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Abstract

Quantum contextually can be directly tested by an Einstein-Podolsky-Rosen-type experiment of two spin

one and higher particles in a singlet state. The two associated contexts are “interlinked” by a common

observable.
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Since its invention, the quantum formalism confronted its creators and recipients with seem-

ingly “mindboggling” features [1], including the discreteness of the quantum occupation per field

mode [2, 3], entanglement [1, 4, 5], complementarity [6–9], randomness [10, 11], as well as

local [12–20] and nonlocal [21–26] value indefiniteness. Value indefiniteness, which is often re-

ferred to as the Kochen-Specker theorem, is formally associated with the “scarcity” or even total

absence of two-valued (also called dispersionless) states identifiable as (classical) truth assign-

ments on certain (finitely many) quantum propositions. This mathematical result is obtained by

a proof by contradiction and has given rise to various interpretations; the most prominent being

quantum contextuality [23, 27–29] claiming that the result of an observation (among other en-

tities such as the quantum state) depends on what observables are co-measured alongside of it.

Indeed, despite of its interpretative character, contextuality is effectively used as a synonym for

value indefiniteness, in the sense that “the immense majority of the experimental violations of Bell

inequalities does not prove quantum nonlocality, but just quantum contextuality” [30–33].

A quantum mechanical context [34] is a “maximal collection of co-measurable observables”

constituting a “classical mini-universe” within the nondistributive structure of quantum proposi-

tions. It can be formalized by a single “maximal” self-adjoint operator. Every collection of mu-

tually compatible co-measurable operators (such as projections corresponding to yes–no proposi-

tions) are functions of such a maximal operator (e.g., Ref. [35, Sec. II.10, p. 90, English translation

p. 173], Ref. [13, § 2], Ref. [36, pp. 227,228], and Ref. [37, § 84]).

A necessary condition for the interlinking of two or more contexts by one or more link observ-

able(s) is the requirement that the dimensionality of the Hilbert space must exceed two, since for

lower dimensional Hilbert spaces the maximal operators “decay” into separate, isolated “trivial”

Boolean sublogics without any common observable. This is also the reason for similar require-

ments in the theorems by Gleason [38–41] and Kochen and Specker.

In what follows we propose an experiment capable of directly (alas via counterfactual elements

of physical reality [42]) testing the contextuality hypothesis. In the proposed experiment, two

different contexts or, equivalently, two non-commuting maximal observables, are simultaneously

measured on a pair of spin one particles in a singlet state [23, 43] in an Einstein-Podolsky-Rosen

type configuration. The contexts are fine-tuned to a common single observable interlinking them.

We shall first consider the contexts originally proposed by Kochen and Specker [13, pp. 71-73],

referring to the change in the energy of the lowest orbital state of orthohelium resulting from the

application of a small electric field with rhombic symmetry. The terms Kochen-Specker contexts
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and (maximal) Kochen-Specker operators will be used synonymously. More explicitly, the maxi-

mal Kochen-Specker operators associated with this link configuration can be constructed from the

spin one observables (e.g., Ref. [44]) in arbitrary directions measured in spherical coordinates
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where 0≤ θ≤ π stands for the polar angle in the x-z-plane taken from the z-axis, and 0≤ ϕ < 2π

is the azimuthal angle in the x-y-plane taken from the x-axis. The orthonormalized eigenvectors

associated with the eigenvalues +1, 0, −1 of J(θ,φ) in Eq. (1) are
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where δ±1, and δ0 stand for arbitrary phases.

Consider a configuration with two tripods rotated by the azimuthal angle φ = π/4 (indeed, any

angle which is not zero or a multiple of π/2 would do) around a common leg located along the

z-axis (θ = φ = 0). The Hilbert space configuration and the resulting logic are sketched in Fig. 1.

For α 6= β 6= γ 6= α, the maximal Kochen and Specker operators [13] are defined by
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Their common spectrum of eigenvalues is α, β and γ, corresponding to the eigenvectors (0,1,0),

(1,0,1), (−1,0,1) of CKS, and (0,1,0), (−i,0,1), (i,0,1) of C′KS, respectively. If we identify

with the spin states the directions in Hilbert space according to Eqs. (2); i.e., with |+〉= (1,0,0),

|0〉= (0,1,0), and |−〉= (0,0,1), then the eigenstates of CKS (and similar for C′KS) can be written
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FIG. 1: Two equivalent diagrammatical representations of a configuration of two interlinked Kochen-

Specker contexts: (a) Two tripods with a common leg; (b) Resulting Greechie (orthogonality) diagram:

points stand for individual basis vectors, and entire contexts — in this case the one-dimensional linear

subspaces spanned by the vectors of the orthogonal tripods — are drawn as smooth curves.

as |α〉= |0〉, |β〉= (1/
√

2)(|+〉+ |−〉), and |γ〉= (1/
√

2)(|−〉−|+〉), which amounts to a rotation

of the original basis by the angle π/4 in the x–z-plane.

