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Abstract. We study the quantum walk search algorithm of Shenvi,
Kempe, and Whaley [PRA 67 052307 (2003)] on data structures of one
to two spatial dimensions, on which the algorithm is less efficient than
in three or more spatial dimensions. Our aim is to understand why the
quantum algorithm is dimension dependent whereas the best classical
algorithm is not, and to find in more detail how the efficiency of the
quantum algorithm varies with spatial dimension or accessibility of the
data.

1 Introduction

The promise of quantum computers to provide fundamentally faster computation
is dependent both on being able to build a quantum computer of a useful size,
and on finding algorithms it can run that are faster than any classical algorithm.
Since some of the most efficient classical algorithms are based on random walks,
a natural place to look for faster quantum algorithms is to see if there is a faster
quantum version of a random walk. This approach was pioneered by Ambainis
et al. [2] and Aharonov et al. [3], who proved that a discrete time quantum
walk on the line or cycle spread or mixed, respectively, quadratically faster than
a classical random walk. Continuous time quantum walks were introduced by
Farhi and Gutmann [4] and provide the same algorithmic speed up as discrete
time quantum walks. We concentrate on the discrete time walk in this paper,
since it is more convenient for numerical calculations.

One of the first algorithmic applications of quantum walks was searching of
unsorted databases. Shenvi et al. [1] proved a discrete quantum walk can repeat
the performance of Grover’s search algorithm [5] by finding a marked item among
a total of N in O(

√
N) steps. The quantum walk search is now a standard tool

in the development of quantum algorithms, for reviews see Ambainis [6] and
Santha [7].

In this work, we are interested in the case where the data to be searched
is also physically restricted in how it can be accessed. For example, to read a
particular item from a magnetic tape, it is necessary to wind through the tape
until the correct position is reached. Data stored on a hard disk is arranged in
concentric rings on spinning disks: the heads move sideways across the rings and
then the item can be read within the next revolution of the disk. This is quicker
than reading data on a magnetic tape, but still requires a significant amount of
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time per item. A classical search of data stored on tape has to work through
the tape from one end to the other, testing each item in turn to see if it is the
required one. In fact, this is the optimal classical strategy for any arrangement
of unsorted data on any storage medium. Finding a particular item requires in
the worst case all the items to be checked, and on average half of the items will
be examined before the marked one is located. This gives a classical running
time of O(N).

The quantum walk search algorithm of Shenvi et al. [1] arranged the data
to be searched as the nodes of a graph on which the quantum walk then prop-
agated. Specifically, they used a hypercube (of dimension ⌈log2N⌉), for which
the quantum walk can be solved analytically [8]. They proved their quantum
walk search can equal the quadratic speed up over classical searching given by
Grover’s search algorithm [5] – this is known to be optimal [9]. Improvements
by Potocek et al. [10] bring the actual running time of the quantum walk search
algorithm very close to the optimal one.

The hypercube is a highly connected structure, which doesn’t correspond
to physically realistic storage media. Motivated by this observation, study of
lower dimensional search began with Benioff [11], who considered the additional
cost of the time taken for a robot searcher moving between different spatially
separated data items. Aaronson and Ambainis [12] then produced a quantum
algorithm that finds a marked item in O(

√
N) for data arranged on lattices of

dimension greater than two, and O(
√
N log3/2N) for a square lattice (dimension

d = 2). Work by Childs and Goldstone [13, 14] and Ambainis et al. [15] found
quantum walk algorithms with the same running time for d > 2 and a small
improvement to O(

√
N logN) for d = 2. Tulsi [16] recently improved this again

to O(
√
N logN). It remains an important open problem whether the running

time for d = 2 can be improved to O(
√
N).

In this work, we are interested in what happens between d = 1, where simple
arguments show that no speed up is expected, and d = 3, where the quantum
speed up is known to be optimal. Classical search algorithms show no such di-
mensional dependence. We are also interested in how important the symmetry of
the database arrangement is for searching using quantum walks. For a quantum
walk crossing a hypercube, or the special “glued trees” graph of [17], it is known
that defects in the graph can seriously disrupt the efficiency of the quantum walk
[18–21].

