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Abstract

The noncontextuality of quantum mechanics can be directly tested by a novel type of experiment mea-

suring two entangled particles with more than two outcomes per particle. The two associated contexts are

“interlinked” by common observables.
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Quantum value indefiniteness [1] refers to the impossibility of a consistent coexistence of cer-

tain complementary, operationally incompatible quantum observables. It is inferred from three

sources: (i) from quantum violations of constraints on classical probability distributions termed

‘conditions of possible experience’ by Boole [2], also known as the Boole-Bell type inequali-

ties [3], (ii) from the Kochen-Specker theorem [4–6], as well as (iii) from the Greenberger-Horne-

Zeilinger [7, 8] theorem. Formally, these results are related to the “scarcity” or even total absence

of two-valued states identifiable as (classical) truth assignments on the entire range of quantum

observables. In what follows, quantum contextuality [9–13] will be identified with the assertion

that the result of a measurement depends on what other observables are comeasured alongside of

it. It is one conceivable (but not necessary [14]) quasi-classical interpretation of quantum value

indefiniteness, thereby counterfactually maintaining the “physical existence” of the full domain of

possible physical observables.

There exist other notions of contextuality based upon violations of some bounds on, or condi-

tions imposed by, classical probabilities. In their extreme form, these amount to all-or-nothingtype

contradictions between noncontextual hidden variables and quantum mechanics. The correspond-

ing experimental tests indicate the occurrence of this type of quantum contextuality [15–23]. These

findings utilize subsequent measurements of quantum observables contributing to a contradiction

with their classical counterparts, but they have no direct bearing on the novel type of experiments

proposed here which aim at testing another, more direct form of quantum contextuality.

A quantum mechanical context [13] is a “maximal collection of comeasurable observables”

within the nondistributive structure of quantum propositions. It can be formalized by a single

“maximal” self-adjoint operator, such that every collection of mutually compatible comeasurable

operators (such as projections corresponding to yes–no propositions) are functions thereof [24,

§ 84].

Different contexts can be interlinked at one or more common observable(s) whose Hilbert space

representation is identical and independent of the contexts they belong to. The context indepen-

dence of the representation of observables by operators (e.g., projectors) in Hilbert space suggests

that quantum contextuality, if it exists, manifests itself in random and uncontrollable single-particle

outcomes. A necessary condition for the interlinking of two or more contexts by link observable(s)

is the requirement that the dimensionality of the Hilbert space must exceed two, since for lower di-

mensional Hilbert spaces the maximal operators “decay” into separate, isolated “trivial” Boolean

sublogics without any common observable. This is also the reason for similar dimensional condi-
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tions on the theorems by Gleason, as well as by Kochen and Specker.

In what follows we propose an experiment capable of directly testing the contextuality hypothe-

sis; alas via counterfactual elements of physical reality. Indeed, counterfactual reasoning might be

considered less desirable than direct measurements, as it involves an additional logical inference

step rather than a straight empirical finding.

In the proposed experiment, two different contexts or, equivalently, two noncommuting max-

imal observables, are simultaneously measured on a pair of spin one particles in a singlet

state [11, 25, 26]. The contexts are fine-tuned to allow a common single observable interlinking

them. Although the proposal possesses some conceptual similarities to Einstein-Podolsky-Rosen

type experiments, the quantum states as well as the structure of the observables are different.

We shall first consider the contexts originally proposed by Kochen and Specker [4, pp. 71-73],

referring to the change in the energy of the lowest orbital state of orthohelium resulting from the

application of a small electric field with rhombic symmetry. The terms Kochen-Specker contexts

and (maximal) Kochen-Specker operators will be used synonymously. More explicitly, the maxi-

mal Kochen-Specker operators associated with this link configuration can be constructed from the

spin one observables (e.g., Refs. [27, 28]) in arbitrary directions measured in spherical coordinates

J(θ,φ) =




cosθ e−iφ sinθ√
2

0
eiφ sinθ√

2
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2

0 eiφ sinθ√
2

−cosθ


 , (1)

where 0≤ θ≤ π stands for the polar angle in the x-z-plane taken from the z-axis, and 0≤ ϕ < 2π

is the azimuthal angle in the x-y-plane taken from the x-axis. The orthonormalized eigenvectors

associated with the eigenvalues +1, 0, −1 of J(θ,φ) in Eq. (1) are

x+1 = eiδ+1
(

e−iφ cos2 θ
2 , 1√

2
sinθ,eiφ sin2 θ

2

)
,

x0 = eiδ0
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2
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2

)
,

(2)

where δ±1, and δ0 stand for arbitrary phases.

