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Abstract

Church thesis and its variants say roughly that all reasonable models
of computation do not have more power than Turing Machines. In a
contrapositive way, they say that any model with super-Turing power
must have something unreasonable.

Our aim is to discuss how much theoretical computer science can quan-
tify this, by considering several classes of continuous time dynamical sys-
tems, and by studying how much they can be proved Turing or super-
Turing.

1 Introduction

One major result of the twentieth century is Kurt Gédel incompleteness theorem
[23], demonstrating that no proof system can capture our reasoning about nat-
ural numbers. The original arguments in [23] are based on an informal notion
of deduction. A few time after Godel’s paper, Alan Turing proposed in [54], a
model of machine able to capture formal deductions in any deduction system.

Actually, what Turing outlined a proof is: What can be calculated by a
human working mechanically with paper and pencil in a finite number of steps
(in particular this covers deduction in formal systems) is computable by a Turing
Machine [17, 22, 54].

It was soon discovered® that the power of Turing machines can be proved
to be equal to several other formalisms that have been introduced, including

L As observed in [16], this might be considered as not so surprising, since both formalisms
have been explicitly design to solve Hilbert’s Entscheidungsproblem (whether an arbitrary
formula of the predicate calculus can be decided to be a tautology).



the lambda calculus from Alonzo Church [15], and the recursive functions from
Stephen Kleene [27].

These considerations leaded to Church-Turing’s thesis: “What is effectively
calculable is computable”. In that thesis “calculable” refers to some intuitively
given notion, whereas “computable” means “computable by a Turing machine”
[17, 22, 41].

Following Jack Copeland [17], the original thesis refers to a notion of cal-
culation, where calculation is intended in the sense that it can be? realized by
a human computing mechanically with paper and pencil, and is often confused
with the following thesis (called Thesis M in [22]): “What can be calculated by
a machine is computable” [17].

Here the notion of machine still refers to some intuitively given notion of
machine, with the constraint that the machine is “intended to conform to the
physical laws (if not to the resource constraints) of the actual world” [17], other-
wise the thesis is known to be false: see e.g. the surveys [18, 41] or the examples
to follow.

One close variant of this thesis, also discussed in [17], is the following: “Any
process that can be given a mathematical description can be simulated by a
Turing machine”. Once again (and actually for the same counter-examples) if
the process abstracts from the issue whether it could exist in the actual world,
the thesis is known to be false [17].

The three theses are independent:

e first thesis has to do with computations realizable by humans working
mechanically with paper and pencils [17],

e second has to do with physic of the actual world [17, 40, 51, 57],

e third has to do with our models of the physic of the actual world [17, 40,
51, 57].

We believe that each thesis has actually to do with convictions, since none of
them is truly provable, as each of them is referring to some informal notions or to
the actual world of which we do not have a model®. There have been however
several tentatives of proofs in literature, relying on more “basic” hypotheses
about the involved notions: see e.g. [8, 22].

If we take each thesis in a contrapositive way, they mean that any system that
computes something not computable by a Turing machine involves something,
call it a “resource”, that is either non-calculable by a mechanical method, or by
a physical machine, or by a model of a physical machine. Call such a resource
“non-reasonable”.

Our aim is not to argue in favor or against each of the theses, but to try do
discuss on what makes a resource “non-reasonable”.

2 At least in principle.
3Note that as soon as we believe in the existence of concepts like integers, Godel’s theorem
says we can’t have a model.



Actually, as soon as we talk about Turing machines, we are dealing with
something that can be considered as non-reasonable: a Turing machine involves
an infinite tape, and hence something infinite. Infiniteness is a formal notion,
and hence a first measure of the complexity of a resource.

But, this is not the only resource that can be considered as non-reasonable,
and not the only possible measure. Similarly to what is argumented by José Félix
Costa and Jerzy Mycka in [39], what is missing is a clear and well understood
way to measure complexity of the reasonableness of resources.

In this paper we discuss the power of several models of continuous time
dynamical systems with respect to the power of Turing machines. We consider
several variants of systems, according to some hypotheses made about their
“reasonableness”, and we try to compare their power with Turing machines,
from a computability and complexity point of view.

We would like to say that our motivation and discussion about measuring
the complexity of involved resources is very close? to one of the motivation of
José Félix Costa and Jerzy Mycka for studying analog computations in their
series of papers (see for example [34, 35, 36, 37, 38]), expressed explicitly in [39].

