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Some Topics

Tools for verification

Frontier between Tractability/Non-tractability

Complexity in Blum Shub Smale Model

Programming with Rules and Strategies

Exotic (ex Probabilistic) Rewriting

Continuous Time Models
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Objectives

Main objective

Understand computation theories for continuous systems.

Dynamical Systems
over a continuous space

H = (Rn, f )

Discrete-Time
y(t + 1) = f (y(t))
y(0) = x

Continuous-Time
y ′ = f (y(t))
y(0) = x
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Verification
Control Theory

Recursive Analysis
Computation Theory
Complexity Theory

...

GPAC
Neural Networks
Analog Automata

Distributed Computing
...

Machines

Continuous Systems Theory

Models from Physics,
Biology, . . .
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A (discrete time) Picture

Church Thesis “What is effectively calculable is computable”

Thesis M “What can be calculated by a machine is computable”

Thesis? “What can be calculated by a model is computable”

(following [Copeland2002])

Understanding computational power of models helps to understand

limits of mechanical reasoning.

limits of machines.

limits of models.
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Main Focus

Properties

Reachability. Given H, x0, X ⊂ Rn, decide if there is a
trajectory going from x0 to X .

Stability. Given H, decide if all trajectories go to the origin.

Proofs and constructions from recursive
analysis lead limited insights on true

difficulty of considered problems
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Dynamic Undecidability

Dynamic Undecidability Results:

[Moore90]

[Ruohonen93]

[Siegelmann-Sontag94]

[Asarin-Maler-Pnueli95]

[Branicky95]

[Graça-Campagnolo-Buescu2005]
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Example

A Modern Electronic Integrator

⊳∞        
-

R

C

V
U +

V (t) = −1/RC

∫ t

0
U(t)dt

Generating cos(t)

∫ ∫ ∫-1

t y3
y2

y1


y1 = cos(t)
y2 = sin(t)
y3 = − sin(t)
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The GPAC

[Shannon41]’s GPAC

A mathematical abstraction of the (mechanical) Vannevar Bush
MIT Differential Analyzer (1931).

Basic blocks: constant, adder, integrator, multiplier.

Shannon’s 41 characterization is incomplete. Corrections by
[PourEl-Richards74], [Lipshitz-Rubel87], [Graça-Costa03].

Proposition (Graça-Costa03)

A scalar function f : R → R is generated by a GPAC iff it is a
component of the solution of a system

y ′ = p(t, y), (1)

where p is a vector of polynomials.
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Piecewise Constant Derivative systems

[Asarin-Maler-Pnueli94]’s PCD Systems

x ′ = f (x)

f : Rd → Qd piecewise
constant

Theorem (Asarin-Maler-Pnueli94, Asarin-Maler95)

Reachability properties are

Σ1-complete for the discrete time model.

Σk -hard, for all k, for the continuous time model.



Objectives and Framework Some Systems Some Results Perspectives, Discussions

Population Protocols

[Angluin-Aspnes-Diamadi-Fisher-Peralta2004]’s sensor
networks model

A passively-mobile population of finite-state agents interacts with
pairwise interactions δ : Q × Q → Q × Q.

Example: “Count to 5”protocol.
Q = {q0, q1, . . . , q5}
δ(qi , qj ) = (q5, q5) if i + j ≥ 5
δ(qi , qj ) = (qi+j , q0) otherwise

q0 q0

q0

q0

q0 q0 q0

q0q0

q0q0

q5

q5q5

q5

q2

q2

q3

Characterization (Angluin-Aspnes-Eisenstat2006)

Population protocols compute precisely relations definable in
Presburger’s Arithmetic.
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Asynchronous Version

Reasonable Hypothesis

Interactions happen following an homogeneous Poisson process.

