
Chapter 4

On the Links Between Several Models

In this chapter, we present some of our results of comparisons between several continuous time models. We
first focus on the General Purpose Analog Computer from Shannon [Shannon, 1941], and on polynomial
Cauchy problems. Later on, we will focus on subclasses of R-recursive functions. R-recursive functions were
introduced by [Moore, 1998]. We relate them to computable functions in the sense of recursive analysis.

All the results of this chapter have been obtained in collaborations. The results about the GPAC are the
fruit of a collaboration with Manuel Campagnolo, Daniel Graça and Emmanuel Hainry (our PhD student).
The results on R-recursive functions also belong to the PhD thesis of Emmanuel Hainry.

4.1 A Church-Turing Thesis for Analog Computations?

According to Church-Turing thesis, all sufficiently powerful “reasonable” models of digital computations are
computationally equivalent to Turing machines.

No similar result is known when considering analog computations. Many analog models have been studied,
including the BSS model [Blum et al., 1989], Moore’s R-recursive functions [Moore, 1998], neural networks
[Siegelmann, 1999], or computable analysis [Pour-El and Richards, 1989], [Ko, 1991], [Weihrauch, 2000a],
but none is able to affirm itself as “universal”. In part, this is due to the fact that few relations between
them are known. Moreover some of the known results assert that these models are not equivalent, making
the idea of a Church-Turing thesis for analog models an apparently unreachable goal. For example the BSS
model allows discontinuous functions while only continuous functions can be computed in the framework of
computable analysis [Weihrauch, 2000b].

In this chapter, we will show that some of our results prove that this goal may not be as far as those
results suggest.

4.2 GPAC, Polynomial Cauchy Problems and Recursive Analysis:
three equivalent paradigms

First, we proved the equivalence of two models of analog computations that were previously considered
non-equivalent: computable analysis and General Purpose Analog Computer (GPAC) from Claude Shannon.

4.2.1 Introduction

The GPAC was introduced in 1941 by Shannon [Shannon, 1941] as a mathematical model of an analog device:
the Differential Analyzer [Bush, 1931]. The Differential Analyzer was used from the 1930s to the early 60s to
solve numerical problems. For example, Differential Analysers were used to solve ballistics problems. These
devices were first built with mechanical components and later evolved to electronic versions. A GPAC may
be seen as a circuit built of interconnected black boxes, whose behavior is given by Figure 4.1, where inputs

1

are functions of an independent variable called the time (in an electronic Differential Analyzer, inputs usually
correspond to electronic voltages). These black boxes add or multiply two inputs, generate a constant, or
solve a particular kind of Initial Value Problem defined with Ordinary Differential Equations (ODE for
short).

While many of the usual real functions are known to be generated by a GPAC, a notable exception is the
Gamma function Γ(x) =

∫∞
0

tx−1e−tdt [Shannon, 1941]. If we have in mind that this function is known to
be computable under the computable analysis framework [Pour-El and Richards, 1989], the previous result
has long be interpreted as evidence that the GPAC is a somewhat weaker model than computable analysis.

However, we believe that this limitation is due to the notion of GPAC-computability rather than the
model itself.

The GPAC usually computes in “real time” - a very restrictive form of computation. But if we change
this notion of computability to the kind of “converging computation” used in recursive analysis, then it has
been shown recently that the Γ function becomes computable [Graça, 2004].

In the rest of this section, we will reinforce strongly this result by proving that actually any computable1

function over a compact domain can be computed by a GPAC in this sense. Reciprocally, we show that
under some reasonable hypothesis, the converse is also true.

In other words, the computational power of GPAC coincides with that of recursive analysis.
Observe that it has been shown in [Graça et al., 2005] that Turing machines can be simulated by GPACs.

We showed in some way that this can be extended to type 2 Turing machines, or to oracle Turing machines
that are used in recursive analysis: see [Weihrauch, 2000a].

k k
u

v
+ u + v

u

v

∫
w

{
w′(t) = u(t)v′(t)
w(t0) = α

uv×u

v

Constant Addition

Integration Multiplication

Figure 4.1: The basic units of a GPAC.

4.2.2 The GPAC

The GPAC was originally introduced by Shannon in [Shannon, 1941], and further refined in [Pour-El, 1974],
[Lipshitz and Rubel, 1987], [Graça and Costa, 2003], and [Graça, 2004]. The model basically consists of
families of circuits built with the basic units presented in Figure 4.1. Not all kinds of interconnections are
allowed since this may lead to undesirable behavior (e.g. non-unique outputs). For further details, refer to
[Graça and Costa, 2003].

Shannon, in his original paper, already mentions that the GPAC generates polynomials, the exponential
function, the usual trigonometric functions, and their inverses. More generally, Shannon claims that all
functions generated by a GPAC are differentially algebraic, i. e. they satisfy the condition of the following
definition:

Definition 1 The unary function y is differentially algebraic (d.a.) on the interval I if there exists a nonzero
polynomial p with real coefficients such that

p
(
t, y, y′, ..., y(n)

)
= 0, on I. (4.1)

1If not otherwise stated, the expression “computable function” is interpreted in the computable analysis sense.

2

∫ ∫ ∫-1

t
y3

y2

y1

 y′1 = y3 & y1(0) = 1
y′2 = y1 & y2(0) = 0
y′3 = −y1 & y3(0) = 0

Figure 4.2: Generating cos and sin via a GPAC: circuit version on the left and ODE version on the right.
One has y1 = cos, y2 = sin, y3 = − sin.