We use numerical studies of quantum walks to illuminate their behaviour
on lower dimensional structures, to gain insight into the issues involved. A one-
dimensional quantum walk on a line or cycle corresponds to the case of unsorted
data stored on a magnetic tape. We begin by introducing the quantum walk
on the line in section 2, showing how the coin toss operation can be varied to
indicate the marked state. We then consider the quantum walk search algorithm
of Shenvi et al. [1] on a two-dimensional Cartesian lattice in section 3, where the
search algorithm works. In section 4, we show that applying the same quantum
walk search strategy to the walk on the line fails to find the marked state even
in linear time. We discuss our results and plans for future work in section 5.
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2 Quantum walk on the line

A discrete time quantum walk on the line is defined in direct analogy with a
classical random walk: there is a walker carrying a coin which is tossed each time
step and the walker steps left or right according to the heads or tails outcome
of the coin toss. We denote the basis states for the quantum walk as an ordered
pair of labels in a “ket” |x, c〉, where x is the position and c ∈ {0, 1} is the state
of the coin. A unitary coin operator is used at each time step and then a shift
operation is applied to move the walker to its new positions. The simplest coin
toss is the Hadamard operator H , defined by its action on the basis states as

H | x, 0〉 =
1√
2
(| x, 0〉+ | x, 1〉)

H | x, 1〉 =
1√
2
(| x, 0〉− | x, 1〉), (1)

and the shift operation S acts on the basis states thus

S | x, 0〉 =| x− 1, 0〉
S | x, 1〉 =| x+ 1, 0〉. (2)

The first three steps of a quantum walk starting from the origin are as follows

(SH)3 | 0, 0〉 = (SH)2S
1√
2
(| 0, 0〉 + | 0, 1〉)

= (SH)2
1√
2
(| −1, 0〉 + | 1, 1〉)

= (SH)S
1

2
(| −1, 0〉 + | −1, 1〉 + | 1, 0〉 − | 1, 1〉)

= SH
1

2
(| −2, 0〉 + | 0, 1〉 + | 0, 0〉 − | 2, 1〉)

= S
1√
8
(| −2, 0〉 + | −2, 1〉 + | 0, 0〉 − | 0, 1〉 + | 0, 0〉 + | 0, 1〉 − | 2, 0〉 + | 2, 1〉)

=
1√
8
(| −3, 0〉 + | −1, 1〉 + 2 | −1, 0〉 − | 1, 0〉 + | 3, 1〉). (3)

As the walk progresses, quantum interference occurs whenever there is more than
one possible path of t steps to the position. This can be both constructive and
destructive, as shown in eq. (3), which causes some probabilities to be amplified
or decreased at each timestep. This leads to the different behaviour compared
to its classical counterpart: the position of a walker following a classical random
walk on a line spreads out in a binomial distribution about its starting point.
Both classical and quantum distributions are illustrated after 100 steps in fig. 1.
It is clear in fig. 1 that the quantum walk spreads faster. Ambainis et al. [2]
proved that the quantum walk spreads in O(T ) compared to a classical random
walk which spreads in O(

√
T ).
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Fig. 1. Classical (crosses) and quantum (solid line) probability distributions for walks
on a line after 100 timesteps. Only even positions are shown since odd positions are
zero. Initial state for the quantum walk of (|0〉 + i|1〉)/

√
2.

Adding some decoherence into this basic walk [18] actually helps for some
applications. A nearly smooth “top hat” distribution can be obtained with a
small amount of decoherence, which is useful for random sampling in Monte-
Carlo simulations as an example. This also gives us a clue about how to use
a quantum walk for searching. The “top-hat” is obtained after starting at a
single location. Unitary dynamics are reversible, so if we run the quantum walk
backwards from a uniform distribution on all points, we might expect it will
go to being approximately located at a single point. Of course, it doesn’t know
which single point to converge on unless we mark it in some way: we do this
with a different coin operator. If the coin operator allows the marked state to
retain more probability than it passes on, this creates a bias in the walk at this
point. This can be done with a biased Hadamard coin operator

Hδ =

(
√
δ

√
1 − δ√

1 − δ −
√
δ

)

, (4)

where
√
. is the positive root, and Hδ acts only on the coin state. The value of δ

determines how much of the incoming probability is sent in each direction. Taking
δ = 1 gives the identity; the unbiased Hadamard operator eq. (1) corresponds
to δ = 1/2; and δ = 0 gives the σz (spin flip) operator.

