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Preface

I This talk has two parts

I The first part presents work done in the “early days” of hybrid
systems research, some 15 years ago

I It is about decidability and undecidability of some reachability
problem for a simple type of hybrid automata

I This work is interesting and shows relations between
computation, geometry and dynamics, but my current opinion
is that this direction is not very applicable outside the paper
industry

I The second part represents my current work in the domain

I We approximate reachable states of systems defined by linear
and nonlinear differential equations

I I think this is a useful direction but I don’t know what I will
think about it in 15 years
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Outline of Talk

I Some generalities on “linear” hybrid automata and PCD
systems

I Decidability of reachability problems in the plane

I Undecidability in dimension 3 and above by simulating
pushdown stacks

I Going higher in the arithmetical hierarchy

I So what?



A Motivating Example: Buffer Networks

I Consider a network of containers/buffers for water/data

I Channels can be switched on and off

I When a channel is on, its flow rate is a constant

I Each combination of open/close valves leads to a different
derivatives for the buffer levels, based on the difference
between their in- and outflows
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ẋ2 = −c3
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“Linear” Hybrid Automata and PCD Systems

I A sub-class of hybrid automata

I Can be viewed as piecewise-trivial dynamical systems:
derivatives are constant in every control state (location) and
the evolution is along a straight line

I Transition guards (switching surface) and invariants (staying
conditions) are linear (hyperplanes, polytopes)

I Local continuous evolution needs no numerical analysis;
Computing the effect of time passage amounts to quantifier
elimination in linear algebra

I Investigated a lot by Henzinger et al. (HYTECH), currently
supported by the tool PHAVER (G. Frehse)

I PCD (piecewise-constant derivative): a sub-class of linear
hybrid automata closer in spirit to continuous dynamical
systems



PCD (Piecewise-Constant Derivatives) Systems

I Dynamical System: H = (X , f ), X = Rd

I f : X → X defines differential equation d+x
dt = f (x)

I A trajectory of H starting at x0 ∈ X is ξ : R+ → X s.t.
I ξ(0) = x0

I f (ξ(t)) is defined for every t and is equal to the right
derivative of ξ(t)

I PCD: X is partitioned into a final number of polyhedra
(regions) and f is constant in each region

I Trajectories are thus broken lines



PCDs are Effective

I A description of a PCD system: {(P1, c1), . . . , (Pn, cn)}
I each Pi is a convex polyhedron (interesection of linear

inequalities) and ci is its corresponding derivative (slope)

I Effectiveness: given a PCD description and a rational point
x = ξ(0)

I There exists ε > 0 s.t. we can compute precisely x′ = ξ(∆) for
every ∆, 0 < ∆t < ε; x ′ = x + c ·∆

I Unlike arbitrary dynamical systems where you can only
approximate



Decision Problems for PCD

I Point-to-point reachability Reach(H, x, x′):

I Given: a PCD H and x, x′ ∈ X ,

I Are there a trajectory ξ and t ≥ 0 such that ξ(0) = x and
ξ(t) = x′?

I Region-to-region reachability R-Reach(H,P,P ′):

I Given: a PCD H and two polyhedral sets P,P ′ ⊆ X

I Are there two points x ∈ P and x′ ∈ P ′ such that
Reach(H, x, x′) ?



PCDs on the Plane

I Polyhedral partition of the plane into polygons/regions (P)

I Induced boundary elements: edges (e) and vertices (x)

I A kind of abstract finite alphabet to describe qualitative
behaviors as sequences of regions or edges
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Orientation and Ordering of Boundaries
I Edges (and vertices) can be classified as entry and exit

according to the relation between the slope c and the the
vector e which defines the inequality

I Edge e below is exit for c1 and entry for c3
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I The whole boundary of a region can be decomposed into two
connected sets, entry In(P) and exit Out(p)

I A linear order can be imposed on each of them:
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A Fundamental Property of Planar Systems