We also add that we do not claim that the considered models have any phys-
ical reality. We mainly focus on these models, since they are models that have
already been considered and proposed in literature, about (idealized abstract)
concrete systems of our world, and since we think that they are informative
about critical “non-reasonable” resources in our world. Most of them are clearly
unrealistic, or involve non-computable things, but we think that, even if we be-
lieve the® theses true, refusing to discuss about such models is only refusing to
talk about the reasons why we think that the theses should be true.

Several papers, in particular from people mainly advocating against hyper-
computations, have argued that discussing some systems in some physical the-
ory able of do hyper-computations helps to understand weakness of the physical
models of our world [2, 50, 52, 53]. Our aim is in some sense a parallel com-
puter scientist point of view: Discussing theoretical models able to do hyper-
computations, helps to understand weakness of theoretical computer science
models.

2 Mathematical preliminaries

Let N, Q, R, denote the set of natural integers, the set of rational numbers, and
the set of real numbers respectively. Given x € R", we write x to emphasize
that x is a vector. |.|| will denote the sup norm.

An open (respectively closed) half space, is the set of points x € X, satisfying
a.x < b (resp. a.x < b) for some a € R%, b € R where . stands for inner product.
It is said rational if furthermore a € Q¢, b € Q.

4Even if we think that our own general goal is more about trying to understand the relations
between models, and their power, and we do not think so strongly that the toolbox of analysis
could help to solve classical discrete problems [39].

50r a subset of the theses.



A polyhedron P is any boolean combination (intersections, unions) of open
or closed half spaces. It is said rational if the half spaces are.

Definition 1 (Dynamical systems) e A (homogeneous inputless) contin-
uous time dynamical system H is given by X C R?, and some function
f:X—-X.

o A trajectory of H starting from xg € X, is a solution of differential equa-
tion € = f(x), (0) = xy : that is a continuous and derivable function
¢ RT — X, with $(0) = @, and %2 (t) = f(4(t)) for all t.

Given some property of functions, we will say that a dynamical system has
this property if the corresponding function f has. For example, derivable con-
tinuous time dynamical systems denote the class of continuous time dynamical
systems H = (X, f) where f is derivable.

There are several ways to evaluate the complexity of function f: one of them
is to talk about its smoothness: a function f : X ¢ R? — R? is said of class
C°, if it is r-times continuously differentiable on X, for all » € N. Functions of
class C* include analytic functions.

One other possibility is to talk about its computational properties in re-
cursive analysis model: see [56] for an up-to-date monograph presentation of
recursive analysis from a computability point of view, or [28] for a presentation
from a complexity theory point of view.

Following Ker-I Ko [28], let vg : N — Q be the following representation® of
dyadic rational numbers by integers: vo((p,q,q)) — &%, where (.,.,.) : N> = N
is a polynomial time computable bijection.

A sequence of integers (r;) € NN converges quickly toward x (denoted by
(z;) ~ x) if the following holds for all i: |vg(x;) — x| < 27"

A point x = (1,...,24) € R? is said computable (denoted by x € Rec(R))
if for all j, there is a computable sequence (x;) € NN with (z;) ~ x;. It is
said polynomial time computable (denoted by x € P(R)) if the corresponding
sequences are.

A function f : X € R? — R, where X is compact, is said computable
(denoted by f € Rec(R)), if there exists some d-oracle Turing machine M,
such that for all x = (z1,...,24) € X, for all sequences (z]) ~» xj, M taking
as oracles these d sequences, computes a sequence (z}) with (x}) ~ f(x). A
function f : X ¢ R? — R?, where X is compact, is said computable if all its
projections are. It is said polynomial time computable (denoted by f € P(R)),
if furthermore the involved oracle Turing machines work in polynomial time.

Other alternatives to measure the complexity of a given function exist. One
of them, that we will not discuss, has been initiated by [32], and consists in
discussing its membership in algebraically defined classes of functions generated
by a finite set of basic functions, and closed by some simple operators: see for
e.g. [12, 13, 14, 25, 35, 36).

6Many other natural representations of rational numbers can be chosen and provide the
same class of computable functions: see [28, 56].



In this paper, we will consider dynamical systems as recognizers of languages:
Y will denote alphabet {0,1}. ¥* will denote words over this alphabet.