Since this search algorithm doesn’t provide any speed up on the line, we next
describe how it works on a two-dimensional Cartesian lattice. The behaviour of
the quantum walk search on a line will then be compared in section 4.

3 Two-dimensional Cartesian lattice

A quantum walk in a higher dimension needs a larger coin, with one coin dimen-
sion for each choice of direction at the vertices. For the quantum walk search
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algorithm we need to use a symmetric coin operator based on Grover’s diffusion
operator,

G(D) =







2
D . . . 2

D
...

. . .
...

2
D . . . 2

D






− In, (5)

where In is the identity matrix and D is the size of the coin. In the case of a
square lattice, D = 4 for the four choices of direction at each lattice site, and
equation (5) reduces to

G(4) =
1

2









−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1









. (6)

We also need a different coin for the marked state. As we show later, it is optimal
to invert the phase of the G(4) coin operator,

G(4)
m =

1

2









1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1









. (7)

To carry out the quantum walk search algorithm, we start with the quantum
walker in an equal superposition of all the possible sites in the lattice, and the
coin in an equal superposition of all directions,

|ψ(0)〉 =
1√
4N

N
∑

x=1

3
∑

c=0

|x, c〉. (8)

We use periodic boundary conditions at the edges of the
√
N×

√
N square lattice.

Figure 2 shows how the distribution of the walker evolves with time for a
20 × 20 lattice, i.e., N = 400. We are interested in how quickly the quantum
walker finds the marked state: fig. 3 shows the probability of being at the marked
state for each timestep as the walk proceeds. It has periodic behaviour with the
first peak occuring at roughly t = (π/2)

√
N ≃ 32. The maximum probability

for N = 400 is around 0.23. This can be increased as close to 1 as desired by
standard amplifcation techniques (repeating the search a few times). Subsequent
peaks occur somewhat later than t = 2(π/2)

√
N etc., but we are interested in

the oscillatory behaviour not for the precise timings of the peaks, but rather
for the necessity of knowing when the first peak occurs in order to measure the
walker’s position at the optimum time. In fact, as can be seen in fig. 3, the peaks
are quite broad, so even if a 50% error occurs in when to measure it only means
a 50% lower probability of finding the marked state, this is only a constant extra
overhead on the amplification. The maximum probability also varies with the
size of the data set, the theoretical value of O(1/ logN) from Ambainis et al. [15]
is born out in our results in fig. 4.
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Fig. 2. Probability distribution of a discrete time quantum walk search on 400 vertices
arranged in a 20 × 20 square with periodic boundary conditions, evolved for 0, 10, 20
and 32 timesteps. The marked vertex is at position 190.
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Fig. 3. Probability of marked state over 200 timesteps on a 20 × 20 grid with periodic
boundary conditions. The marked vertex is at position 190.
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Fig. 4. Maximum of the first peak in the probability of being at the marked state for
different sized data sets, using the optimal marked state coin in eq. (7) on a 2D lattice
of size

√
N ×

√
N , plotted against

√
N (blue circles). Also shown dotted 2/(log

2
N) for

comparison.
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φ=0
φ=π/3
φ=(2xπ)/3
φ = π

Fig. 5. Probability of marked state over 75 timesteps for N = 100 i.e., a 10 × 10 grid
with marked state at 45, using the marked state coin in eq. (9) with φ = 0, π/3, 2π/3
and π.
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δ = 0
δ = 0.15
δ = 0.35
δ = 0.5

Fig. 6. Probability of marked state over 75 timesteps for N = 100 i.e., a 10 × 10 grid
with marked state at 45, using the marked state coin in eq. (10) with δ = 0, 0.15, 0.35
and 0.5.