I Let ξ be any trajectory that intersects Out(P) in three
consecutive points, x1, x2 and x3. Then: x1 � x2 implies
x2 � x3
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I The figure shows why it cannot be otherwise as the trajectory
must intersect itself

I Jordan’s theorem, not true in 3 dimensions



Spirals

I Consequently all repetitive behaviors are spirals

Contracting: Expanding:

l
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I The sequences of intersections with an edge is monotonic and
you cannot return to an edge you have “abandoned”

I Since there are finitely many edges we can conclude:

I For every trajectory, the sequence of edges it crosses is
ultimately-periodic: e1, . . . , ei , (ei+1, . . . , ei+j)

ω



Representation (Parametrization)

I A representation scheme for an edge e is a pair of vectors v,u
and an interval [l , h] such that e = {v + λu : λ ∈ [l , h]}
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I Consider and entry edge e with (u, v) representation and exit
edge e ′ with (u′, v′) representation

I The corresponding successor function is defined as
fe,e′(λ) = λ′ iff by entering P at x = (e, λ), you exit as
x′ = (e ′, λ′)
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Successor Function is Linear

I Successor function is well-defined, computable and linear:
λ′ = Ae,e′λ+ Be,e′ where

Ae,e′ =
c · a
c · a′

and Be,e′ =
ĉ · (v − v′)

c · a′

I Here c is the slope and a and a′ are the normals to e and e ′

I (Some basic linear algebra, quantifier elimination...)

I Predecessor:

λ =
λ′ − Be,e′

Ae,e′

I Moreover: if e ∈ In(P) and e ′ ∈ Out(P) then Ae,e′ > 0



Signature Successor Function

I A cyclic signature: a sequence σ = e1, . . . , ek of edges s.t.
e1 = ek

e λ

λ′

I The function fσ from e1 to itself represents the effect on a
point going through a cycle (Poincare map)

I In our case it is linear fσ(λ) = Aσλ+ Bσ (composition of
linear partial functions)

I Aσ = Ae1,e2 · Ae2,e3 . . .Aek−1,ek

I Bσ = (· · · ((Be1,e2 · Ae2,e3 + Be2,e3) · Ae3,e4 + Be3,e4) · · · ) ·
Aek−1,ek

+ Bek−1,ek



Intersections of a Spiral and an Edge

µ0
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I µi+1 = Aσ · µi + Bσ

I µn =

 µ0 + Bσ · n if Aσ = 1
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An
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I We can compute µ∗ = limn→∞µn



The Limit of the Sequence

Case Limit
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Main Positive Result

I An algorithm for deciding Reach(H, x, x′):

I Start “simulating” forward from x

I When you encounter a cycle, compute its limit points on all
edges and determine whether it is the ultimate cycle (limits on
each edge stays inside edge range)

I If not, continue simulating until you leave it (in a finite
number of iterations)

I If it is the ultimate cycle, and x′ is beyond the limit, the
answer is “no”

I If x′ is before the limit then continue simulation until you
reach x′ (“yes”) or bypass it (“no”)



Region-to-Region Reachability (Sketch)
I Can be reduced to edge-to-edge reachability
I An entry edge interval splits into finitely many exits edges
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I Can build a successor tree and compute a limit along each
branch
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Can we go to Higher Dimensions?

I One one hand: calculating successors can be generalized to
higher dimensions (more book-keeping though)

I On the other: no Jordan theorem so trajectories are not
necessary ultimately-periodic (Chaos et co.)

I We show undecidability for 3 dimensions by showing that
PCDs can simulate any TM (2PDA) and hence deciding
reachability for PCDs solves the halting problem

I Interesting “model of computation”



Simulation of Finite-State Automata

I Every finite deterministic automaton can be simulated by a
3-dimensional PCD system
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Region Defining conditions c = (ẋ, ẏ, ż)
F (z = 0) ∧ (y < 1) (0, 1, 0)
Uij (x = i) ∧ (y = 1) ∧ (z < j) (0, 0, 1)

Bij (z = j) ∧ (x + (j − i)y = j) ∧ (y > 0) (j − i,−1, 0)

D (z > 0) ∧ (y = 0) (0, 0,−1)

I Regions Uij and Bij are defined for every i , j such that
δ(qi ) = qj



Push-down Automata (PDA)

I Pushdown stack: an element of Σ∗0ω.