Two (very classical) encodings of words into real numbers will play some
important role in what follows:

e vx is the function that maps X* to [0, 1] as follows: word w = wy ... w, €

{0,1}* is mapped to vx(w) = 31, (2“’4—+1)

e vy is the function that maps ¥* to N as follows: word w = wy ... w, €
{0,1}* is mapped to vy(w) = Y, (2w; + 1)4°.

‘We can now define.

Definition 2 (Dynamical Systems as Language Recognizers) Let H be
a continuous time dynamical system over space X. We will consider two cases:
the case X = [—1,1]¢ (compact case), or X = R? (unrestricted case). Consider
v = vx for the compact case, v = vy for the unrestricted case. Let Vyccept be the
set of x € X with ||| < 1/4. Let Veompute e the set of @ € X with ||z|| > 1/2.

We will say that H computes some language L C X*, over alphabet ¥ =
{0,1}, if the following holds: for all w € ¥*, w € L iff the trajectory of H
starting from (v(w),0,---,0,1) reaches Viecept-

For robustness reasons, we assume that, for any w & L, the corresponding
trajectory stay forever in Veompute-

Given some notion of time associated to trajectories, we will say that L
is recognized in time T, if furthermore when the trajectory reaches Viccept,
trajectory has a time bounded above by T'. It is said accepted in time f : N — N
if furthermore T' < f(Jwl), for all w, where |w| stands for the length of w.

3 A Toy Example

We are going to discuss the Piecewise Constant Derivative (PCD) model that
has been introduced by Eugene Asarin, Oded Maler and Amir Pnueli in [5], as
a simple model for hybrid systems. It has later on been discussed in several
papers such as [3, 4, 10].

A hybrid system is a system that combines continuous evolutions with dis-
crete transitions. Such models appear as soon as one tries to model some systems
where a discrete system, such as a computer, evolves in a continuous environ-
ment: See e.g. [1].

From a theoretical computer science point of view, one interest of the hybrid
systems models, is that they generalize both discrete time transition systems
and continuous time dynamical systems.

Definition 3 (PCD System [4]) A (rational) piecewise-constant derivative
(PCD) system is a continuous time dynamical system H, defined by differential
equation & = f(x) on X C R, where f : X — R?, can be represented by the
formula

flegy=c¢; forxe P, i=1,....n



where ¢; € Q%, and the P; constitutes a partition of X into rational polyhedra.

A trajectory of H starting from some xg € X, is a solution of the differential
equation x = f(x) with initial condition x(0) = xo: that is a continuous function
¢ : RT — X such that ¢(0) = xo, and for every t, f(¢(t)) is equal to the right
derivative of ¢(t).

In other words, a PCD system consists of partitioning the space into convex
polyhedral sets (“regions”), and assigning a constant derivative ¢ (“slope”) to all
the points sharing the same region. The trajectories of such systems are broken
lines, with the breakpoints occurring on the boundaries of the regions [5]: see
Figure 1.

Trajectory
Direction

Figure 1: A PCD system in dimension 2.

Eugene Asarin, Oded Maler, and Amir Pnueli have proved that PCD systems
can simulate Turing machines, as soon as we suppose the dimension d > 3 [5]
(observe that conversely any language computed by a rational PCD system H
is clearly recursively enumerable).

Theorem 1 (PCD systems = Turing [5]) 1. Any recursively enumerable
set L is computed by a (rational) PCD system H over [—1,1]3.

2. This does not hold over [—1,1])%, nor R?, in the general case.

The trick used in [5] has already been seen is several other contexts (see
e.g. [29, 49]): the current state of a Turing machine at some time t, given by
some internal state ¢ € @, and some tape W_,, W_pqq ... WWT . .. Wy, With
the head in front of cell wp, is encoded into two real numbers (z¢,z%) by

i = g+ vx(wowy ..., wy), v5 = vx(w_jw_s...w_p,). Computing the en-
coding (xt, 25™) of the state of the machine at time ¢ + 1 reduces in doing

multiplications by 4, divisions by 4, as well as additions, depending on the cur-
rent scanned symbols of the simulated Turing machine, that can be read easily
by testing the membership of z! and z% in some simple intervals. Each such
operation and test can be implemented by regions of PCD systems. The point



is then just to build “paths” that bring the output of the regions that computes
(241, 25T1) from (2%, 2%) to their input, so that the whole system computes

sequence (x}, zh) for all ¢.