As a corollary, and noting that the Gamma function Γ(x) =
∫∞
0

tx−1e−tdt is not d.a. [Rubel, 1989], we
get that

Proposition 1 The Gamma function cannot be generated by a GPAC.

However, Shannon’s proof relating functions generated by GPACs with d.a. functions was incomplete
(as pointed out and partially corrected in [Pour-El, 1974], [Lipshitz and Rubel, 1987]). Actually, as pointed
out in [Graça and Costa, 2003], the original GPAC model suffers from several problems of ill-definitions.

4.2.3 Polynomial Cauchy Problems

However, for the more robust class of GPACs defined in [Graça and Costa, 2003], the following stronger
property holds:

Proposition 2 A scalar function f : R → R is generated by a GPAC iff it is a component of the solution
of a system

y′ = p(y, t), (4.2)

where p is a vector of polynomials. That is to say, iff it is a projection of a solution of a polynomial Cauchy
problem, according to the the terminology of Chapter 1. A function f : R → Rk is generated by a GPAC iff
all of its components are.

From now on, we will mostly talk about GPACs as being systems of ODEs of the type (4.2), that is to
say as polynomial Cauchy problems according to the terminology of Chapter 1.

For a concrete example of the previous proposition, see Figure 4.2. GPAC generable functions (in the
sense of [Graça and Costa, 2003]) are obviously d.a.. Another interesting consequence is the following (recall
that solutions of analytic ODEs are always analytic – cf. [Arnold, 1992]):

Corollary 1 If f is a function generated by a GPAC, then it is analytic.

As we have seen in Proposition 1, the Gamma function is not generated by a GPAC. However, as we said,
it has been recently proved that it can be computed by a GPAC if we use a notion of GPAC computability
inspired by the notion used in recursive analysis [Graça, 2004].

Notice that in Shannon’s original definition of the GPAC, nothing is assumed about the constants and
initial conditions of the ODE (4.2). In particular, there can be non-computable reals. This kind of GPAC
can trivially lead to super-Turing computations. To avoid this, the model of [Graça, 2004] can actually be
reinforced as follows:

Definition 2 A function f : [a, b] → R is GPAC-computable 2 iff there exists some computable polynomial
p : Rn+1 → Rn and n− 1 computable values α1, ..., αn−1 such that:

1. (y1, ..., yn) is the solution of ODE y′ = p(y, t) with initial condition (α1, ..., αn−1, x) set at time t0 = 0
2Note that in this paper, the term GPAC-computability refers to this particular notion. The expression “generated by a

GPAC” corresponds to Shannon’s notion of computability.

3

2. There are i, j ∈ {1, ..., n} such that limt→∞ yj(t) = 0 and |f(x)− yi(t)| ≤ yj(t).3

We remark that α1, . . . , αn−1 are auxiliary parameters needed to compute f .
Daniel Graça’s result can then be stated as.

Proposition 3 ([Graça, 2004]) The Γ function is GPAC-computable.

4.2.4 Computable Analysis

Recursive analysis, or computable analysis, was introduced by Turing [Turing, 1936], Grzegorczyk [Grzegorczyk, 1957],
and Lacombe [Lacombe, 1955].

The idea underlying computable analysis is to extend the classical computability theory so that it might
deal with real quantities. See [Weihrauch, 2000a] for an up-to-date monograph of computable analysis from
the computability point of view, or [Ko, 1991] for a presentation from a complexity point of view.

Let νQ : N → Q be the following representation4 of rational numbers by integers:

νQ(〈p, r, q〉) 7→ p− r

q + 1
,

where 〈., ., .〉 : N3 → N is a computable bijection.
A sequence of integers (xi)i∈N represents real x if (νQ(xi)) converges quickly toward x, denoted by

(xi) ; x, in the following sense:
∀i, |νQ(xi)− x| < exp(−i).

For a sequence of k-tuples (xi)i∈N, we write (xi) ; x when it holds componentwise.

Definition 3 (Recursive Analysis [Weihrauch, 2000a]) We say that a function f : Rk → R is com-
putable if there exists a recursive functional Φ : (Nk)N × N → N such that for all x ∈ Rk, for all sequence
X = (xn) ∈ (Nk)N, we have (Φ(X, j))j ; f(x) whenever X ; x.

A function f : Rk → Rl, with l > 1, will be said computable if its projections are.

4.2.5 Our Result

Our result, proved in [Bournez et al., 2006], is the following: if a real function f defined over a compact
interval is computable, then it is GPAC-computable. Conversely, we show that if f is defined over a compact
interval is GPAC computable, then it is computable.

In other words:

Theorem 1 (GPAC=Recursive Analysis) A function f : [a, b] → R is computable if and only if it is
GPAC computable.

In other words, GPACs, polynomial Cauchy problems, and recursive analysis are three equivalent paradigms
of computation.

Corollary 2 (polynomial Cauchy problems vs Recursive Analysis) A function f : [a, b] → R is
computable if and only if it corresponds to a limit of a function definable by a polynomial Cauchy prob-
lem in the sense of Chapter 1.

This may be useful to link these results with our remarks in chapters 1 and 2, on the modelling power
of polynomial Cauchy problems, and with the links with a possible Church-Turing thesis for analog models.

From the point of view of computations, our results suggest that polynomial Cauchy problems, and
GPACs are real counterparts of Turing machines.