To explore how the coin affects the search result, we can introduce a phase
into the coin operator,

G
(4)
φ = eiφG(4), (9)

where 0 ≤ φ ≤ π, or a bias,

G
(4)
δ =









1 − δ −δ −δ −δ
−δ 1 − δ −δ −δ
−δ −δ 1 − δ −δ
−δ −δ −δ 1 − δ









, (10)

where 0 ≤ δ ≤ 0.5. The standard G(4) coin operator corresponds to φ = 0,

and the marked coin operator used before, G
(4)
m , eq. (7), corresponds to φ = π.

Taking δ = 0 makes the marked state coin into the identity operator, while

δ = 0.5 corresponds to G
(4)
m . (For δ > 0.5, the operator would no longer be

unitary.) These variations have been chosen to preserve the symmetry of the
coin operator. Figures 5 and 6 shows the effect of varying the phase φ and the
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Fig. 7. Time step at which the first peak in the probability of being at the marked
state occurs for different sized data sets, using the optimal marked state coin in eq. (7)
plotted against

√
N . Also shown (π/2)

√
N and (π/2)

p

N(log
2
N) for comparison.

bias δ. These figures show the largest probability of finding the marked state is
for φ = π and δ = 0.5, justifying our choice of the optimal marked state coin
operator.

The key open question is the scaling with N for the 2D lattice. Our numerical
evidence is intriguing, see fig. 7. The closest fit for the data up to N = 322 is
(π/2)

√
N , but there is a jig near some powers of two that pushes it above this

line by N = 322. At these low numbers, nothing firm can be said, but since
(π/2)

√

N log2N is much higher, the deviation from (π/2)
√
N may be smaller,

say log logN .

4 Quantum walk search on the line

We now examine how the quantum walk search algorithm behaves for data
arranged on a line. We consider both a line segment, and a loop (cycle) where
periodic boundary conditions are applied at the ends. The loop is less physical
(for most tape storage, the ends are far apart from each other), but allows us
to investigate the behaviour of the algorithm without the edge effects the ends
introduce. For the line segment, we use a reflecting boundary condition. This
means we have to use a different coin at the edges, which has the effect of
introducing two spurious marked states.

Since symmetry is important in the quantum walk search algorithm in higher
dimensions, we also investigate a more symmetric version of the Hadamard op-
erator,

H
(sym)
δ =

( √
δ i

√
1 − δ

i
√

1 − δ
√
δ

)

. (11)

For δ = 0.5, this reduces to

H(sym) =
1√
2

(

1 i
i 1

)

. (12)
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Fig. 8. Probability distribution of the quantum walk search of N = 101 items arranged
on a line, after 50 time steps with marked state at position 20, for a symmetric coin and
periodic boundary conditions (top left), Hadamard and periodic (top right), symmetric
and reflecting (bottom left), and Hadamard and reflecting (bottom right).

We vary δ from zero to one, to see how this affects the performance. The initial
state for the quantum walk algorithm on the line needs to match the symmetry
of the chosen coin operator. For the Hadamard, we use

|φ(0)〉 =
1√
N

N
∑

x=0

1√
2
(|x, 0〉 + i|x, 1〉), (13)

and for the symmetric coin operator we use

|φ(0)〉 =
1√
N

N
∑

x=0

1√
2
(|x, 0〉 + |x, 1〉). (14)

First we contrast the symmetric coin operator, eq. (12) with the standard
Hadamard operator, eq. (1), fixing δ = 0 for the marked state coin, giving a
σz . In fig. 8 we see the differences between the two different boundary condi-
tions (periodic and reflecting), each with the two different coin operators. We
find that the symmetric coin operator gives a more smoothly varying proba-
bility distribution about the marked state and we can see oscillations in the
probability of finding the marked state. Superficially, these results look similar
to the square lattice. However, the square lattice has a peak probability at the
marked state of around 0.3 for a 10 × 10 square lattice with N = 100. On a
line with N = 101, the peak in the probability is only around 0.028, This is
not significantly larger than the uniform distribution, which has a probability of
0.01 for any site. The Hadamard coin operator varies over a period of around
seven time steps, regardless of the other parameters, and shows slightly higher
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Fig. 9. Probability distribution of the quantum walk search of N = 101 items arranged
on a line, after 50 time steps with marked state at position 20, for a symmetric coin
and periodic boundary conditions with the marked coin operator given by eq. (11) with
δ = 0.15 (top left), δ = 0.45 (top right), δ = 0.65, (bottom left) and δ = 1 (bottom
right).