I Two operations:

push: Σ× Σω → Σω pop: Σω → Σ× Σω

push(v , S) = v · S pop(v · S) = (v ,S)

I PDA: an infinite transition system A = (Q × Σ∗0ω, δ)

I Q is finite and δ is defined using a finite collection of
statements of one of the following forms:

qi : S :=push(v ,S);
goto qj

qi : (v ,S) :=pop(S);
if v = 0 goto qi0 ;
. . .
if v = k − 1 goto qik−1

;



Encoding Stacks into [0, 1]

I Contents of a stack S = s1s2 . . . where s1 is the top of the
stack

I Enconding using k-ary representation r : Σω → [0, 1]

r(S) =
∞∑
i=1

sik
−i

I Stack operations have arithmetic counterparts:

S ′ = push(v ,S) iff r(S ′) = (r(S) + v)/k
(S ′, v) = pop(S) iff r(S ′) = kr(S)− v



Building Blocks for the Simulation, k = 2 and Σ = {0, 1}

0

1/2 3/21/2 1/2 −1/2

1 0 1 0 1/2 1

push 1 push 0 pop

I A trajectory starting at x = (x , 0), x ∈ [0, 1] and ending at
x′ = (x ′, 1) satisfies:

I x ′ = (x + 1)/2 (push 1), x ′ = x/2 (push 0) and
x ′ = 2x − 1/2 (pop)

I In other words, x = r(S) at the “input port” (y = 0) of an
element, then x ′ = r(S ′) at the “output port” (y = 1) where
S ′ is the operation outcome.

I The pop element has two output ports which are selected
according to the value of the top element popped



Simulation of PDAs by PCDs

I Put the appropriate element for each state and connect via
“bands” that “carry” the stack value

I A PCD for the PDA defined by:

q1 : S :=push(1, S); goto q2;
q2 : (v , S) :=pop(S); If v = 1 then goto q2 else goto q1

z

(0, 0, 0) q1
q2

x

y

I Every PDA can be simulated by a 3-dimensional PCD system



Simulating 2PDAs

I Automata with 2 push-down stacks can simulate Turing
machines

I We can represent the configuration of two stacks by a point in
[0, 1]2 and build the corresponding gadgets, e.g. push(S1, 0)

yx2

x1

(x1, x2)

(x′1, x2)

I Hence a straightforward realization of 2PDA in 4 dimensions

I With some considerable effort we can squeeze everything into
3 dimensions and conclude:

I The reachability problem for PCD systems in 3 dimensions is
undecidable



Theoreticians go Wild

I Arithmetical hierarchy: the classes Σ1,Σ2, . . . and Π1,Π2, . . .
of sets of integers defined inductively:

I Σ1 consists of sets P ⊆ IN such that there is a Turing
machine that halts on an input n iff n ∈ P

I The class Πi consists of all the sets P such that P ∈ Σi

I Σi+1 is the class of all sets P defined as
P = {n : ∃m 〈m, n〉 ∈ P ′} for some P ′ ∈ Πi , where 〈〉 is some
computable pairing function

I The arithmetical hierarchy is infinite, satisfying the strict
inclusions Πi ⊂ Σi+1 and Σi ⊂ Πi+1

I We show (with the help of Zeno paradox) how all the
arithmetical hierarchy can be realized by PCDs



Recognition by PCDs

I PCD recognizer: Ĥ = (Rd , f , I , r , xa, xr), H = (Rd , f ) is a
PCD

I I = [0, 1]× {0}d−1 is a one-dimensional subset of X (the
“input port”)

I r : IN → [0, 1] ∩Q is a recursive injective coding function

I xa, xr ∈ Rd − I are two distinct points (accepting and
rejecting states)

