, g(m, y) = 0 ⇔ y =!µ(κ)(m,n).
The point is that, since M is always non-negative, we know that ∀x ∈ R, y 7→ g̃(x, y) is

non-decreasing, and, because of Lemma 5.5, and from the definition of function M(x), it must
go to infinity when y goes to infinity. Actually, it must be equal to −1 up to a certain value y−,
then be strictly increasing, and since it goes to infinity, it must have a root y0 strictly greater
than y−. Now the derivative in this root y0 cannot be 0 since M(x) is zero only when x ≤ −1.

This g is such that ∀x, ∃!y0 such that g(x, y0) = 0 and ∂g
∂y (x, y0) 6= 0 and for all x, y 7→ g(x, y)

is non-decreasing. We can thus apply UMU to this g. Now if we extend χ in a real function h
belonging to L using Proposition 4.3, we have h◦UMU(g) extending φ = χ◦µ(ψ) and belonging
to L+!µ. ut

From previous two theorems, we obtain:

Theorem 5.3. For total functions Rec = DP (L+!µ). I.e:

• If a function from L+!µ extends some total function over the integers, this latter function
is total recursive.

• Any total recursive function over the integers, has a real extension that belongs to L+!µ.

Proof:
The second item is Theorem 5.2. The first item is immediate from Theorem 5.1: if a function f
belonging to L+!µ preserves integers, then a recursive function that equals f on Nk can easily
be obtained from the functional computing f . ut

Corollary 5.1. L is strictly included in L+!µ.
7Actually, another problem is that the derivative relative to the second variable in the root point is 0.
8This β is in L since it can be obtained as a ∗ π4 ∗UMU(x 7→ (bπ4 − cπ2 + d)x− 1).
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6. Alternative schemata

6.1. An alternative: searching a unique root on some domain

Slight modifications of the proofs in this paper can easily prove that schema UMU could be
actually be replaced by the following schema.

Proposition 6.1. We have also

Rec = DP (L+!µ[m,M ]).

where L+!µ[m,M ] = [0, 1, U, θ3; COMP,CLI, !µ[m,M ])] where !µ[m,M ] is the following schema:

1. Given a function f from Rk+1 to R, and two functions m,M : Rk → R, if for all −→x ,
y 7→ f(−→x , y) has a unique root y on [m(−→x ),M(−→x )], on which ∂f

∂y (−→x , y) 6= 0, then !µ[m,M ]f

is defined as the function that maps −→x to that root for all −→x .

This schema is obviously more difficult to apply than UMU since it requires to give bounds
on the researched zero. However, it is more straightforward considering known theorems of
zero-searching in recursive analysis.

6.2. An other alternative: searching the minimum of a convex function

Observing that the (always unique) minimum of non-monotone convex function is real com-
putable, and that the zero of a non-decreasing function is the minimum of its primitive, and
that this latter primitive is a non-monotone convex function, schema UMU can actually be also
replaced by the following schema.

Proposition 6.2. We have also

Rec = DP (L+min convex).

where L+min convex = [0, 1, U, θ3; COMP,CLI,min convex)] and min convex is the following
schema:

1. Given a function f from Rk+1 to R, such that for all −→x , y 7→ f(−→x , y) is a convex non-
monotone function, whose second derivative exists and is non-null on its minimum, then
min convex(f) is defined as the function that maps −→x to the minimum of y 7→ f(−→x , y).

Note that the idea of considering minimum of convex functions comes partly from discus-
sions with several people, including Manuel Campagnolo, Felix Costa and Cris Moore. The
question whether this precise schema would be equivalent to previous one was raised by Manuel
Campagnolo (private discussion).
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7. Link with computable analysis

In [4, 6], we proved that by adding a well chosen limit operator to the class L, it was possible
to capture not only discrete elementar functions but also elementary functions in the sense of
computable analysis.

If we carefully add this limit operator to the here-defined L+!µ class, we now prove that one
similarly obtains a class that captures not only discrete recursive functions but real recursive
functions (in the sense of recursive analysis).