4 On Imposing Smoothness

It can be objected that piecewise constant derivative systems involve discontin-
uous functions, and hence something non-reasonable, and hence that Theorem
1 do not deal with “realistic” functions.

Actually, it can be reinforced as follows (see [31] for a proof) (observe that
an alternate proof obtained by “smoothing” previous PCD system construction
is proposed in [11]).

Theorem 2 (Smooth Systems > Turing [31]) Any recursively enumerable
set L is computed by a C* (and Rec(R)) continuous time dynamical system H
over [—1,1]3.

It is known that there exist differential equations, with computable coeffi-
cients, with computable initial conditions, that cannot be numerically solved
via deterministic methods by a digital computer. One example was provided
by Marian Pour-El and Ian Richards in [43]: there exists a polynomial-time
computable function f : [0, 1] x [-1,1] — R such that the equation le—f = f(t,x)
defined by f does not have a computable solution y on [0, d], for any 6 > 0.

Same authors later on expanded their result to show that wave equation
(which is a partial equation), even with computable initial data, can have a
unique solution which is not computable [44].

However, if an ordinary differential equation over a compact has a unique
solution, then it must be computable: see e.g. [28]. This holds has soon as f is
twice continuously differentiable.
Remark: However, note that even if the solution of an ordinary differential
equation is unique, the complexity of the computable solution y(¢,z) has no
fixed complexity bounds: For any recursive real number a between 0 and 1,
there exists a polynomial-time computable function f : [0, 1] x [—1, 1] such that
y(z) = az? is the unique solution of 4 = f(¢,z) [28, 30].

From these considerations, we get.

Corollary 1 (Smooth and Computable Systems = Turing) Continuous
time dynamical systems of C* N Rec(R) over [—1,1]? have precisely the power
of Turing machines: they recognize precisely recursively enumerable sets.

It is conjectured in [33] that no analytic map on a compact, and finite-
dimensional space, can simulate a Turing machine, through a reasonable input
and output encoding. The question whether we can suppose the continuous time
dynamical system analytic in previous corollary is a priori distinct. However,
if we believe the conjecture true, a negative answer would be surprising since



most known undecidability results (putting aside results obtained by a pure
diagonalization), rely on the simulation of a Turing machine”.

If the constraint of bounded space is relaxed, it has been recently obtained
by Daniel Graca, Manuel Campagnolo and Jorge Buescu that Turing machines
can be simulated by analytic maps (furthermore in an error-robust manner) [24].

Theorem 3 (Non-Compact Analytic Systems > Turing [24]) Any recur-
sively enumerable set L is computed by an analytic (and Rec(R)) continuous
time dynamical system H over R”.

5 On Relaxing Rationality

Suppose that we relax the hypothesis that the ¢; and the polyhedra P; are
rational in Definition 3. If no constraint is put on the involved real constants,
it has been proved in [11] that any language L C X* is computed by some
(non-rational) PCD system.

We believe that restricting to discrete polynomial time yields more interest-
ing results: the discrete time of a trajectory is the number of regions crossed by
the trajectory. Formally,

Definition 4 (Discrete Time) To any trajectory ¢ : Rt — X of a PCD
system 'H, associate the set Ty of the time t; > 0 at which the direction of ¢
change: the left derivative of ¢ in t; does not exist, or is distinct from its right
derivative. We say that ¢ has discrete time n, if Ty contains n elements.

Note that there is also an other natural notion of time for continuous time
dynamical systems.

Definition 5 (Continuous Time) To any trajectory ¢ : Rt — X of a con-
tinuous time dynamical system (for e.g. a PCD system), the continuous time of
the trajectory ¢(t) is the variable t.

Example: The trajectory of Figure 1 has discrete time 9. If we suppose that
the norm of the speed vectors are 1, its continuous time is equal to its length.

Recall (see e.g. [7, 42]) that a family of boolean circuits C = (C;);en, with
C; with ¢ inputs and 1 output, recognizes a language L C ¥*, iff for all w € 3%,
w € L if and only if C},,| accepts w.

Definition 6 (Class P) A language L C ¥* is in P iff L is recognized by
a family of circuits of polynomial size: there exists some polynomial p, with
size(Cy) = p(n) for all n.