Q = {q1, q2, q3, q4}
δ(q1, q2) = q2 [β]
δ(q2, q1) = q2 [β]
δ(q4, q2) = q3 : 1/2, q4 : 1/2 [ν]
δ(q2, q4) = q3 : 1/2, q4 : 1/2 [ν]

R = βS0/ν.
Epidemic Rate

Microscopic Dynamic Kermack-McKendrick
SIR model.8<: S ′ = −βSI

I ′ = βSI − νI
R′ = νI .

Macroscopic Dynamic

Question

Power of such models?
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Relating Models

1 Prove equivalence of models:

ex: f : R → R is A-computable iff it is B-computable.

2 Discuss discretizations of computable functions:

ex: If f : R → R is A-computable, f (N) ⊂ N, then
DP(f ) = f|N is B-computable.

3 Generalize classical discrete results to the continuous case:

ex: Class PΣ can be characterized à la [Bellantoni Cook’92]
over any-arbitrary structure Σ.

4 Discuss Hardness of Associated Problems:

ex: Completeness results for (polynomialy bounded time)
reachability problem.
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Relating Models

1 Prove equivalence of models:

ex: f : R → R is A-computable iff it is B-computable.

2 Discuss discretizations of computable functions:

ex: If f : R → R is A-computable, f (N) ⊂ N, then
DP(f ) = f|N is B-computable.

3 Generalize classical discrete results to the continuous case:

ex: Class PΣ can be characterized à la [Bellantoni Cook’92]
over any-arbitrary structure Σ.

4 Discuss Hardness of Associated Problems:

ex: Completeness results for (polynomialy bounded time)
reachability problem.

In relations with Paulin de Naurois’s PhD
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Bellantoni and Cook’s Idea

Theorem (Bellantoni-Cook92)

Distinguishing “safe”arguments from “normal”arguments
captures polynomial time.

Add( s(;x) ; y ) = s( ; Add(x;y) )

Normal Parameter Safe Parameter

1 A normal argument can become safe, but not vice versa.

2 Recurrence parameters must be normal

3 Recurrence value must be safe
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Inclusion Relations
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Results (with Cucker, de Naurois, Marion)

Z2 = ({0, 1},=, 0, 1)

PSPACE Leivant-Marion95

PH Bellantoni94

NP Bellantoni94

P Bellantoni-Cook92, Leivant94

NC Leivant98

NC1 Bloch94, Leivant-Marion2000

K = (K, {opi}i∈I , rel1, . . . , rell , 0, 1)

PK Safe Recursion (S.R)

∆i
K S.R with Predicative Minimisations

D∆i
K S.R. with Digital Predicative Minimisations

PARK S.R with Substitutions

PATK S.R. with Predicative Substitutions

DPATK S.R. with Digital Predicative Substitutions
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Relating Models

1 Prove equivalence of models:

ex: f : R → R is A-computable iff it is B-computable.

2 Discuss discretizations of computable functions:

ex: If f : R → R is A-computable, f (N) ⊂ N, then
DP(f ) = f|N is B-computable.

3 Generalize classical discrete results to the continuous case:

ex: Class PΣ can be characterized à la [Bellantoni Cook’92]
over any-arbitrary structure Σ.

4 Discuss Hardness of Associated Problems:

ex: Completeness results for (polynomialy bounded time)
reachability problem.

In relations with Emmanuel Hainry’s PhD
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R-Recursive Functions: R → R
[Moore96]’s Idea

REC :{
f (x, 0) = g(x)

f (x, y + 1) = h(x, y , f (x, y))

INT :{
f (x, 0) = g(x)

∂f
∂y (x, y) = h(x, y , f (x, y))

Classical Settings: Nk → Nl

Rec = [0,S ,U;COMP,REC ,MU].
Continuous Settings: Rk → Rl

G = [0, 1,U;COMP, INT ,MU]

Several problems in [Moore96]
about MU schema.