To do so, we consider the following schema, already considered in [6]: a polynomial β over
x ∈ R is a function of the form β : R → R, β : x 7→

∑n
i=0 aix

i for some a0, . . . , an ∈ R.
A polynomial β over −→x = (x1, . . . , xk+1) ∈ Rk+1 is a function of the form β : Rk+1 → R,
β : −→x 7→

∑n
i=0 aix

i
k+1 for some a0, . . . , an polynomial over (x1, . . . , xk) ∈ Rk.

Definition 7.1. (LIMw schema)
Let f : R × D ⊂ Rk+1 → Rl, K : D → R and β : D → R a polynomial with the following
hypothesis: for all −→x , for all t ≥ ‖−→x ‖,

‖∂f
∂t

(t,−→x )‖ ≤ K(−→x ) exp(−tβ(−→x )).

Then, on every product of closed intervals I ⊂ Rk on which β(−→x ) > 0, limt→+∞ f(t,−→x )
exists by Lemma 2.3. We define F by F (−→x ) = limt→∞ f(t,−→x ). If F is of class C2, then we
define LIMw(f,K, β) as this function F : I → R.

Let us now define a new class L∗!µ.

Definition 7.2.
L∗!µ = [0, 1, U, θ3; COMP,CLI,UMU,LIMw]

We have the following theorem:

Theorem 7.1. For functions of class C2 defined on a compact domain,

L∗!µ = Rec(R).

The proof of this theorem will be done for one direction by structural induction, the other
by applying a more general property linked to the LIMw schema in the rest of this section.

7.1. Proof of Theorem 7.1: Upper bounds

We will now prove the first direction of the theorem, namely L∗!µ ⊂ Rec(R).

Proposition 7.1. Every function belonging to L∗!µ is real computable in the sense of computable
analysis.
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Proof:
We have already proved that 0, 1, U , θ3 belong to Rec(R) and that COMP, CLI and UMU
preserve Rec(R). Hence, we only need to show that LIMw also preserves Rec(R).

Let g = LIMw(f,K, β), with f computed by recursive functional φ. We give the proof for f
defined on R× C to R where C is a closed interval of R. The general case is easy to obtain.

Let x ∈ R, with β(x) > 0. Since β(x) is a polynomial, 1/β(x) can be bounded by some
integer N computable from x. Similarly, K(x) can be bounded by some integer K computable
from x. In a same way, the norm of x can be bounded by some integer X computable from x.

Let (xn)  x. For all i, j ∈ N, if we write abusively i for the constant sequence k 7→ i, we
have |νQ(φ(((i, xn), j))− f(i, x)| < exp(−j).

By Lemma 2.3, if i is big enough (i > ‖x‖), we have

|f(i, x)− g(x)| ≤ K exp(−β(x)i)
β(x)

≤ KN exp(−β(x)i).

Hence,
|νQ(φ((i, xn), j))− g(x)| < exp(−j) +KN exp(−β(x)i).

If we take j′ ≥ j + 1, i′ ≥ N(j + 1 + dln(KN)e), we have exp(−j′) ≤ 1
2 exp(−j), and

KN exp(−β(x)i′) ≤ 1
2 exp(−j). Hence g is computed by the functional

ψ : ((xn), j) 7→ φ((max(X,N(j + 1 + dln(KN)e), xn)), j + 1).

since for all j,

‖νQ(ψ((xn), j))− g(x)‖ ≤ exp(−j)
2

+
exp(−j)

2
≤ exp(−j).

ut

7.2. Proof of Theorem 7.1: Lower bounds

We will now prove the converse direction of the theorem: We are going to prove that for functions
of class C2 defined on a compact domain, Rec(R) ⊂ L∗!µ.

In fact, we are going to prove a more general proposition that more or less states that given
a discrete class C ⊃ E that has some basic properties of closure and a class of real functions
C such that C ⊆ DP (C), then the class of recursive analysis defined with functions from C,
denoted by C(R) is included in C+ LIMw (defined as being the class C with LIMw as additional
operator.