7Or of models like two-counters machines that simulate Turing machines, or of problems
like post-correspondence-problems that encode the simulation of (non-deterministic) Turing
machines.



Class P is also known as P/poly, since it corresponds to polynomial time
with a polynomial advice [7]. It is known to contain some non-computable
sets, as well as to correspond to sets recognizable in polynomial time with a
tally oracle [7]. It has been characterized as a natural class to characterize the
computational power of several continuous space and time dynamical systems
[46, 47, 48].

Class P corresponds to non-uniform polynomial time, since it consists in
relaxing second condition in next characterization of polynomial time.

Proposition 1 (P versus P (see e.g. [42])) A language L C ¥* is recog-
nized in polynomial time by a Turing machine, iff

1. it is in P;

2. the function that maps 1™ to the encoding of circuit C,, is computable in
polynomial time.

The following results are established in [11] (observe that languages recog-
nized in polynomial time by rational PCD systems correspond precisely to P,
that is polynomial time for Turing machines).

Theorem 4 (P(PCD Systems) = P [11]) o Any L € P is computed in
polynomial discrete time by some (possibly non-rational) PCD system H
over [—1,1]3.

e Any language L computed by some (possibly non-rational) PCD system H
in polynomial discrete time is in P.

It is known that P contains some non-computable sets, and hence, PCD sys-
tems with non-rational coefficients are stronger than classical Turing Machines
[11].

The extra-power comes from the power given by non-computable constants:
this can actually be proved as follows: given some PCD system H, we write
Constant(H) for the finitely many constants «ai,...,q,, involved in the de-
scription of the polyhedra P;, as well as the finitely many constants 51, ..., Om
involved in the coordinates of the vectors c;, as well as all the finitely many
products o 3;.

Definition 7 (Computable PCD Systems) A PCD system is said to have
computable constants (denoted by H € Rec(R)) if Constant(H) C Rec(R).

We will say that a language belongs to P/rec, if it belongs to P, and the func-
tion that maps® 1" to the encoding of circuit C), is computable (observe that we
do not say polynomial time computable, otherwise, this definition would corre-
spond to polynomial time). Since circuit value (see e.g. [42]) is recursive, P/rec
is a subset of recursive sets. Since there exist some functions non-computable in
polynomial time, polynomial time is strictly included in P/rec, in turn strictly
included in P.

8

or maps n, that would give the same definition.



Theorem 5 (P(Computable PCD Systems)= P/rec) We have

e Any language L € P/rec is computed in polynomial discrete time by some
(possibly non-rational) PCD system H with computable constants over
[—1,1]3.

o Any language L computed by some (possibly non-rational) PCD system H
with computable constants in polynomial discrete time is in P/rec.

Proof: First item follows from the constructions of [11], observing that the
constant encoding the advice used in [11] is actually computable in the sense of
recursive analysis, as soon as the advice (or equivalently the family of circuits)
is.

Now, for second item, we know that the language recognized by H is rec-
ognized by a family of circuits (Cy,)nen of polynomial size p(n). Given n, by
enumerating the finitely many circuits of size p(n), one can compute such a
circuit C), as soon as one can test effectively whether a given circuit C agrees
with H on the finitely many words w of length n.

From the dynamics of PCD systems, testing a given circuit C' against H on
some word w can be done effectively as soon as one has a way, given some row
matrix L with rational coefficients and an rational b, to tell effectively whether
L~ > b (respectively Ly > b) or not, where v = (v1,...,7:) is the vector of the
constants of Constant(H).

Replacing some constants by their expression if needed, we can furthermore
assume that ~1,...,7 are linearly independent over rational numbers (recall
that H, and hence 7 is fixed).

Now, each test Ly > b (respectively Ly > b) can be done as follows: Ap-
proximate Ly by x, € Q with precision 27", for increasing n until n = ny with
Ib — Znoll > 27™°. Such an ng must exist, since Ly # b, otherwise v1,...,y
would not be linearly independent over rational numbers. Now, answer Ly > b
(resp. Ly > b) iff ,,, — 2770 > b.

O

Since P/rec is included in the set of recursive languages, we get.

Corollary 2 (P(PCD Systems) C Recursive) Any language computed by
some (possibly non-rational) PCD system H with computable constants in poly-
nomial discrete time is recursive.