Corrections & Developments:

[Campagnolo-Moore-Costa2000]
[Mycka2003]
[Mycka-Costa2004]

Continuous Settings: Rk → Rl

L = [0, 1,−1, π, U, θm;COMP, LI ]



Objectives and Framework Some Systems Some Results Perspectives, Discussions

Some results (with Dr. Hainry): Discretizations

E = DP(L)

E4 = DP(L4)

PR = DP(∪nLn)

Rec = DP(H)

En = DP(Ln)

Theorem

There is a minimization operator
UMU with DP(H) = Rec where
H = L+ UMU.
H = [0, 1, U, θ3; COMP, CLI, UMU]

(all other relations from
Campagnolo, Costa, Moore)
DP(f ) = f|N for f (N) ⊂ N.
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Some results (with Dr. Hainry): Recursive Analysis

E(R)

E4(R)

PR(R)

Rec(R)

En(R)

For C = [F ;O], write C∗ for
C∗ = [F ;O,LIM].

Theorem

For functions of class C2 defined
on a compact domain,

L∗ = E(R).

L∗n = En(R).

H∗ = Rec(R)

Theorem

Computable functions over the
reals can be characterized
algebraically in a machine

independent way.
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Relating Models

1 Prove equivalence of models:

ex: f : R → R is A-computable iff it is B-computable.

2 Discuss discretizations of computable functions:

ex: If f : R → R is A-computable, f (N) ⊂ N, then
DP(f ) = f|N is B-computable.

3 Generalize classical discrete results to the continuous case:

ex: Class PΣ can be characterized à la [Bellantoni Cook’92]
over any-arbitrary structure Σ.

4 Discuss Hardness of Associated Problems:

ex: Completeness results for (polynomialy bounded time)
reachability problem.

In relations with Emmanuel Hainry’s PhD + Campagnolo, Graça (PAI)
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A result (with Graça, Hainry, Campagnolo)

Theorem

Let a and b be computable reals. A function f : [a, b] → R is
computable iff it is GPAC-computable.
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General Picture

GPAC generated functions are differentially algebraic, hence
analytic, and computable.

computable functions include non-analytic functions: e.g.
min(0, x).

. . .

Reasonable models?

. . .

Smooth systems can simulate Turing machines in a finite time.

Discontinuous/PCD systems can recognize arithmetical sets
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Objective A

Understand whether there might be an unifying concept for
continuous systems similar to Church thesis.

A candidate: polynomial differential equations.
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Some Arguments I: Modeling Strength

All examples considered in [Hirsh-Smale74], [Murray93] are of
this type.

Examples: Lorenz’s system, Lotka-Volterra,
Kermack-McKendrick SIR model, . . .

Strong stability properties [Graça2007]

E.g.: Any system x ′ = f (t, x), where each component of f is a
composition of polynomial and GPAC-generated functions is
equivalent to a higher dimensional system y ′ = p(t, y), where
p is a vector of polynomials.
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Some Arguments II: Computability

This corresponds to a notion of machine

Differential Analyser
Analog Electronic
. . .

Classical Recursion can be related to GPAC-computability

A function is GPAC-computable iff its is computable, over
compact domains.
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Objective B

Understand if there is a well-founded complexity theory for
continuous time systems.

Obstacles:

Time, Space contraction phenomena.

Lack of model relations.
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A Discussion I: General Systems

Theorem (Vergis et al86)

The error of Euler’s method for
y ′ = f (y), y(0) = x is

||y(T )−y∗N || ≤
h

λ

[
R

2
+

σ

h2

]
(eTλ−1),

where

y∗N is approximation after N steps.

h is the step.

λ is Lipschitz constant for f on
[0,T ]

R = max ||y ′′(t)||

N is polynomial in R and 1/ε, but not
in T !

Same phenomena for all
numerical methods.

[Smith2006] Under some
adhoc conditions (e.g.
assumptions on
solutions), one can
eliminate exponential
dependence in T .

Are nicer statements
possible, or is this
inherent to numerical
methods?