I We assume that f (xa) = f (xr) = 0

I Ĥ semi-recognizes P ⊆ N iff for every n, the trajectory
starting at (r(n), 0, . . . , 0) can continue forever and it
eventually reaches xa iff n ∈ P

I We say that Ĥ (fully) recognizes P when, in addition, this
trajectory reaches xr iff n 6∈ P

I Previous result: every Σ1 set P is semi-recognized by some
3-dimensional bounded PCD



Principal Lammata

I From a PCD that semi-recognizes P one can construct a
(higher-dimensional) PCD that recognizes P

I From a PCD that recognizes P one can construct:

1. a PCD that semi-recognizes {x : ∃y 〈x , y〉 ∈ P}
2. a PCD that recognizes P.

I The last two are relatively-easy and trivial (respectively)

I The main idea of the first:

x1

x2



Gadgets used in the Construction
I Division by 2:

y

x

B

C D

A

I Projectivisation:

I Corollary: PCDs can realize the whole arithmetical hierarchy



Credits and Follow-ups

I Decidability : OM and A. Pnueli, Reachability Analysis of
Planar Multi-Linear Systems, 1993

I Generalized by Asarin, Pace, Schneider and Yovine to planar
differential inclusions (and implemented)

I Undecidability: E. Asarin and OM, On some Relations
between Dynamical Systems and Transition Systems, 1994

I Numerous papers on decidability boundaries for linear hybrid
automata (Henzinger et al)

I Some small open problems remain, e.g. M. Mahfoudh,
B. Krogh and OM, On Control with Bounded Computational
Resources, 2002

I Higher undecidability: E. Asarin and OM, Achilles and the
Tortoise Climbing Up the Arithmetical Hierarchy, 1995

I Studied extensively by O. Bournez



So What?

I Beyond the nice intellectual exercise (and a warm-up for those
whose geometry and linear algebra are, at best, rusty) the
results are rather disappointing

I Even for these systems, whose continuous dynamics is trivial
we cannot answer anything

I How will we cope with “real” dynamics?

I We are asking the wrong questions, inspired by our discrete
verification background

I In the continuous world having precise/exact answers is an
oxymoron

I We should ask weaker, approximate questions on stronger
systems with real differential equations
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Summary

I We propose a computer-aided methodology to help analyzing
certain biological models

I Domain of applicability: biochemical reactions modeled as
differential equations. State variables denote
concentrations

I We propose reachability computation, a kind of set-based
simulation, that may replace uncountably-many simulations

I The continuous analogue of algorithmic verification
(model-checking), emerged from more than a decade of
research on hybrid systems

I Since this is not part of the local culture, we first introduce the
domain and only later move to the contribution of this paper



Outline

I Under-determined dynamical models and their biological
relevance

I Continuous dynamical systems and abstract reahcability

I Effective representation of sets and concrete algorithms for
linear systems

I Treating nonlinear systems via hybridization

I Dynamic hybridization: idea and preliminary results

I Conclusions



Dynamical Models with Nondeterminism

I Dynamical system: state space X and a rule x ′ = f (x , v)

I The next state as a function of the current state and some
external influence (or unknown parameters) v ∈ V

I In discrete domains: a transition system with input (alphabet)

I System becomes nondeterministic if input is projected away

I Given initial state, many possible evolutions (“runs”)

I Simulation: picking one input and generating one behavior

I Symbolic verification: magically computing all runs in
parallel

I Reachability computation: adapting these ideas to systems
defined by differential equations or hybrid automata
(differential equations with mode switching)



Why Bother?

I Differential models of biochemical reactions are very imprecise
for many reasons:

I They are obtained by measuring populations, not individuals

I Kinetic parameters are based on isolated experiments not
always under same conditions

I Etc.

I It is nice to match an experimentally-observed behavior by a
deterministic model, but can we do better?