probability spreading out from the marked state in two soliton-like waves. This
supports the case for symmetry being important for quantum walk searching.
Reflecting boundary conditions also produce spreading soliton-like waves from
the boundaries for both symmetric and Hadamard coins.

Concentrating on the case of a symmetric coin operator and periodic bound-
ary conditions, we now consider what happens when δ is varied. For δ increasing
from zero to a half, the period of the oscillations increases towards infinity as
δ → 0.5, the value for which the marked coin operator becomes the same as
the unmarked coin operator and the distribution remains uniform. Increasing δ
above 0.5, we find that instead of finding the marked state, in effect it “un-finds”
it with the probability of being in the marked state decreasing below the uniform
distribution. This is due to the fact the coin is now biased in the wrong direction
and so is giving away more and more probability instead of retaining it. Fig-
ure. 9 shows the variation in probability distribution with δ, compare with δ = 0
for fig. 8 (top left). For the symmetric quantum walk with periodic boundary
conditions, evolving for longer times with δ ≃ 0.45 eventually results in a peak
in the probability of the marked state approaching 2π/N , but only after around
5N or more time steps, see fig. 10. This is obviously not useful, either in the
size of the peak probability, which we would like to scale with logN as it does
for the search in two dimensions, nor with the number of time steps, which far
exceeds the classical worst case of N .

The quantum walk search algorithm used for data on a line is thus completely
ineffective for the parameters we have considered: it does not find the marked
state with significant probability even when run for as long as the worst case
classical time of N steps for N items. Of course, we can easily specify a quantum
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Fig. 10. Probability of the marked state for each time step for a line of N = 50 sites
with periodic boundary conditions and δ = 0.45, run for 500 time steps.

version of the classical algorithm that does find the marked state in N steps.
Start in the state |0, 1〉 and use the identity as the coin operator everywhere
except the marked state. This causes the walk to hop deterministically along the
line. At the marked state, use σz for the coin operator. This will flip the coin
from |1〉 to |0〉 and thus reverse the direction of the walker. If the position of the
walker is measured after N steps, the current location allows you to work out
where it turned round, and thus locate the marked state. This method uses only
a single measurement. If you allow measurements at every step, then of course
you can immediately find out if the walker has arrived at the marked state by
testing the state of the coin.

5 Discussion and further work

We have investigated in some detail how the quantum walk search algorithm of
Shenvi et al. [1] behaves on a two dimensional lattice, where it finds the marked
state efficiently, and on the line, where it does not. Our numerical results suggest
the

√
logN factor in the running time of the algorithm on the square lattice is

not tight, we observe close to a full quadratic speed up, with an intriguing jig in
the data that may be something more like a log logN factor.

Future work will incude studying the quantum walk algorithm on structures
of intermediate dimension between the line and the square lattice. We will start
with a honeycomb lattice, which is still planar, but each lattice point has three
directions rather than four. Another regular graph with three edges at each lat-
tice point is the Bethe lattice. Since this has no loops, a quantum walk on a Bethe
lattice should behave quite differently to on a honyecomb lattice. Intermediate
structures with loops of different sizes can be studied to interpolate between the
two cases.

The regularity and connectivity of the square lattice can also be varied by
studying two dimensional percolation lattices. In these, any particular edge is
present only with probability p. By varying p, we can see at what level of con-
nectivity in the lattice the quantum walk search algorithm becomes inefficient.
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A structure analogous to a hard drive can be constructed by connecting a
concentric set of cycles by a line of edges. Searching the cycle cannot be done
efficiently by a quantum walk, but the addition of one or more lines of connecting
edges between sets of cycles may allow for some quantum speed up.
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