Simple generalizations of previous arguments show that this also holds for
languages recognized in exponential discrete time.

Observe that previous arguments can be generalized to yield a whole struc-
tural complexity of the power of PCD systems according to their constants,
similar? to the one that was obtained for neural networks in [6].

9But different, since the model here is not really equivalent, and is more problematic.
Mostly linear precision does not suffice here.

10



6 Imposing Smoothness

Following the constructions from [11], one can also impose to the PCD system
to be smooth (the discrete time of the PCD system becomes a continuous time).

Theorem 6 (P C P(Smooth Systems) [11]) Any language L € P is com-
puted by a C* continuous time dynamical system H in polynomial continuous
time over [—1,1]3.

Theorem 7 (P/rec C P(Smooth and Computable Systems)) Any
language L € P/rec is computed by a C*>® continuous time dynamical system H
of Rec(R) in polynomial continuous time over [—1,1]3.

Theorem 8 (P C P(Smooth and Poly. Computable Systems)) Any lan-
guage L recognized in polynomial time by a Turing machine is computed by a
C continuous time dynamical system H of P(R) in polynomial continuous time
over [—1,1]3.

Conversely, one natural question is to understand whether it is possible to
provide upper bounds on the power of computations of continuous time dynam-
ical systems in polynomial continuous time.

Any sufficiently smooth system defined on a compact domain can be sim-
ulated by some numerical method: given some ¢, and n, one can estimate the
position of a given trajectory at some time t with precision 27". The point is
that usual methods, such as Euler’s method work only in a time that is pro-
portional to some exponential in t. This also holds for most known numerical
methods of fixed order: see for example the discussion in [50].

One may think that it is an intrinsic limitation of numerical methods, and
hence that, potentially, continuous time dynamical systems could do things
faster than Turing machines: see for example why Anastasios Vergis, Kenneth
Steiglitz, and Bradley Dickinson in [55] avoided to take time as a natural resource
in their discussion.

However, Warren Smith has recently demonstrated that it is possible to prove
that time can be considered as a reasonable resource under some additional
hypotheses: see [50].

Definition 8 (Polynomially Limited Variation (PLV) [50]) A dynamical
system is said to have a Polynomially Limited Variation if it is of class C*°, and
it is known that in any time interval 0 <t < T, the absolute value of each com-
ponent of f, of each component of %) for a trajectory ¢, as well as the absolute
value of each partial derivative of f with respect to any of its arguments, having
total differentiation-degree k, is similarly bounded, by bounds of type (kT)O®*).

Using Butcher’s Runge-Kutta scheme, with an order taken as linearly de-
pendent of T, Warren Smith proved:

Theorem 9 (PLV Implies Efficient Simulation [50]) Any dynamical sys-
tem of P(R) with a Polynomially Limited Variation can be simulated numerically

11



efficiently on a Turing machine: Given some initial condition of a trajectory ¢
in P(R), the value of ¢(t) at any time 0 <t < T, can be computed accurate to
precision €, for any desired € > 0, in a time that depends only polynomially on
T, and min(e, 1)~/ max(LT),

Remark: This does not imply that ¢ is in P(R): for example it does not
say that ¢(¢) can be computed in a time polynomial in —log(e). May this be
exploited to compute faster using continuous dynamical systems, or can Smith’s
result be improved?

Remark: The conditions of Definition 8 seem to have some connections with the
ideas of José Félix Costa and Jerzy Mycka in several papers about considering
that polynomial time for continuous systems must be connected to Laplace
transforms: see for e.g. [35, 37]. We think it would be interesting to better
understand these relations.

With this result in hand, we claim:

Theorem 10 (P = P(Smooth and Poly. Comput. PLV Systems)) The
languages computed by continuous time dynamical system H of P(R) with Poly-
nomially Limited Variation in polynomial continuous time over [—1,1]% do cor-
respond precisely to languages recognized in polynomial time by Turing machines.

Proof: If a language L is recognized by a continuous time dynamical system
‘H of P(R) with a Polynomially Limited Variation in polynomial time, then by
simulating H using Theorem 9 (e is fixed to 1/4), a Turing machine can recognize
L in polynomial time.