The researched inclusion Rec(R) ⊆ L∗!µ for functions of class C2 over compact domains will
follow considering C = Rec and C = L+!µ.

Formally,

Definition 7.3. Let C be a class of functions over the integers, with E ⊂ C. A function
f : Rk → R is said to belong to C(R) as in Definition 3.1: There exists a functional9 Φ ∈ C such
that for all −→x , for all sequence X, X  −→x =⇒ (Φ(X, j))j  f(−→x ).

A function f : Rk → Rl, with l > 1, is said to belong to C(R) if all its projections are.
9In the sense of Footnote 3.
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Definition 7.4. Given a class of real function C = [F ;O], we will denote C+LIMw for the class
[F ;O,LIMw].

Definition 7.5. A modulus of continuity of a function f : D ⊂ Rk → Rl defined over a compact
domain is a function M : N → N such that for all i ∈ N, for all x, y,

‖x− y‖ < exp(−M(i)) ⇒ ‖f(x)− f(y)‖ < exp(−i).

More generally (the modulus of continuity of a function defined over a compact domain gives
clearly a uniform modulus of continuity).

Definition 7.6. A uniform modulus of continuity of a function f : D ⊂ Rk → Rl defined over
a closed domain is a function M : N × N → N such that for all integer K, i ∈ N, for all
x, y ∈ [−K,K]k,

‖x− y‖ < exp(−M(K, i)) ⇒ ‖f(x)− f(y)‖ < exp(−i).

Proposition 7.2. Let C be a class of functions over the integers, closed by composition, that
contains E , and C be a class of real functions that contains L, that is closed under composition,
and by taking primitives, such that C ⊆ DP (C).

Then for functions of class C2 defined on a compact domain, whose derivatives have a modulus
of continuity in C, C(R) ⊆ C + LIMw.

The researched lower bound Rec(R) ⊆ L∗!µ for functions of class C2 over compact domains
indeed follows: indeed, consider C = Rec, C = L+!µ, and the following two well-known results,
that can be seen as slight generalizations of Corollary 6.4.8 and Theorem 6.2.7 of [36], or of
Theorem 2 of Chapter 1 of [29].

Lemma 7.1. Let f : D ⊂ Rk → Rl be a function of class C2 defined over compact domain D.
If f is in C(R), then its partial derivatives also are.

Proof:
We give the proof for a function f defined on interval [0, 1] to R. The general case is easy to
obtain.

Since f ′′ is continuous on a compact set, f ′′ is bounded by some constant M . By mean value
theorem, we have |f ′(x)− f ′(y)| ≤M |x− y| for all x, y.

Given x ∈ [0, 1], and i ∈ N, an approximation z of f ′(x) at precision exp(−i) can be
computed as follows: compute n with M exp(−n) ≤ exp(−i)/2. Compute y1 a rational at most
exp(−i−n−2) far from f(x), and y2 a rational at most exp(−i−n−2) far from f(x+exp(−n)).

Take z = (y1 − y2)/ exp(−n).
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This is indeed a value at most exp(−i) far from f ′(x) since by mean value theorem there
exists χ ∈ [x, x+ exp(−n)] such that f ′(χj) = f(x+exp(−n))−f(x)

exp(−n) . Now

|z − f ′(x)| ≤ |y1−f(x)|
exp(−n) + |y2−f(x+exp(−n))|

exp(−n) + |f(x+exp(−n))−f(x)
exp(−n) − f ′(x)|

≤ exp(−i− n− 2) exp(n) + exp(−i− n− 2) exp(n)
+|f ′(χj)− f ′(x)|

≤ 2 exp(−i− 2) +M exp(−n)
≤ exp(−i)/2 + exp(−i)/2
≤ exp(−i).

ut

The following lemma is easy.

Lemma 7.2. If f : Rk → Rl is defined over a product of compact intervals, f is of class C1, and
f ∈ C(R), then f has a modulus of continuity in C.