We now go to another series of results, which relate R-recursive functions and recursive analysis.
3We assume that y(t) is defined for all t ≥ 0.
4Other natural representations of rational numbers can be used, and lead to the same class of computable functions: see

[Weihrauch, 2000a].

4

4.3 R-Recursive Functions and Recursive Analysis

4.3.1 R-Recursive Functions

In [Moore, 1996], Moore introduced a class of functions over the reals inspired from the classical characteriza-
tion of computable functions over integers: observing that the continuous analogue of a primitive recursion is
a differential equation, Moore proposes to consider the class of R-recursive functions, defined as the smallest
class of functions containing some basic functions, and closed by composition, differential equation solving
(called integration), and minimization.

This class of functions, also investigated in articles such as [Mycka, 2003b], [Mycka and Costa, 2006a],
[Mycka and Costa, 2006b],[Mycka and Costa, 2005], can be related to functions that can be generated by
GPACs: see [Moore, 1996], corrected by [Graça and Costa, 2003].

Putting aside possible objections about the physical feasibility of the µ-operator considered in paper
[Moore, 1996], the original definitions of this class in [Moore, 1996] suffer from several technical problems5.
At least some of them make it possible to use a “compression trick” (another incarnation of Zeno’s paradox)
to simulate in a bounded time an unbounded number of discrete transitions in order to recognize arithmetical
reals [Moore, 1996].

In the series of papers [Campagnolo et al., 2000], [Campagnolo et al., 2002], [Campagnolo, 2001], Cam-
pagnolo, Costa and Moore propose to consider the (well-defined) class L of functions over the reals corre-
sponding to the smallest class of functions containing some basic functions and closed by composition and
linear integration. Class L is related to functions elementarily computable over integers in classical recur-
sion theory and functions elementarily computable over the real numbers in recursive analysis (discussed
in [Zhou, 1997]): any function of class L is elementarily computable in the sense of recursive analysis, and
conversely, any function over the integers elementarily computable in the sense of classical recursion theory
is the restriction to integers of a function that belongs to L [Campagnolo et al., 2002], [Campagnolo, 2001].

These results establish some links between R-recursive functions, GPAC and classical computability over
the integers.

4.3.2 Presentation of Our Results

However, the previous results do not provide a characterization of all functions over the reals that are
elementarily computable in the sense of recursive analysis.

We proved that this is possible to get one.

Theorem 2 For functions over the reals of class C2 defined on a product of compact intervals with rational
endpoints, f is elementarily computable in the sense of recursive analysis iff it belongs to the smallest class
of functions containing some basic functions and closed by composition, linear integration and a simple limit
schema.

We extended this theorem to a characterization of all higher levels of the Grzegorczyk hierarchy (observe
that previous theorem is a consequence of this theorem).

Theorem 3 For functions over the reals of class C2 defined on a product of compact intervals with rational
endpoints, f is computable in the sense of recursive analysis in level n ≥ 3 of the Grzegorczyk hierarchy iff f
belongs to the smallest class of functions containing some (other) basic functions and closed by composition,
linear integration and a simple limit schema.

Furthermore, we extended this to computable functions in the sense of recursive analysis, and not only
to elementarily computable functions. Indeed, we proved that this is possible to define a rather natural
minimization schema, so that

5For example not well defined functions are considered, ∞× 0 is always considered as 0, etc. . . . Some of them are discussed
in [Campagnolo et al., 2000], [Campagnolo et al., 2002], [Campagnolo, 2001] and even in the original paper [Moore, 1996].

5

Theorem 4 For functions over the reals of class C2 defined on a product of compact intervals with rational
endpoints, f is computable in the sense of recursive analysis iff f belongs to the smallest class of functions
containing some basic functions and closed by composition, linear integration, minimization and a simple
limit schema.

We now present formally these results.

4.3.3 Mathematical Preliminaries

The following well-known mathematical results can help to motivate some of our schemas: see for example
[Ramis et al., 1995] for a proof of the first. The second, very simple to establish, is explicitly proved in
[Bournez and Hainry, 2005].

Lemma 1 (Implicit Function Theorem) Let f : D×I ⊂ Rk+1 → R, where D×I is a product of closed
intervals, be a function of class6 Ck, for k ≥ 1. Assume that for all x ∈ D, the equation f(x, y) = 0 has
exactly one solution y0 and that this y0 belongs to the interior of I. Assume for all x that

∂f

∂y
(x, y0) 6= 0

in the corresponding root y0. Then function g : Rk → R that maps x to the corresponding root y0 is defined
over D and also of class Ck.

Lemma 2 (Simple Convergence Result) Let F : R × V ⊂ Rk+1 → Rl be a function of class C1, and
β(x) : V → R, K(x) : V → R be some continuous functions. Assume that for all t and x,

‖∂F

∂t
(t,x)‖ ≤ K(x) exp(−tβ(x)).

Let D be the subset of the x ∈ V with β(x) > 0.
Then,

• for all x ∈ D, F (t,x) has a limit L(x) in t = +∞.

• Function L(x) is a continuous function.

• Furthermore

‖F (t,x)− L(x)‖ ≤ K(x) exp(−tβ(x))
β(x)

.

4.3.4 Classical Recursion Theory

Classical recursion theory deals with functions over integers. Most classes of classical recursion theory can
be characterized as closures of a set of basic functions by a finite number of basic rules to build new functions
[Clote, 1998], [Rose, 1984], [Odifreddi, 1992]: given a set F of functions and a set O of operators on functions
(an operator is an operation that maps one or more functions to a new function), [F ;O] will denote the
closure of F by O.