Conversely, we know that any language L recognized in polynomial time
by a Turing machine can be computed in polynomial time by a PCD system.
Using the ideas of [11], it can be smoothed to a C* system: original regions of
the PCD system doing computations are kept intact, and interpolation regions
are added. On first regions, since all partial derivatives are 0, it is clear that
the conditions of Definition 8 hold. Now, interpolation regions can be build
using affine combinations of translations of the (integral of) classical function
g(x) = exp(—1/z) for z > 0, 0 for < 0, which is C* on R.

By using triangular inequality, linearity, and reasoning independently on
each such region, we only need to prove that for all k, g(k)(x) can be bounded
by a bound of type (k)°*). Since for z > 0, g (z) = P.(1/z) exp(—1/z), for
some polynomial Py of degree 2k, using triangular inequality, and developing
Py into its at most 2k + 1 monomials, we only need to prove that h(zx) =
(1/z)* exp(—1/x) can be bounded by a bound of type (k)°©®).

Consider 1 = 1/((k + 1)K), with K = kln(k + 1). For < u, we have
h(z) < (1/p)*exp(—1/p) < (k + 1)* exp(Kk)exp(—K(k + 1)) < 1. Now, we
always have exp(—1/x) < 1 for > 0, so that for x > u, 1/2 < (k+ 1)K, and
h(z) < (k+ 1) K*F < O((k)%F).

|
Authorizing general computable functions, we get.

12



Theorem 11 (P/rec = P(Smooth and Computable PLV Systems)) The
languages computed by a continuous time dynamical system H of Rec(R) with
Polynomially Limited Variation in polynomial continuous time over [—1,1]% do
correspond precisely to languages of P/rec.

If non-computable functions are authorized, we get.

Theorem 12 (P = P(Smooth and PLV Systems)) The languages computed
by a continuous time dynamical system H with Polynomially Limited Variation

in polynomial continuous time over [—1,1] do correspond precisely to languages
of P.

Proof: Use same technique as before for converse direction: the only point is

to see that the involved functions are in the claimed classes of recursive analysis.

For direct direction, observe that the proof of [50] gives a polynomial number

of iterations for Butcher’s Runge-Kutta scheme independently of the complexity

of the function involved in the differential equation. Transform this polynomi-

ally many iterations into a circuit of polynomial size, feeded with sufficient

approximations of the function as in [50], but relaxing the hypothesis that these
approximations should be computable in polynomial time.

O

7 On Zeno’s phenomenon

We now come back to PCD systems. To a finite continuous time, can correspond
a non-finite discrete time: Consider for example, the maximal trajectory defined
by the PCD system depicted on Figure 2.

This has already been observed in [4], and used to show that any arithmetical
set can be recognized by a PCD system.

Actually, with the terminology of Definition 4, to any trajectory ¢ : RT — X
is associated the set Ty of the time ¢; > 0 at which the direction of ¢ change.
T is easily shown to be a well-ordered set. As any well-ordered set, it must be
isomorphic to some ordinal. This ordinal is considered as the discrete time of
the trajectory in the general case.

Example: In Figure 2, the trajectory going from (z,0) to (0,0) has discrete
time w.

Actually, the discrete time of a finite continuous time trajectory can be

bounded above according to the dimension.

Theorem 13 (Discrete time vs Continuous Time [9, 10]) Any trajectory
¢ of finite continuous time of a PCD system over RY, has a discrete time
T; < wi1 ford>3. Ford=2,T; <w.

Recall that the hyper-arithmetical hierarchy is an extension of the arith-
metical hierarchy to constructive ordinal numbers. It consists of the classes of

13
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Figure 2: Zeno’s paradox: A trajectory of continuous time 5z and discrete time
w between point (z,0) and point (0, 0).

languages 31,20, ...y Xk, oy Dy Dotls Dty e« ey D2y w241y« -y D2y« -« iD=
dexed by the constructive ordinal numbers. It is a strict hierarchy and it sat-
isfies the strict inclusions ¥, C X3 whenever o < 3. It can be related to the
analytical hierarchy by Al = U 525: see [45].

Class ¥ is defined as the class of the recursively enumerable sets. When k
is a constructive ordinal and when the class ¥, is defined, > is defined as the
class of the languages that are recursively enumerable in a set in ;. When k is a
constructive limit ordinal, k = lim k;, and when the classes (3, );en are defined,
Y is defined as the class of the languages that are recursively enumerable in
some fixed diagonalisation of classes (X, );: see [45] for full details.