Proof:
The norm of any derivative of f , as a continuous function over a compact is bounded by some
integer m. By mean value theorem, function M(i) = m + i is easily shown to be a modulus of
continuity of f . As it is a linear function, it belongs to E ⊂ C. ut

Remark 7.1. The proof is non-constructive: m can not be obtained from the code of f in the
general case, and hence the modulus of continuity can not be obtained from the code of f .

But, for all function satisfying our hypotheses, there is a modulus of continuity in C.

7.3. Proof of Proposition 7.2

To prove Proposition 7.2, we use arguments similar to [4] and some properties from [36].
Indeed, the following lemma is used to get functions for which we know the behavior ev-

erywhere given only their values over a discrete set of points. It is a refined version of lemma
5.5.

Lemma 7.3. Let ε : R → R be some decreasing function of C, with ε(x) > 0 for all x and going
to 0 when x goes to +∞, and 1/ε(x) ∈ C. Write εi for ε(bic), Zεi for {jεi; j ∈ Z}, and bxcεi for
max{y ∈ Zεi ; y < x}.

Given f : R2 → Rl in C, there exists F : R2 → Rl in C with the following properties:

• For all i ∈ N, x ∈ Zεi, F (i, x) = f(i, x)

• For all i ∈ N, x ∈ R, ‖F (i, x)− f(i, bxcεi)‖ ≤ ‖f(i, bxcεi + εi)− f(i, bxcεi)‖

• For all i ∈ R≥0, x ∈ R,

‖∂F
∂i (i, x)‖ ≤ 5‖f(bi+ 1c, bxcεi)− f(bic, bxcεi)‖

+25‖f(bic, bxcεi + εi)− f(bic, bxcεi)‖
+25‖f(bi+ 1c, bxcεi+1 + εi+1)− f(bi+ 1c, bxcεi+1)‖.
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Proof:
We are going to reuse the functions ω and int defined in the proof of lemma 5.5 whose graphical
representations are shown in Figures 1 and 2.

Let ∆(i, x) = f(i, x+ ε(i))− f(i, x). For all i,x, we have

ω(x/ε(i))
ε(i) ∆(i, ε(i) int(x/ε(i))) = 0 whenever x− bxcε(i) ≥ ε(i)/2

= ω(x/ε(i))
ε(i) ∆(i, bxcε(i)) otherwise.

Let G be the solution of the linear differential equation{
G(i, 0) = f(0)
∂G
∂x (i, x) = ω(x/ε(i))

ε(i) ∆(i, ε(i)int(x/ε(i)))

An easy induction on j then shows that G(i, jε(i)) = f(i, jε(i)) for all j ∈ Z.
On [jε(i), (j + 1)ε(i)),

G(i, x)− f(i, bxcε(i)) =
∫ x

jε(i)

ω(t/ε(i))
ε(i)

∆(i, btcε(i))dt,

hence, for all i ∈ N,

‖G(i, x)− f(i, bxcεi)‖ ≤ ‖∆(i, bxcεi)‖ = ‖f(i, bxcεi + εi)− f(i, bxcεi)‖.

Now, let ∆′(i, x) = G(i+ 1, x)−G(i, x). For all i,x we have

ω(i)∆′(int(i), x) = 0 whenever i− bic ≥ 1/2
= ω(i)∆′(bic, x) otherwise

Let F be the solution of linear differential equation{
F (0, x) = G(0, x)
∂F
∂i = ω(i)∆′(int(i), x)

An easy induction on i shows that F (i, x) = G(i, x) for all integer i, and all x ∈ R. Hence
F (i, x) = f(i, x) for all i ∈ N, x ∈ Zεi and

‖F (i, x)− f(i, bxcεi)‖ ≤ ‖f(i, bxcεi + εi)− f(i, bxcεi)‖

for all i ∈ N, x ∈ R.
Now, ∂F

∂i is either 0 or ω(i)∆′(bic, x) = ω(i)(G(bi + 1c, x) − G(bic, x)). In any case, it is
derivable in x, and hence ∂2F

∂x∂i is either 0 or ω(i)(∂G
∂x (bi+ 1c, x)− ∂G

∂x (bic, x)).
When x ∈ Zεi, bounding ω by 5 (ζ ≤ 5),

‖∂F
∂i
‖ ≤ 5‖f(bi+ 1c, x)− f(bic, x)‖.