Proposition 4 (Classical Settings: see e.g. [Rose, 1984], [Odifreddi, 1992]) Let f be a function from
Nk to N for k ∈ N.

Function f is
6Recall that function f : D ⊂ Rk → Rl, k, l ∈ N, is said to be of class Cr if it is r-times continuously differentiable on D. It

is said to be of class C∞ if it is of class Cr for all r.

6

• elementar iff it belongs to

E = [0, S, U,+,	; COMP,BSUM,BPROD];

• in class En of the Grzegorczyk hierarchy (n ≥ 3) iff it belongs to

En = [0, S, U,+,	, En−1; COMP,BSUM,BPROD];

• primitive recursive iff it belongs to

PR = [0, S, U ; COMP,REC];

• recursive7 iff it belongs to
Rec = [0, S, U ; COMP,REC,MU].

A function f : Nk → Nl is elementar (resp: primitive recursive, recursive) iff its projections are elementar
(resp: primitive recursive, recursive).

The basic functions 0, (Um
i)i,m∈N, S,+,	 and the operators BSUM, BPROD, COMP, REC, MU are

given by

1. 0 is constant function 0;

2. Um
i : Nm → N, Um

i : (n1, . . . , nm) 7→ ni;

3. S : N → N, S : n 7→ n + 1;

4. + : N2 → N, + : (n1, n2) 7→ n1 + n2;

5. 	 : N2 → N, 	 : (n1, n2) 7→ max(0, n1 − n2);

6. BSUM : bounded sum. Given f , h = BSUM(f) is defined by h : (x, y) 7→
∑

z<y f(x, z);

7. BPROD : bounded product. Given a function f , the bounded product h = BPROD(f) is defined by
h : (x, y) 7→

∏
z<y f(x, z);

8. COMP : composition. Given f1, . . . , fp and g, h = COMP(f1, . . . , fp, g) is defined as the function
verifying h(x) = g(f1(x), . . . , fp(x));

9. REC : primitive recursion . Given f and g, h = REC(f, g) is defined as the function verifying
h(x, 0) = f(x) and h(x, n + 1) = g(x, n, h(x, n));

10. MU : minimalization. Given a function f , function µf is defined on all x for which there is a
y such that ∀z ≤ y, f(x, z) is defined and f(x, y) = 0. For such x, the minimalization of f is
µf : x 7→ inf{y; f(x, y) = 0}.

11. Functions En, involved in the definition of the classes En of the Grzegorczyk Hierarchy, are defined
by induction as follows (when f is a function, f [d] denotes its d-th iterate: f [0](x) = x, f [d+1](x) =
f(f [d](x))):

(a) E0(x, y) = x + y, E1(x) = (x + 1)× (y + 1), E2(x) = 2x;

(b) En+1(x) = E
[x]
n (1) for n ≥ 2.

7This class is often called partial recursive since it contains partial functions as opposed to the class of total recursive
functions.

7

We have (see [Rose, 1984], [Odifreddi, 1992])

E ⊆ PR ⊆ Rec,

and the inclusions are strict. One has also
E3 = E

and
PR = ∪iEi.

If TIME(t) and SPACE(t) denote the classes of functions that are computable with time and space t, then,
for all n ≥ 3,

En = TIME(En) = SPACE(En),

and
E = TIME(E),

E = SPACE(E)

and
PR = TIME(PR) = SPACE(PR).

Class PR corresponds to functions computable using For-Next programs. Class E corresponds to com-
putable functions bounded by some iterate of the exponential function. At most two nested For-Next loops
are required for a function of class E , whereas general functions from class PR may require an arbitrary high
number of such nested loops [Rose, 1984], [Odifreddi, 1992].

Let’s close this presentation by observing that the minimalization operator can be reinforced into a unique
minimalization operator as follows.

Proposition 5 A function f from Nk to Nl, for k, l ∈ N, is recursive iff its projections belong to

[0, U, S; COMP,REC,UMU]

where operator UMU is defined as follows:

1. UMU: unique minimalization. Given f , that satisfies that for all x that there is at most one y with
f(x, y) defined and equals to 0, the unique minimalization of f , denoted by !µ(f)(x), is defined on all
x for which there is a (unique) y with f(x, y) = 0. For such x, !µ(f)(x) is defined as that unique y.

In classical computability, more general objects than functions over the integers can be considered, in
particular functionals, i.e. functions Φ : (Nm)N × Nk → Nl. A functional will be said to be elementarily (or
primitive recursively, recursively) computable when it belongs to the corresponding8 class.

In recursive analysis, a function f over the real numbers will be said elementarily (respectively En) com-
putable if the corresponding functional Φ in definition 3 is. The class of computable functions (respectively
elementarily computable, En computable) over the reals will be denoted by Rec(R) (resp. E(R), En(R)).

8Formally, a function f over the integers can be considered as functional f : (V, ~n) 7→ f(~n). Similarly, an operator Op on
functions f1, . . . , fm over the integers can be extended to an operator over functionals by fixing first argument Op(F1, . . . , Fm) :
(V, ~n) 7→ Op(f1(V, .), . . . , fm(V, .))(~n).