In order to be able to use the type of counterfactual inference employed by an Einstein-

Podolsky-Rosen setup, a multipartite quantum state has to be chosen which satisfies the unique-

ness property [45] with respect to the two Kochen-Specker contexts such that knowledge of a

measurement outcome of one particle entails the certainty that, if this observable were mea-

sured on the other particle(s) as well, the outcome of the measurement would be a unique func-

tion of the outcome of the measurement actually performed. Consider the two spin-one parti-

cle singlet state |ϕs〉 = (1/
√

3)(−|00〉+ |−+〉+ |+−〉) which, in terms of the eigenstates of

Kochen-Specker maximal operators CKS (and C′KS), can be rewritten form invariantly [23]; i.e.,

(1/
√

3)(−|αα〉+ |βγ〉+ |γβ〉). It is form invariant under rotations and satisfies the uniqueness

property, just as the ordinary Bell singlet state of two spin one-half quanta (we cannot use these

because they are limited to 2⊗2 dimensions, with merely two dimensions per quantum). Hence,

it is possible to employ a similar counterfactual argument and establish two elements of physical

reality according to the Einstein-Podolsky-Rosen criterion for the two interlinked Kochen-Specker

contexts CKS as well as C′KS.
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FIG. 2: Greechie diagram of two contexts in four-dimensional Hilbert space interconnected by two link

observables.

We are now in the position to formulate a testable criterion for contextuality: Contextuality

predicts that there exist outcomes associated with α on one context which are accompanied by the

outcomes β or γ for the other context. The quantum mechanical expectation values can be obtained

from

Tr
{∣∣ϕs

〉〈
ϕs

∣∣ · [
CKS(α,β,γ)⊗C′KS(δ,ε,ζ)

]}
=

1
6

[2αδ+(β+ γ)(ε+ζ)] . (4)

As a consequence, the outcomes α–ε, α–ζ, as well as β–δ and γ–δ indicating contextuality do not

occur. This is in contradiction to the contextuality hypothesis.

Another context configuration in four-dimensional Hilbert space drawn in Fig. 2 consists of two

contexts which are interconnected by two common link observables. The two context operators

C(α,β,γ,δ) = diag(α,β,γ,δ) , C′(α,β,γ,δ) = diag



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
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have identical eigenvalue spectra containing mutually different eigenvalues α, β, γ and δ.

Consider the singlet state of two spin-3/2 observables |ψs〉 =
1
2
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satisfying the uniqueness property. The four

different spin states can be identified with the cartesian basis of fourdimensional Hilbert space
∣∣ 3

2
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2

〉
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They are eigenstates of the context C. Likewise, a rotation in the first two components around

the angle π/4 yields the eigenstates of C′. Thus, we can again counterfactually infer elements of
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physical reality for both of the contexts C and C′.

Compared to the previous Kochen-Specker contexts, this configuration has the additional ad-

vantage that — in the absence of any criterion for outcome preference —- Jayne’s principle [46]

suggests that contextuality predicts totally uncorrelated outcomes associated with a maximal un-

bias of the two common link observables, resulting in the equal occurrence of the joint outcomes

γ–η, γ–ν, δ–η, and δ–ν. The quantum mechanical predictions are based on the expectation values

Tr
{∣∣ψs

〉〈
ψs

∣∣ · [
C(α,β,γ,δ)⊗C′(ε,ζ,η,ν)

]}
=

1
8

[(γ+δ)(ε+ζ)+2(βη+αν)] . (6)

As a consequence, there are no outcomes γ–η, γ–ν, δ–η, and δ–ν, which is in contradiction to the

contextuality postulate.

Let us summarize the situation as follows. Insofar as we are able to perform counterfactual

and actual measurements on pairs of singlets consisting of spin-one and spin three-half quanta,

quantum mechanics seems to predict noncontextual behavior.

However, in order to cope with the kind of value indefiniteness inferred from the absence of

(enough) “classical” two-valued states, it appears that, granted that quantum mechanics is valid,

classical realism has to be adapted in one way or another. One of these proposed adaptions is

contextuality; the idea that the outcomes of one and the same observable — represented identi-

cally in the quantum formalism — could and should be different, depending on its “context;” i.e.,

what other observables are measured alongside of it. An alternative among others [47–50] is the

abandonment of classical omniscience [51] and the context translation principle [52].

One of the conceivable criticisms against the presented arguments is that the configurations

considered, although containing complementary contexts, still allow even a full, separable set of

two-valued states, and therefore need no contextual interpretation. However, it is exactly these

Kochen-Specker type contexts which enter the Kochen-Specker argument. Hence, they should not

be interpreted as separate, isolated sublogics, but as parts of a continuum of sublogics, containing

the finite structure devised by Kochen and Specker and others.
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[17] F. Kamber, “Die Struktur des Aussagenkalküls in einer physikalischen Theorie,” Nachr. Akad. Wiss.