When x ∈ R,

‖ ∂
2F

∂x∂i
‖ ≤ ‖∂G

∂x
(bi+ 1c, x‖+ ‖∂G

∂x
(bic, x)‖.
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The term ‖∂G
∂x (bic, x)‖ can be either 0 or

5‖ω(x/εi)
εi

∆(bic, bxcεi)‖ ≤ 25
εi
‖∆(bic, bxcεi)‖

≤ 25
εi
‖f(bic, bxcεi + εi)− f(bic, bxcεi)‖.

A similar bound holds for the other term, replacing i by i+ 1.
Using mean value theorem,

‖∂F
∂i (i, x)‖ ≤ ‖∂F

∂i (i, bxcεi)‖+ ‖ ∂2F
∂x∂i(i, x)‖(x− bxcεi)

≤ ‖∂F
∂i (i, bxcεi)‖+ ε(i)‖ ∂2F

∂x∂i(i, x)‖
,

which yields the expected bound. ut

Lemma 7.4. If f : D ⊂ R → R is defined over a closed interval containing 0, with bounds
either rational or infinite, belongs to C(R), of class C1, with a uniform modulus of continuity in
C, then the primitive

∫
(f) that is equal to 0 at 0 is in C + LIMw.

Proof:
Let MN : N2 → N be the uniform modulus of continuity in C of function f : given some integer,
K, MN(K, ) is a modulus of continuity of function f on [−K,K].

For all i, j ∈ N, let xj = j exp(−MN(i+ 1, i)), so that for all x, y ∈ [xj , xj+1]∩ [−i− 1, i+ 1],
we have

|f(x)− f(y)| ≤ exp(−i).

For all j, let pj and qj two integers such that pj × exp(−qj) is at most exp(−i) far from
f(xj). The functions pN : N2 → N, and qN : N2 → N that map (i, j) to corresponding pj and qj
are in C.

Since C ⊂ DP (C) these functions as well as function MN can be extended to function
p : R2 → R, q : R2 → R, M : R2 → R ∈ L. Consider function g : R × C → R defined on all
(i, x) ∈ R × C by g(i, x) = p(i, exp(M(i + 1, i))x)e−q(i,exp(M(i+1,i))x). By construction, for i, j
integer, we have

g(i, xj) = pj exp(−qj).

Consider the function F given by Lemma 7.3 for function g and ε : i 7→ exp(−M(i + 1, i)).
We have

F (i, xj) = g(i, xj)

and

‖g(i, xj)− f(xj)‖ ≤ exp(−i)

for all i, j.
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For all x ∈ C, and all integer i ≥ ‖x‖ we have (observe that if xj denotes bxcε, we have
xj , xj+1 ∈ [−i− 1, i+ 1])

‖F (i, x)− f(x)‖ ≤ ‖F (i, x)− F (i, bxcε)‖+ ‖F (i, bxcε)− g(i, bxcε)‖
+‖g(i, bxcε)− f(bxcε)‖+ ‖f(bxcε)− f(x)‖

≤ ‖F (i, bxcε + ε)− F (i, bxcε)‖+ 0 + exp(−i) + exp(−i)
≤ ‖g(i, xj+1)− g(i, xj)‖+ 2 exp(−i)
≤ ‖g(i, xj+1)− f(xj+1)‖+ ‖g(i, xj)− f(xj)‖

+‖f(xj+1)− f(xj)‖+ 2 exp(−i)
≤ 5× exp(−i).