In that spirit, given some set F of basic functions Nk → Nl and a set O of operators on functions over the integers, we will
still (abusively) denote by [f1, . . . , fp; O1, . . . , Oq] for the smallest class of functionals that contains basic functions f1, . . . , fp,
plus the functional Map : (V, n) → Vn, the nth element of sequence V , and which is closed by the operators O1, . . . , Oq . For
example, a functional will be said elementarily computable iff it belongs to E = [Map, 0, S, U, +,	; COMP, BSUM, BPROD].

8

4.3.5 Results from Campagnolo, Costa, Moore

Following the original ideas from [Moore, 1996], but observing that the minimization schema considered
in [Moore, 1996] is the source of many technical problems, Campagnolo, Costa and Moore proposed in
[Campagnolo et al., 2000], [Campagnolo et al., 2002], [Campagnolo, 2001] not to consider classes of functions
over the reals defined in analogy with the full class of recursive functions, but with subclasses. Indeed, they
consider classes built in analogy with the class of elementar functions over the integers and the classes of the
Grzegorczyk hierarchy over the integers. Furthermore, they proposed to restrict the integration schema to a
simpler (and better defined) linear integration schema.

We call real extension of a function f : Nk → Nl a function f̃ from Rk to Rl whose restriction to Nk is f .

Definition 4 ([Campagnolo, 2001, Campagnolo et al., 2002]) Let L and Ln be the classes of func-
tions f : Rk → Rl, for some k, l ∈ N, defined by

L = [0, 1,−1, π, U, θ3; COMP,LI]

and
Ln = [0, 1,−1, π, U, θ3, En−1; COMP,LI]

where the basis functions 0, 1, −1, π, (Um
i)i,m∈N, θ3, En and the schemas COMP and LI are defined as

follows:

1. 0, 1,−1, π are the corresponding constant functions; Um
i : Rm → R are, as in the classical settings,

projections: Um
i : (x1, . . . , xm) 7→ xi;

2. θ3 : R → R is defined as θ3 : x 7→ x3 if x ≥ 0, 0 otherwise.

3. En: for n ≥ 3, let En denote a monotone real extension of the function expn over the integers defined
inductively by exp2(x) = 2x, expi+1(x) = exp[x]

i (1).

4. COMP: composition is defined as in the classical settings: Given f and g, h = COMP(f, g) is the
function verifying h(x) = g(f(x));

5. LI: linear integration. From g and h, LI(g, h) is the maximal solution of the linear differential equation
∂f
∂y (x, y) = h(x, y)f(x, y) with f(x, 0) = g(x).

In this schema, if g goes to Rn, f = LI(g, h) also goes to Rn and h(x, y) is a n×n matrix with elements
in L.

These classes contain usual functions like id : x 7→ x, sin, cos, exp, +,×, x 7→ r for all rational r, but only
total functions, and C2 functions[Campagnolo, 2001], [Campagnolo et al., 2002].

A major contribution of [Campagnolo et al., 2002], [Campagnolo, 2001] is to relate these classes of func-
tions over the reals to the previous classes over the integers. In order to compare functions over the reals
with functions over the integers, we introduce the following notation: given some class C of functions from
Rk to Rl, we write DP(C) (DP stands for discrete part) for the class of functions from Nk to Nl which have
a real extension in C.

Proposition 6 ([Campagnolo et al., 2002, Campagnolo, 2001]) • DP(L) = E;

• DP(Ln) = En.

Actually, stronger inclusions were proved in [Campagnolo et al., 2002, Campagnolo, 2001]:

Proposition 7 ([Campagnolo et al., 2002, Campagnolo, 2001]) • L ⊂ E(R).

• Ln ⊂ En(R).

However there is no hope to get the other inclusion, since E(R) and En(R) contain partial functions,
whereas classes L and Ln are classes of total functions.

9

4.3.6 Characterization of Elementary Computable Functions

We proposed to consider new classes of functions that turn out to precisely correspond to classes E(R) and
En(R).

To do so, we restrict to functions defined over a compact domain. One motivation is that elementarily
computable functions over an arbitrary domain are not stable by composition.

For technical reasons, we need (actually for the next section) to replace the previous LI schema by the
following CLI schema.

Definition 5 (Schema CLI) From functions g, h, and c, with

• the norm of each of the partial derivatives of h bounded by c, except possibly its partial derivative in t,

CLI(g, h, c) is a solution9 of the linear differential equation

∂f

∂y
(x, y) = h(x, y)f(x, y)

with f(x, 0) = g(x).
In this schema, if g goes to Rn, f = CLI(g, h, c) goes to Rn+1 and h(x, y) is a (n + 1)× (n + 1) matrix

with elements in L.

One can show that replacing LI schema by CLI schema does not change the previous discussion. Indeed,
we have.

Proposition 8
L = [0, 1,−1, π, U, θ3; COMP,LI]

= [0, 1,−1, π, U, θ3; COMP,CLI]

and
Ln = [0, 1,−1, π, U, θ3, En−1; COMP,LI]

= [0, 1,−1, π, U, θ3, En−1; COMP,CLI]

Furthermore, we introduce a limit schema. The idea of adding a limit operator has already been inves-
tigated in papers like [Mycka and Costa, 2004], [Mycka, 2003b]. However, unlike Costa and Mycka, we are
interested in R-subrecursive functions, and not to build a whole hierarchy above recursive functions. As a
consequence, our limit schema is more restricted than the one of these articles.

The conditions that we impose on our LIMw schema are inspired from Lemma 2.