Göttingen 10, 103–124 (1964).

[18] F. Kamber, “Zweiwertige Wahrscheinlichkeitsfunktionen auf orthokomplementären Verbänden,”

Mathematische Annalen 158, 158–196 (1965).

[19] A. Cabello, J. M. Estebaranz, and G. Garcı́a-Alcaine, “Bell-Kochen-Specker theorem: A proof with

18 vectors,” Physics Letters A 212, 183–187 (1996).

http://dx.doi.org/10.1016/0375-9601(96)00134-X

[20] K. Svozil and J. Tkadlec, “Greechie diagrams, nonexistence of measures in quantum logics and

Kochen–Specker type constructions,” Journal of Mathematical Physics 37, 5380–5401 (1996).

http://dx.doi.org/10.1063/1.531710

[21] J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics 1, 195–200 (1964), reprinted in [54,

pp. 403-408] and in [57, pp. 14-21].

[22] A. Peres, “Unperformed experiments have no results,” American Journal of Physics 46, 745–747

(1978).

http://dx.doi.org/10.1119/1.11393

[23] P. Heywood and M. L. G. Redhead, “Nonlocality and the Kochen-Specker Paradox,” Foundations of

Physics 13, 481–499 (1983).

http://dx.doi.org/10.1007/BF00729511

[24] D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond Bell’s theorem,” in Bell’s Theorem,

Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed. (Kluwer Academic Publishers,

Dordrecht, 1989), pp. 73–76.

[25] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s Inequality

under Strict Einstein Locality Conditions,” Phys. Rev. Lett. 81, 5039–5043 (1998).

http://dx.doi.org/10.1103/PhysRevLett.81.5039

[26] N. D. Mermin, “Hidden variables and the two theorems of John Bell,” Reviews of Modern Physics 65,

8



803–815 (1993).

http://dx.doi.org/10.1103/RevModPhys.65.803

[27] N. Bohr, “Discussion with Einstein on epistemological problems in atomic physics,” in Albert Ein-

stein: Philosopher-Scientist, P. A. Schilpp, ed. (The Library of Living Philosophers, Evanston, Ill.,

1949), pp. 200–241.

http://www.emr.hibu.no/lars/eng/schilpp/Default.html

[28] J. S. Bell, “On the Problem of hidden variables in quantum mechanics,” Reviews of Modern Physics

38, 447–452 (1966), reprinted in [57, pp. 1-13].

http://dx.doi.org/10.1103/RevModPhys.38.447

[29] M. Redhead, Incompleteness, Nonlocality, and Realism: A Prolegomenon to the Philosophy of Quan-

tum Mechanics (Clarendon Press, Oxford, 1990).

[30] A. Cabello, “Experimentally Testable State-Independent Quantum Contextuality,” Physical Review

Letters 101, 210 401 (2008).

http://dx.doi.org/10.1103/PhysRevLett.101.210401

[31] M. Michler, H. Weinfurter, and M. Zukowski, “Experiments towards Falsification of Noncontextual

Hidden Variable Theories,” Physical Review Letters 84, 5457–5461 (2000).

http://dx.doi.org/10.1103/PhysRevLett.84.5457

[32] Y. Hasegawa, R. Loidl, G. Badurek, M. Baron, and H. Rauch, “Quantum Contextuality in a Single-

Neutron Optical Experiment,” Physical Review Letters 97, 230 401 (2006).

http://dx.doi.org/10.1103/PhysRevLett.97.230401

[33] A. Cabello and G. Garcı́a-Alcaine, “Proposed Experimental Tests of the Bell-Kochen-Specker Theo-

rem,” Physical Review Letters 80, 1797–1799 (2002).

http://dx.doi.org/10.1103/PhysRevLett.80.1797

[34] K. Svozil, “Contexts in quantum, classical and partition logic,” in Handbook of Quantum Logic and

Quantum Structures, K. Engesser, D. M. Gabbay, and D. Lehmann, eds. (Elsevier, Amsterdam, 2008),

p. in print.

http://arxiv.org/abs/quant-ph/0609209

[35] J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932), English

translation in [58].

[36] M. A. Neumark, “Principles of quantum theory,” in Sowjetische Arbeiten zur Funktionalanalysis.

Beiheft zur Sowjetwissenschaft, K. Matthes, ed. (Gesellschaft für Deutsch-Sowjetische Freundschaft,

9



Berlin, 1954), Vol. 44, pp. 195–273.

[37] P. R. Halmos, Finite-dimensional vector spaces (Springer, New York, Heidelberg, Berlin, 1974).

[38] A. M. Gleason, “Measures on the closed subspaces of a Hilbert space,” Journal of Mathematics and

Mechanics 6, 885–893 (1957).
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