Consider the function G : R2 → R defined for all i, x ∈ R by the linear differential equation{
G(i, 0) = 0
∂G
∂x (i, x) = F (i, x)

Hence
G(i, x) =

∫ x

0
F (i, u)du.

We get

‖∂G
∂x

(i, x)− f(x)‖ = ‖F (i, x)− f(x)‖ ≤ 5× exp(−i)

and by mean value theorem on function G(i, x)− f(x), we get

‖G(i, x)−
∫ x

0
(f)(x)‖ ≤ (5× exp(−i))|x|,

when i ≥ ‖x‖.
Hence,

∫
(f)(x) is the limit of G(i, x) when i goes to +∞ with integer values. We just need

to check that schema LIMw can be applied to function G of L∗ to conclude: indeed, the limit of
G(i, x) when i goes to +∞ will exist and coincide with this value, i.e.

∫
(f)(x).

Since ∂G
∂i =

∫ x
0

∂F
∂i (i, u)du implies

‖∂G
∂i
‖ ≤

∫ x

0
‖∂F
∂i
‖du ≤ |x| × ‖∂F

∂i
‖ ≤ (x2 + 1)× ‖∂F

∂i
‖,

we only need to prove that we can bound ‖∂F
∂i ‖ by K(x) × exp(−i) for some function K ∈ L∗,

and i ≥ ‖x‖.
But from Lemma 5.5, we know that for all i, x,

‖∂F
∂i (i, x)‖ ≤ 5‖g(bi+ 1c, bxcεi)− g(bic, bxcεi)‖

+25‖g(bic, bxcεi + εi)− g(bic, bxcεi)‖
+25‖g(bi+ 1c, bxcεi+1 + εi+1)− g(bi+ 1c, bxcεi+1)‖.

First term can be bounded by 5× exp(−i) + 5× exp(−i) = 10× exp(−i).
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Second term can be bounded by

25(‖g(bic, bxcεi + εi)− f(bxcεi + εi)‖+ ‖f(bxcεi + εi)− f(bxcεi)‖+ ‖g(bic, bxcεi)− f(bxcεi)‖).

Hence by 25× exp(−i) + 25× exp(−i) + 25× exp(−i) = 75× exp(−i), for i ≥ ‖x‖.
Similarly for third term, replacing i by i+ 1.
Hence, when i ≥ ‖x‖,

‖∂F
∂i

(i, x)‖ ≤ 160× exp(−i),

and
‖∂G
∂i

(i, x)‖ ≤ 160× (x2 + 1)× exp(−i),

and so schema LIMw can be applied on function G of L∗ to get function
∫

(f). This ends the
proof.

ut

Actually, the previous lemma can easily be extended a little bit to get any primitive (clearly
this implies Proposition 7.2 for functions from a closed subset of R to R, considering a function
as the primitive of one of its derivative. The case Rk to Rl can be obtained by adapting our
arguments to functions of several variables.).

Lemma 7.5. Let h be a function of C(R) defined at 0.
If f : D ⊂ R → R is defined over a closed interval containing 0, with bounds either rational

or infinite, belongs to C(R), of class C1, with a uniform modulus of continuity in C, then the
primitive of f equal to h(0) at 0 is in C + LIMw.

Proof:
Replace in previous proof the initial condition G(i, 0) = 0 of the differential equation defining
function G, by G(i, 0) = g(i) where g : R → R is a function converging to h(0), obtained by
extending a suitably chosen function g : N → N. ut

This ends the proof that Rec(R) = L∗!µ for functions defined over product of compact in-
tervals, which is an analog characterization of recursive functions in the sense of computable
analysis. In fact, we obtained a more general result concerning the power of our LIMw opera-
tor that can indeed be seen as a description of the missing link between discrete computability
theory and computable analysis.

7.4. Other results

From those results and those proofs, we can derive some other results of interest.
We can apply Proposition 7.2 to other classes than L+!µ. For example, is presented in [21]

a class
D̄ = [0, 1,−1, U ; COMP, Ī]

that contains extensions of all recursive primitive functions. In other words,

PR ⊂ DP (D̄).