Definition 6 (Schéma LIM) Let f : R×D ⊂ Rk+1 → Rl and K : D → R be two functions, and β : D → R
be a polynomial function with the following hypothesis: for all x, t ≥ ‖x‖|,

‖∂f

∂t
(t,x)‖ ≤ K(x) exp(−tβ(x)).

Then, on any closed product of intervals I ⊂ Rk on which β(x) > 0,

F (x) = lim
t→+∞

f(t,x)

exits by Lemma 2.
If F is of class C2, then we define LIMw(f,K, β) as this function F : I → R.

We can now define our classes.
9Actually, any restriction to a product of closed intervals of the maximal solution

10

Definition 7 (Classes L∗, L∗n) Classes L∗, and L∗n, for n ≥ 3, of functions from Rk to Rl, for k, l ∈ N,
are defined as the following classes.

L∗ = [0, 1,−1, U, θ3; COMP,CLI,LIM],

and
L∗n = [0, 1,−1, U, θ3, En−1; COMP,CLI,LIM].

These classes can contain some partial functions, and extend the previous classes. Indeed, we have.

Proposition 9
L (L∗,

and
Ln (L∗n

for all n ≥ 3.

Furthermore, we proved in publications [Bournez and Hainry, 2005] and [Bournez and Hainry, 2004a]
that these classes characterize precisely elementary computable functions in the sense of recursive analy-
sis.

Indeed, previous theorems 2 and 3 are formally.

Theorem 2 (Characterization of E(R)) Let f : D ⊂ Rk → Rl be a function over the reals of class C2,
with D a product of compact intervals with rational endpoints.

f is in E(R) if and only if f ∈ L∗.

Actually, this can be generalized to all levels of the Grzegorczyk hierarchy (observe that theorem 2 is the
particular case n = 3 of theorem 3).

Theorem 3 (Characterization of En(R)) Let f : D ⊂ Rk → Rl be a function over the reals of class C2,
with D a product of compact intervals with rational endpoints. Let n ≥ 3.

f is in En(R) if and only if f ∈ L∗n.

A few extensions of these results can be found in our articles, in particular a normal form theorem for
functions of our classes.

4.3.7 Characterization of Computable Functions

We later on proved that this is possible to characterize computable functions, and not only elementarily
computable functions.

To do so, we need to introduce a minimization operator, that makes it possible to simulate discrete
minimization over the integers.

However, this operator needs to be stricter than a simple “return the smallest root” since this idea,
investigated in [Moore, 1996], has shown to be the source of numerous problems, including ill-defined prob-
lems and super-Turing Zeno phenomena. These problems are discussed, and pointed in [Campagnolo, 2001],
[Campagnolo et al., 2002], [Mycka, 2003b], [Mycka, 2003a], [Moore, 1996]. The two papers [Mycka, 2003b],
[Mycka and Costa, 2004] do provide well-defined alternatives, replacing minimalizations by limit-takings.
We propose here to keep to a minimalization schema, not as general as the one from [Moore, 1996].

Our idea is to use the alternative UMU schema, which is equivalent to schema MU for classical com-
putability (see Proposition 5), but has real counterparts which turn out to preserve real computability.

Indeed, motivated by Proposition 5, by Lemma 1 (implicit function theorem), and by the results of
recursive analysis about the computability of zeros of a function (see e.g. [Weihrauch, 2000b] where theorems
6.3.5 and 6.3.8 state that the search of a unique zero is computable), we define our unique-zero-finding
operator UMU as follows:

11

Definition 8 (Schema UMU) Given a differentiable function f from D × I ⊂ Rk+1 to R where D × I is
a product of closed intervals,
if for all x ∈ D,

• y 7→ f(x, y) is a non-decreasing function

• with a unique root y0 on I,

• and such that y0 belongs to the interior of I,

• with
∂f

∂y
(x, y0) > 0,

then UMU(f) is defined on D as follows:

UMU(f) :
{
D −→ R
x 7→ y0 such that f(x, y0) = 0.

We then define.

Definition 9 (Class L+!µ) Let L+!µ be the class of functions over the reals defined by

L+!µ = [0, 1, U, θ3; COMP,CLI,UMU].

One can show that
L ⊂ L+!µ,

and that L+!µ contains only functions of class C2, defined over products of closed intervals.
Our main result in [Bournez and Hainry, 2004b], that constitutes the formalization of previous informal

Theorem 4, is given by the two following two theorems.

Theorem 4 For total functions Rec = DP (L+!µ). I.e:

• If a function from L+!µ extends some total function over the integers, this latter function is total
recursive.

• Any total recursive function over the integers, has a real extension that belongs to L+!µ.

Definition 10 (Class L+!µ + LIMw) Let

L∗!µ = [0, 1, U, θ3; COMP,CLI,UMU,LIMw]

We have the following theorem, proved in [Bournez and Hainry, 2005].

Theorem 5 For functions of class C2 defined over a product of compact intervals with rational endpoints,

L∗!µ = Rec(R).

We proposed a few extensions of this result in this paper.
In other words, one can relate computable functions in the sense of recursive analysis to R-recursive

functions.

12

4.4 Discussions

Concerning analog models, all these results provide a characterization of the power of a natural class of
analog models over the real numbers and provide new insights for understanding the relations between
several analog computational models: GPACs, R-recursive functions, and computable functions in recursive
analysis. Moreover, they prove that no hypercomputation phenomenon can happen for this class of functions.
In particular, we have a class of functions that is robust in some sense. See the discussion of Chapter 3,
about possible notions of robustness.