For real α 6= β 6= γ 6= α, the maximal Kochen and Specker operators [4] are defined by

CKS(α,β,γ) = 1
2

[
(α+β− γ)J2(π

2 ,0)+(α−β+ γ)J2(π
2 , π

2 )+(β+ γ−α)J2(0,0)
]
,

C′KS(α,β,γ) = 1
2

[
(α+β− γ)J2(π

2 , π
4 )+(α−β+ γ)J2(π

2 , 3π
4 )+(β+ γ−α)J2(0,0)

]
.

(3)
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FIG. 1: Diagrammatical representation of two interlinked Kochen-Specker contexts: Greechie (orthogo-

nality) diagram representing two tripods with a common leg: points stand for individual basis vectors, and

entire contexts — in this case the one-dimensional linear subspaces spanned by the vectors of the orthogonal

tripods — are drawn as smooth curves.

Their common spectrum of eigenvalues is α, β and γ, corresponding to the eigenvectors (0,1,0),

(1,0,1), (−1,0,1) of CKS, and (0,1,0), (−i,0,1), (i,0,1) of C′KS, respectively. The resulting

orthogonality structure of propositions is depicted in Fig. 1.

In order to be able to use the type of counterfactual inference employed by an Einstein-

Podolsky-Rosen setup, a multipartite quantum state has to be chosen which satisfies the uniqueness

property [29] with respect to the two Kochen-Specker contexts such that knowledge of a measure-

ment outcome of one particle entails the certainty that, if this observable were measured on the

other particle(s) as well, the outcome of the measurement would be a unique function of the out-

come of the measurement actually performed. Consider the two spin-one particle singlet state

|ϕs〉 = (1/
√

3)(−|00〉+ |−+〉+ |+−〉) and identify with the spin states the directions in Hilbert

space according to Eqs. (2); i.e., with |+〉 = (1,0,0), |0〉 = (0,1,0), and |−〉 = (0,0,1); hence in

the Kronecker product representation, |ϕs〉 = (1/
√

3)(0,0,1,0,−1,0,1,0,0). This singlet state is

form invariant under spatial rotations (but not under all unitary transformations [28]) and satisfies

the uniqueness property (see below), just as the ordinary Bell singlet state of two spin one-half

quanta (we cannot use these because they are limited to 2× 2 dimensions, with merely two di-

mensions per quantum). Hence, it is possible to employ a similar counterfactual argument and

establish two elements of physical reality according to the Einstein-Podolsky-Rosen criterion for

the two interlinked Kochen-Specker contexts CKS as well as C′KS.
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FIG. 2: Greechie diagram of two contexts in four-dimensional Hilbert space interconnected by two link

observables.

When combined with the singlet state |ϕs〉 , two “collinear” Kochen-Specker contexts yield

Tr
{∣∣ϕs

〉〈
ϕs

∣∣ · [CKS(α,β,γ)⊗CKS(δ,ε,ζ)]
}

=

= Tr
{∣∣ϕs

〉〈
ϕs

∣∣ · [
C′KS(α,β,γ)⊗C′KS(δ,ε,ζ)

]}
= 1

3 [αδ+βε+ γζ] .
(4)

As a consequence, in this configuration the uniqueness property manifests itself by the unique joint

occurrence of the outcomes associated with α ↔ δ (corresponding to the proposition associated

with the link observable between CKS and C′KS), as well as β↔ ε and γ↔ ζ. Thus, by counterfac-

tual inference, if the contexts measured on both sides are identical, whenever α, β or γ is registered

on one side, δ, ε or ζ is measured on the other side, respectively, and vice versa.

We are now in the position to formulate a testable criterion for (non)contextuality: Contextual-

ity predicts that there exist outcomes associated with α on one context CKS which are accompanied

by the outcomes ε or ζ for the other context C′KS; likewise δ should be accompanied by β and γ.

The quantum mechanical expectation values can be obtained from

Tr
{∣∣ϕs

〉〈
ϕs

∣∣ · [
CKS(α,β,γ)⊗C′KS(δ,ε,ζ)

]}
=

1
6

[2αδ+(β+ γ)(ε+ζ)] . (5)

As a consequence, the outcomes α–ε, α–ζ, as well as β–δ and γ–δ indicating contextuality do not

occur. This is in contradiction with the contextuality hypothesis.

