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1.1 Description of the problem

A set F = {A1,...,An} of n x n matrices is said to be mortal if there exist
integers k > 1 and 41,142,...,ix € {1,...,m} such that A;; A;,---A;, = 0. In
that case F' is also said to be k-length mortal.

We use MORTALITY(n) to denote the class of decision problems “Is a given
set F' consisting of n x n matrices mortal?”and MORTALITY (n, m) to denote “Is
a given set F' of m n X n matrices mortal?”. We also use PAIR-MORTALITY (n)
as a synonym for MORTALITY(n,2). Unless otherwise noted, all matrices are
assumed to have integer-valued entries. But MORTALITY(n, m; IR), for example,
denotes the third problem class for matrices with real-valued entries.

Evidently, MORTALITY(1) and MORTALITY(n, 1) are efficiently decidable.
However, the general complexity of  MORTALITY(2) and
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PAIR-MORTALITY(n), n < 27, remains unknown—despite a lot of interest (see
[5, 6], which contain some related results, and the references therein).

1.2 Motivation

Such problems arise as follows:

1. Controllability of switched linear systems. Given a system of the form

z(t + 1) = A(t,u)x(t), where for all ¢ the set of possible values of A(t, u)
is a finite set F', the questions above correspond to the controllability (to
the origin) of such a system. Cf. [2].

. MORTALITY(2) is also equivalent to the following problem [8]: Find an
algorithm which, given a finite set H of non-singular linear transformations
of the complex plane, and lines L and M through the origin, determines
whether some product from H maps L onto M.

1.3 Available results

1. MORTALITY(3) is recursively unsolvable [7]: the proof relies on a reduc-

tion of this problem to the Post Correspondence Problem (PCP). It is
constructive, using 2p + 2 matrices if PCP is undecidable with p “rules.”
By considering Modified PCP it is possible to prove undecidability using
only p + 2 matrices [3]. Current bounds on p lie in {3,...,7} (see [1, p.
12] for references and a discussion).

. Mortality and pair-mortality can be related: if MORTALITY(n,m) is un-
decidable, then PAIR-MORTALITY (nm) is undecidable [1, 4].

. PAIR-MORTALITY(2) is decidable [3, 4]. However, the proof uses elemen-
tary number theoretic arguments for matrices with complex eigenvalues
that do not generalize to matrices with real entries: PAIR-MORTALITY(2; IR)
has been proved BSS-undecidable [3], yielding MORTALITY(n, m) BSS-
undecidable for all n > 2, m > 2. Nevertheless, PAIR-MORTALITY(2; IR)
is BSS-decidable for matrices with real eigenvalues [3].

. PAIR-MORTALITY(n) is decidable and NP-complete when restricted to
matrices with non-negative entries [1]. The same argument can be used
to show that MORTALITY(n, m) restricted to non-negative matrices is de-
cidable. The problem of deciding whether a given pair of n X n matrices
is k-length mortal, with integer k& encoded in unary, is NP-complete; it
remains so when the matrices are restricted to have entries in {0,1} [1].
The conclusion of NP-completeness in [1] can be more easily obtained
using Paterson’s construction and reduction to Bounded PCP [3]. The
boolean entry case does then not follow, but NP-completeness of “Given
a set F of 3 x 3 matrices and positive integer K < |F|, is F' k-mortal for
some k < K77 does.
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