It has been proved in [9, 10] that the power of PCD systems in finite contin-
uous time can be characterized as follows (providing an extension of [4] to a full
characterization of the power of PCD systems according to their dimension).

Theorem 14 (PCD Systems vs Hyper-Arithmetical Hierarchy [9, 10])
The power of rational PCD systems in finite continuous time over [—1,1]¢ or
R? can be characterized as follows:

o For d =2k + 3, they recognize precisely the sets of X x.
o For d =2k + 4, they recognize precisely the sets of ¥ r 1.

From Corollary 1, we see that such super-Turing phenomena for smooth and
Rec(R) systems over [—1,1]¢ can not happen: they can always be simulated. It
follows that there is no hope to “smooth” the considered systems in the theorem
above.

14



8 On Robustness

Since the proofs of undecidability, or more generally of simulation of Turing
machines, often involve to encode the configuration of a Turing machine (or of
a two counter automata) into some real numbers, and since this require infinite
precision, in the hybrid system verification community, a folklore conjecture
appeared saying that this undecidability is due to non-stability, non-robustness,
sensitivity to initial values of the systems, and that it never occurs in “real
systems” [3, 20].

For example, Martin Frénzle writes in [21] “Hence, on simple information-
theoretic grounds, the undecidability results thus obtained can be said to be
artifacts of an overly idealized formalization. However, while this implies that
the particular proof pattern sketched above lacks physical interpretation, it does
not yield any insight as to whether the state reachability problem for hybrid
systems featuring noise is decidable or no. We conjecture that there is a variety
of realistic noise models for which the problem is indeed decidable”.

There were several attempts to formalize and prove (or to disprove) this
conjecture: it has been proved that small perturbations of the trajectory still
yields undecidability [26]. Infinitesimal perturbations of the dynamics for a
certain model of hybrid systems has shown to rise to decidability [21]. This has
been extended to several models by [3].

Let us look at this latter result: they consider several classes of widely used
models of dynamical systems: Turing machines, piecewise affine maps, linear
hybrid automata, and piecewise constant derivative systems. For each of them
is introduced a notion of “perturbed” dynamics and is studied the computational
power of the corresponding perturbed systems. Perturbations are defined for
each model using a notion of metrics on the state space. For a given model,
given a transition system with a reachability relation R, the idea is to perturb
the dynamic by a small €, and then take (as the perturbed dynamics of the
system) the limit (intersection) R,, of the perturbed reachability relations as
this € tends to 0. In that setting, a system is said “robust” if its reachability
relation does not change under small perturbations of the dynamics, i.e. R, is
equal to R [3].

Eugene Asarin and Ahmed Bouajjani show:

Theorem 15 (Robustness [3]) For Turing machines, piecewise affine maps,
linear hybrid automata, and piecewise constant derivative systems, the relation
R,, belongs to the class I (it is co-recursively enumerable), and moreover, any
1§ relation can be reduced to a relation R, of a perturbed system: any comple-
ment of a recursively enumerable set, can be semi-decided by an infinitesimally
perturbed system.

That means that any robust system has its reachability problem decidable.

Corollary 3 (Robustness implies Recursiveness for Some Systems [3])
For Turing machines, piecewise affine maps, linear hybrid automata, and piece-
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wise constant derivative systems, any language computed by a robust system is
TeCUrsive.

We think it worth also investigating which simulations of all the previous
sections can be extended to be robust in the sense of [3], and in which sense.

9 Summary

In this paper, we have considered several models with respect to their super-

Turing power.
The results can be summarized somehow by the following tables, for compact
systems.

e When time is discrete time:

Class Computability | Complexity
Rational PCD Systems R.E. languages | P
Non-Rational Rec(R) PCD Systems | R.E. languages | P/rec
Non-Rational PCD Systems All Languages P

PLV P(R) Smooth Systems R.E. languages | P

PLV Rec(R) Smooth Systems R.E. languages | P/rec

PLV Smooth Systems All Languages P

Rec(R) Smooth Systems R.E. Languages | > P/rec
Smooth Systems All Languages >P

e When time is continuous time:

Class Computability = Complexity
Rational PCD Systems | ¥« in dimension d = 2k + 3
Yk in dimension d = 2k + 4
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