Concerning recursive analysis, our theorems provide a purely algebraic and machine independent char-
acterization of computable and elementarily computable functions over the reals. Observe the potential
benefits offered by these characterizations compared to classical definitions of these classes in recursive anal-
ysis, involving discussions about higher-order (type 2) Turing machines (see e.g. [Weihrauch, 2000b]), or
compared to characterizations in the spirit of [Brattka, 2003], [Kawamura, 2005].

Furthermore, observe that we prove that computable functions over the reals can be defined by continuous
schema, i.e. by schema on continuous functions. This seems really more natural to use continuous schema
to define continuous functions, than always relying on limit schema over discrete functions [Brattka, 2003],
[Kawamura, 2005].

4.5 A Complexity Theory?

More generally, in this chapter, we related several models, that were à priori distinct.
First we recalled that GPAC generated functions correspond to polynomial Cauchy problems. Then we

proved that if an adequate notion of computation for the GPAC is considered, then GPAC and polynomial
Cauchy problems have exactly the power of recursive analysis: computable functions are the same.

In next section, we related this computational power to some classes of R-recursive functions. We thus
obtained the first algebraic characterization, by analysis, of computable functions in recursive analysis.

The stake to understand a possible Church-Turing thesis for analog models would be to relate these
models to other existing models (see for example all the models discussed in Chapter 3).

But we think that a very important question is to understand if one can go from computability to
complexity. Can we define a notion of complexity, valid, and universally accepted for analog models?

We presented some existing results in this direction in Chapter 3, and we already discussed several leads.
However, the results in this chapter, point out some particular ones.

Concerning first section: Is this possible to relate polynomial-time computable functions to a class of
GPAC-computable functions where the error ε would be given by some polynomial function of time variable
t? And if such results could hold, can they be extended to other complexity classes?

Concerning second section, the book [Ko, 1991] presents a robust notion of polynomial time computable
functions in recursive analysis. Can we characterize complexity classes of recursive analysis algebraically
with schemas such as the ones in this chapter?

Some leads to do so are given by algebraic characterizations of complexity classes in classical complexity.
For example the characterization of Bellantoni and Cook of polynomial time in [Bellantoni and Cook, 1992],
in terms of safe recursive functions. Can these characterizations be adapted to define some classes of R-
recursive functions that would correspond to polynomial time? To polynomial space?

Next chapter is precisely related to characterizations in the spirit of the characterization of polynomial
time of Bellantoni and Cook, but for another class of computational models. Indeed, we consider the Blum
Shub and Smale model, which is a very specific model of computations with a continuous space, but a discrete
time.

13

14

Bibliography

[Arnold, 1992] Arnold, V. I. (1992). Ordinary differential equations. Springer-Verlag, Berlin.

[Bellantoni and Cook, 1992] Bellantoni, S. and Cook, S. (1992). A new recursion-theoretic characterization
of the poly-time functions. Computational Complexity, 2(2):97–110.

[Blum et al., 1989] Blum, L., Shub, M., and Smale, S. (1989). On a theory of computation and complexity
over the real numbers; NP completeness, recursive functions and universal machines. Bulletin of the
American Mathematical Society, 21(1):1–46.

[Bournez et al., 2006] Bournez, O., Campagnolo, M. L., Graça, D. S., and Hainry, E. (2006). The general
purpose analog computer and computable analysis are two equivalent paradigms of analog computation.
In Cai, J., Cooper, S. B., and Li, A., editors, Theory and Applications of Models of Computation, Third
International Conference, TAMC 2006, Beijing, China, May 15-20, 2006, Proceedings, volume 3959 of
Lecture Notes in Computer Science, pages 631–643. Springer.

[Bournez and Hainry, 2004a] Bournez, O. and Hainry, E. (2004a). An analog characterization of elementarily
computable functions over the real numbers. In Diaz, J., Karhumäki, J., Lepisto, A., and Sannella, D. T.,
editors, 31th International Colloquium on Automata Languages and Programming (ICALP’04), volume
3142 of Lecture Notes in Computer Science, pages 269–280, Turku, Finland. Springer.

[Bournez and Hainry, 2004b] Bournez, O. and Hainry, E. (2004b). Real recursive functions and real ex-
tentions of recursive functions. In Margenstern, M., editor, Machines, Computations and Universality
(MCU’2004), volume 3354 of Lecture Notes in Computer Science, Saint-Petersburg, Russia.

[Bournez and Hainry, 2005] Bournez, O. and Hainry, E. (2005). Elementarily computable functions over the
real numbers and R-sub-recursive functions. Theoretical Computer Science, 348(2–3):130–147.

[Brattka, 2003] Brattka, V. (2003). Computability over topological structures. In Cooper, S. B. and Gon-
charov, S. S., editors, Computability and Models, pages 93–136. Kluwer Academic Publishers, New York.

[Bush, 1931] Bush, V. (1931). The differential analyser. Journal of the Franklin Institute, 212(4):447–488.

[Campagnolo et al., 2000] Campagnolo, M., Moore, C., and Costa, J. F. (2000). An analog characteriza-
tion of the subrecursive functions. In Kornerup, P., editor, Proc. 4th Conference on Real Numbers and
Computers, pages 91–109. Odense University Press.

[Campagnolo et al., 2002] Campagnolo, M., Moore, C., and Costa, J. F. (2002). An analog characterization
of the Grzegorczyk hierarchy. Journal of Complexity, 18(4):977–1000.