Another context configuration in four-dimensional Hilbert space drawn in Fig. 2 consists of two
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contexts which are interconnected by two common link observables. The two context operators

C(α,β,γ,δ) = diag(α,β,γ,δ) , C′(α,β,γ,δ) = diag




α+β
2

α−β
2

α−β
2

α+β
2

,γ,δ


 (6)

have identical eigenvalue spectra containing mutually different real eigenvalues α, β, γ and δ.

Consider the singlet state of two spin-3/2 observables |ψs〉 =
1
2

(∣∣ 3
2 ,−3

2

〉 −
∣∣−3

2 , 3
2

〉 −
∣∣ 1

2 ,−1
2

〉
+

∣∣−1
2 , 1

2

〉)
satisfying the uniqueness property for all spa-

tial directions. The four different spin states can be identified with the cartesian basis of

fourdimensional Hilbert space
∣∣ 3

2

〉
= (1,0,0,0),

∣∣ 1
2

〉
= (0,1,0,0),

∣∣−1
2

〉
= (0,0,1,0), and

∣∣−3
2

〉
= (0,0,0,1), respectively. When combined with the singlet state |ψs〉 , two “collinear”

contexts yield

Tr
{∣∣ψs

〉〈
ψs

∣∣ · [C(α,β,γ,δ)⊗C(ε,ζ,η,ν)]
}

= 1
4 [αν+βη+ γζ+δε] ,

Tr
{∣∣ψs

〉〈
ψs

∣∣ · [C′(α,β,γ,δ)⊗C′(ε,ζ,η,ν)]
}

= 1
8 [2(αν+βη)+(γ+δ)(ε+ζ)] .

(7)

As a consequence, in this configuration the uniqueness property manifests itself by the unique joint

occurrence of the outcomes associated with α ↔ ν and β ↔ η (corresponding to the proposition

associated with the two link observables between C and C′), as well as γ ↔ ζ and δ ↔ ε. Thus,

by counterfactual inference, if the contexts measured on both sides are identical, whenever α or β,

and γ or δ is registered on one side, ν or η, and ζ or ε is measured on the other side, respectively,

and vice versa.

Compared to the previous Kochen-Specker contexts, this configuration has the additional ad-

vantage that — in the absence of any criterion for outcome preference — Jayne’s principle [30]

suggests that contextuality predicts totally uncorrelated outcomes associated with a maximal un-

bias of the two common link observables, resulting in the equal occurrence of the joint outcomes

γ–η, γ–ν, δ–η, and δ–ν. The quantum mechanical predictions are based on the expectation values

Tr
{∣∣ψs

〉〈
ψs

∣∣ · [
C(α,β,γ,δ)⊗C′(ε,ζ,η,ν)

]}
=

1
8

[(γ+δ)(ε+ζ)+2(βη+αν)] . (8)

As a consequence, there are no outcomes γ–η, γ–ν, δ–η, and δ–ν, which is in contradiction to the

contextuality postulate.

One of the conceivable criticisms against the presented arguments is that the configurations

considered, although containing complementary contexts, still allow even a full, separable set of

two-valued states, and therefore need no contextual interpretation. However, it is exactly these

Kochen-Specker type contexts which enter the Kochen-Specker argument. Hence, they should not
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be interpreted as separate, isolated sublogics, but as parts of a continuum of sublogics, containing

the finite structure devised by Kochen and Specker and others.

One could also point out that it might suffice to prepare the particle in some link state “along”

one context, and then measure its state “along” a different context “containing” the same link

observable. This could for instance in the three-dimensional configuration be realized by two

successive three-port beam splitters arranged serially. In such a configuration, if the outcomes of

the two beam splitters do not coincide at the link observable, then noncontextuality is disproved;

likewise, if there is a perfect correlation between the link state prepared and the link observable

measured, then contextuality could be disproved. This configuration might be criticized by propo-

nents of contextuality as being too restrictive, since there is a preselection, effectively fixing the

preparation state corresponding to the link observable.

Third, one could reprehend that the entangled particles cannot be thought of as isolated and

that the singlet state enforces noncontextuality by the way it is constructed. This criticism could

be counterpointed by noting that it is exactly this kind of configurations which yield violations of

Boole-Bell type conditions of physical experience.

The situation can be summarized as follows. The direct measurement of more than one context

on a single particle is blocked by quantum complementarity. For the counterfactual “workaround”

to measure two noncommuting interlinked contexts on pairs of spin-one and spin three-half parti-

cles in singlet states, quantum mechanics predicts noncontextual behavior. Because of the lack of

a uniqueness property, counterfactual inference of configurations with more than two particles are

impossible .
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