O. Bournez, E. Hainry /Recursive Analysis Characterized as a Class of Real Recursive Functions 23

Where Ī is defined as an integration operator: given functions f1, ..., fm of arity n and g1, ..., gm+1

of arity n+ 1 +m, if there is a unique set of functions h1, ..., hm such that

hi(x, 0) = fi(x)
∂hi
∂y (x, y) = gi(x, y,

−→
h (x, y)) for all y ∈ I − S

on an interval I containing 0 where S ⊂ I is a countable set of isolated points and h and ∂h
∂y are

both continuous, then h = h1 is defined.
Since D̄+θ3 contains L, is stable under composition and integration, we have by Proposition

7.2 the following result:

Proposition 7.3. For functions of class C2 defined on a compact domain,

PR(R) ⊂ D̄ + θ3 + LIMw

Remark 7.2. Observe that θ3 was not considered as a basic function in [21], since this integra-
tion operator allows to get non-analytic functions that can play the role of function θ3. For the
same reasons, we believe that actually PR(R) ⊂ D̄ + LIMw.

We have also some results for closed intervals non necessarily compact:

Proposition 7.4. Let f : D ⊂ Rk → Rl be some function over the reals of class C2, with D
product of closed intervals.

If f and the derivatives of f are in Rec(R) then f ∈ L∗!µ.

Proof:
For k = l = 1, this follows from Lemma 7.5, considering function f as the primitive of one of
its derivative, and observing that it is known that any computable function over the reals has a
computable uniform modulus of continuity [36]. The case Rk to Rl can be obtained by adapting
arguments to functions of several variables. ut

Remark 7.3. The previous arguments holds for any classes C, C for which it is known that
any function over the reals in C(R) has a uniform modulus of continuity in C. In particular,
for elementar functions, all levels of the Grzegorczyk hierarchy [6] or for primitive recursive
functions.

In particular:

Proposition 7.5. Let f : D ⊂ Rk → Rl be some function over the reals of class C2, with D
product of closed intervals.

If f and the derivatives of f are in PR then f ∈ D̄ + θ3 + LIMw.
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(ICALP’04) (J. Dı́az, J. Karhumäki, A. Lepisto, D. T. Sannella, Eds.), 3142, Springer, Turku,
Finland, 2004.

[5] Bournez, O., Hainry, E.: Real Recursive Functions and Real Extentions of Recursive Functions, Ma-
chines, Computations and Universality (MCU’2004) (M. Margenstern, Ed.), 3354, Springer-Verlag,
Saint-Petersburg, Russia, 2004.

[6] Bournez, O., Hainry, E.: Elementarily Computable Functions Over the Real Numbers and R-Sub-
Recursive Functions, Theoretical Computer Science, 348(2-3), December 2005, 130–147.

[7] Bowles, M. D.: U.S. technological enthusiasm and British technological skepticism in the age of the
analog brain, IEEE Annals of the History of Computing, 18(4), October–December 1996, 5–15,
ISSN 1058-6180.

[8] Brattka, V.: Computability over Topological Structures, in: Computability and Models (S. B.
Cooper, S. S. Goncharov, Eds.), Kluwer Academic Publishers, New York, 2003, 93–136.

[9] Bush, V.: The differential analyser, Journal of the Franklin Institute, 1931, 447–488.

[10] Campagnolo, M., Moore, C., Costa, J. F.: An Analog Characterization of the Subrecursive Functions,
Proc. 4th Conference on Real Numbers and Computers (P. Kornerup, Ed.), Odense University Press,
2000.

[11] Campagnolo, M., Moore, C., Costa, J. F.: An analog characterization of the Grzegorczyk hierarchy,
Journal of Complexity, 18(4), 2002, 977–1000.

[12] Campagnolo, M. L.: Computational complexity of real valued recursive functions and analog circuits,
Ph.D. Thesis, IST, Universidade Técnica de Lisboa, 2001.
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