[Campagnolo, 2001] Campagnolo, M. L. (2001). Computational complexity of real valued recursive functions
and analog circuits. PhD thesis, IST, Universidade Técnica de Lisboa.

[Clote, 1998] Clote, P. (1998). Computational models and function algebras. In Griffor, E. R., editor,
Handbook of Computability Theory, pages 589–681. North-Holland, Amsterdam.

15

[Graça et al., 2005] Graça, D., Campagnolo, M., and Buescu, J. (2005). Robust simulations of Turing
machines with analytic maps and flows. In Cooper, B., Loewe, B., and Torenvliet, L., editors, Proceedings
of CiE’05, New Computational Paradigms, volume 3526 of Lecture Notes in Computer Science, pages
169–179. Springer-Verlag.

[Graça, 2004] Graça, D. S. (2004). Some recent developments on Shannon’s general purpose analog computer.
Mathematical Logic Quarterly, 50(4–5):473–485.

[Graça and Costa, 2003] Graça, D. S. and Costa, J. F. (2003). Analog computers and recursive functions
over the reals. Journal of Complexity, 19(5):644–664.

[Grzegorczyk, 1957] Grzegorczyk, A. (1957). On the definitions of computable real continuous functions.
Fundamenta Mathematicae, 44:61–71.

[Kawamura, 2005] Kawamura, A. (2005). Type-2 computability and Moore’s recursive functions. In Brat-
tka, V., Staiger, L., and Weihrauch, K., editors, Proceedings of the 6th Workshop on Computability and
Complexity in Analysis, volume 120 of Electronic Notes in Theoretical Computer Science, pages 83–95,
Amsterdam. Elsevier. 6th International Workshop, CCA 2004, Wittenberg, Germany, August 16–20, 2004.

[Ko, 1991] Ko, K.-I. (1991). Complexity Theory of Real Functions. Progress in Theoretical Computer Science.
Birkhäuser, Boston.

[Lacombe, 1955] Lacombe, D. (1955). Extension de la notion de fonction récursive aux fonctions d’une ou
plusieurs variables réelles iii. Comptes Rendus de l’Académie des Sciences Paris, 241:151–153.

[Lipshitz and Rubel, 1987] Lipshitz, L. and Rubel, L. A. (1987). A differentially algebraic replacement
theorem, and analog computability. Proceedings of the American Mathematical Society, 99(2):367–372.

[Moore, 1996] Moore, C. (1996). Recursion theory on the reals and continuous-time computation. Theoretical
Computer Science, 162(1):23–44.

[Moore, 1998] Moore, C. (1998). Dynamical recognizers: real-time language recognition by analog computers.
Theoretical Computer Science, 201(1–2):99–136.

[Mycka, 2003a] Mycka, J. (2003a). Infinite limits and r-recursive functions. Acta Cybernetica, 16:83–91.

[Mycka, 2003b] Mycka, J. (2003b). µ-recursion and infinite limits. Theoretical Computer Science, 302:123–
133.

[Mycka and Costa, 2004] Mycka, J. and Costa, J. F. (2004). Real recursive functions and their hierarchy.
Journal of Complexity, 20(6):835–857.

[Mycka and Costa, 2005] Mycka, J. and Costa, J. F. (2005). What lies beyond the mountains, computational
systems beyond the Turing limit. European Association for Theoretical Computer Science Bulletin, 85:181–
189.

[Mycka and Costa, 2006a] Mycka, J. and Costa, J. F. (2006a). Analog computation and beyond. Submitted.

[Mycka and Costa, 2006b] Mycka, J. and Costa, J. F. (2006b). The P 6= NP conjecture. Submitted.

[Odifreddi, 1992] Odifreddi, P. (1992). Classical Recursion Theory, volume 125 of Studies in Logic and the
foundations of mathematics. North-Holland.

[Pour-El, 1974] Pour-El, M. B. (1974). Abstract computability and its relation to the general purpose analog
computer (some connections between logic, differential equations and analog computers). Transactions of
the American Mathematical Society, 199:1–28.

[Pour-El and Richards, 1989] Pour-El, M. B. and Richards, J. I. (1989). Computability in Analysis and
Physics. Springer-Verlag.

16

[Ramis et al., 1995] Ramis, E., Deschamp, C., and Odoux, J. (1995). Cours de Mathématiques Spéciales,
Tome 3, Topologie et éléments d’analyse. Masson.

[Rose, 1984] Rose, H. (1984). Subrecursion. Oxford university press.

[Rubel, 1989] Rubel, L. A. (1989). A survey of transcendentally transcendental functions. American Math-
ematical Monthly, 96(9):777–788.

[Shannon, 1941] Shannon, C. E. (1941). Mathematical theory of the differential analyser. Journal of Math-
ematics and Physics MIT, 20:337–354.

[Siegelmann, 1999] Siegelmann, H. T. (1999). Neural Networks and Analog Computation - Beyond the Turing
Limit. Birkauser.

[Turing, 1936] Turing, A. (1936). On computable numbers, with an application to the Ëntscheidungsproblem.̈
Proceedings of the London Mathematical Society, 42(2):230–265.

[Weihrauch, 2000a] Weihrauch, K. (2000a). Computable Analysis. Springer.

[Weihrauch, 2000b] Weihrauch, K. (2000b). Computable Analysis. Springer.

[Zhou, 1997] Zhou, Q. (1997). Subclasses of computable real valued functions. Lecture Notes in Computer
Science, 1276:156–165.

17