[Vergis et al86] The error of Euler’s method for y ′ = f (y),
y(0) = x is

||y(T )− y∗N || ≤
h

λ

[
R

2
+

σ

h2

]
(eTλ− 1), (2)

where
y∗
N is approximation after N steps.

h is the step.
λ is Lipschitz constant for f on [0,T ]
R = max{||y ′′(t)||
t ∈ [0,T ].

N is polynomial in R and 1/ε, not in T !
[Smith2006] Under some adhoc-conditions (e.g. on solutions),
one can eliminate exponential dependence in T .
Are nicer statements possible, or is this inherent to numerical
methods?
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A Discussion II: General Systems

1 Can we characterize P(R) algebraically?

2 Can Bellantoni-Cook’s idea be used for distinguishing two
types of arguments in involved schemas?

3 Can P(R) be related to a notion of GPAC-computability
where error is given as a function of a polynomial of t?
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A Discussion III: Other Approaches

Dissipative systems

[Gori-Meer2002]: An abstract settings to discuss minimizers of
a Lyapunov function E .
[BenHur-Siegelmann-Fishman2002]: A settings for studying
exponentially converging flows (eg. [Faybusovich91]’s flow to
solve linear programming problems).

Classical Problems Seen with the Toolbox of Analysis

E.g. [Costa-Mycka2005]: Two classes of R-recursive functions
can be separated iff P 6= NP.
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Objective C

Better understand the effects of noise and imprecisions on
computations.

Obstacles:

Models of noise and imprecision.

Contradicting results.
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A Discussion I: Some (discrete-time) approaches

Probabilistic Noise: P(xi+1 ∈ B) =
∫
q z(f (xi , ai ), q)dµ

Bounded space implies regular for a wide class of systems
[Maass-Orponen98].
Gaussian noise forbid recognition of arbitrary regular languages
[Maass-Sontag99].

Non-deterministic Noise: ||xi+1 − f (xi )|| ≤ ε
[Fränzle99]: (ad-hoc) Robustness implies decidability over
compact domains.
[Asarin-Bouajjani02]: (Reach = Reachω) Robustness implies
decidability
. . .
[Asarin-Collins05]: Stochastic Turing machines compute
precisely Π2

[Henzinger-Raskin99]: Open relations still yield to
undecidability
[Gupta-Henzinger-Jagadeesan97]: Perturbing trajectories still
yield to undecidability.
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A Discussion II: Some directions

1 Continuous-time systems?

2 Frontier between decidability/undecidability according to
models of noise:

Do undecidability results still hold for robust systems?

3 How complexity (i.e. not only computability) increase with
noise?

Models of noise, and imprecisions, and the relevance of formal
statements about them.
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Objective D

Understand new models (e.g. sensor networks, or
telecommunication networks) using continuous systems.

Difficulties:

Justification of the microscopic/macroscopic transformation.

Legitimacy of models.

Power of models.
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A Discussion I: Second example

_+

+ ++
+

++
+++

+
+ +

++

++
++

_

_
__ _
_

_

_ _
_

_
__

_


++ → 1

2+, 1
2− [λ]

+− → + [λ]
−+ → + [λ]
−− → 1

2+, 1
2− [λ]

This corresponds to a description of a polynomial ordinary
differential equation.
This population protocol computes

√
2/2.

1 Can all algebraic numbers be computed?

2 Can we characterize the input/output relation?
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A Discussion II: Statements

Statements:

The idea of going to thermodynamic limit is not new.

But classical models of distributed algorithmic forbid
macroscopic approximation (non spatial homegeneity).

Previously mentioned models legitimate a macroscopic
approximation.
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A Discussion III: Directions

1 Investigate microscopic/macroscopic approximation (ex:
variants of population protocols).

2 Investigate their computational power:

equilibria, stability.
input / output relation.

3 Investigate suitable models

for systems (e.g. population protocols)
for dynamic of systems (e.g. evolutionary game theory)

and their relations.

All these models are particular continuous time systems
(polynomial ordinary differential equations).
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