I After all, biological systems are supposed to be robust under
variations in environmental conditions and parameters

I Showing that all trajectories corresponding to a range of
parameters exhibit the same qualitative behavior is much
stronger



Preliminary Definitions and Notations

I A time domain T = R+, state space X ⊆ Rn, input space
V ⊆ Rm

I Trajectory: partial function ξ : T → X , Input signal:
ζ : T → V both defined over an interval [0, t] ⊂ T

I A continuous dynamical system S = (X ,V , f )

I Trajectory ξ with endpoints x and x ′ is the response of S to
input signal ζ if

I ξ is the solution of ẋ = f (x , v) for initial condition x and

v(·) = ζ, denoted by x
ζ/ξ−→ x ′

I R(x , ζ, t) = {x ′} denote the fact that x ′ is reachable from x

by ζ within t time, that is, x
ζ/ξ−→ x ′ and |ζ| = |ξ| = t



Reachability
I R(x , ζ, t) = {x ′} speaks of one initial state, one input signal

and one time instant
I Generalizing to a set X0 of initial states, to all time instants

in an interval I = [0, t] and all admissible input signals:

RI (X0) =
⋃

x∈X0

⋃
t∈I

⋃
ζ

R(x , ζ, t)

x0x0
x0

I Depth-first vs. breadth-first⋃
ζ

⋃
t∈I

R(x , ζ, t) =
⋃
t∈I

⋃
ζ

R(x , ζ, t)



Abstract Reachability Algorithm

I The reachability operator satisfies the semigroup property:

R[0,t1+t2](X0) = R[0,t2](R[0,t1](X0))

I We can choose a time step r and apply the following iterative
algorithm:

Input: A set X0 ⊂ X
Output: Q = R[0,L](X0)

P := Q := X0

repeat i = 1, 2 . . .
P := R[0,r ](P)
Q := Q ∪ P

until i = L/r

I Remark: we look at bounded time horizon and do not mind
about reaching a fixpoint



From Abstract to Concrete Algorithms

I The algorithm performs operations on subsets of Rn which,
mathematically speaking, can be weird objects

I Like any computational geometry we restrict ourselves to
classes of subsets (boxes, polytopes, ellipsoids, zonotopes)
having nice properties:

I Finite syntactic representation

I Effective decision procedure for membership

I Closure (or approximate closure) under the reachability
operator

I In this talk we use convex polytopes and their finite unions



Convex Polytopes

I Halfspace: all points x satisfying a linear inequality a · x ≤ b

I Convex polyhedron: intersection of finitely many halfspaces;
Polytope: bounded convex polyhedron

I Convex combination of a set of points {x1, . . . , xl} is any
x = λ1x1 + · · ·+ λlxl such that

∑l
i=1 λi = 1

I The convex hull conv(P̃) of a set P̃ of points is the set of all
convex combinations of elements in P̃

I Polytope representations:
I Vertices: a polytope P admits a finite minimal set P̃

(vertices) such that P = conv(P̃).
I Inequalities: a polytope P admits a canonical set of

halfspaces/inequalities such that P =
∧k

i=1 ai · x ≤ bi



Autonomous (Closed, Deterministic) Linear Systems

I Systems defined by linear differential equations of the form
ẋ = Ax where A is a matrix are the most well-studied

I There is a standard technique to fix a time step r and work in
discrete time, a recurrence equation of the form xi+1 = Axi

I The image of a set P by the linear transformation A is
AP = {Ax : x ∈ P} (one-step successors)

I It is easy to compute, for example, for polytopes represented
by vertices:
P = conv({x1, . . . , xl}) ⇒ AP = conv({Ax1, . . . ,Axl})

v1

v2

v4

v5

v6

v3

P

v ′4 = Av4

v ′5 = Av5

v ′6 = Av6

v ′1 = Av1

AP

v ′3 = Av3

v ′2 = Av2



Algorithm 1: Discrete-Time Linear Reachability

I Input: A set X0 ⊂ X represented as conv(P̃0)

I Output: Q = R[0..L](X0) represented as a list

{conv(P̃0), . . . , conv(P̃L)}

P := Q := P̃0

repeat i = 1, 2 . . .
P := AP
Q := Q ∪ P

until i = L

I Complexity assuming |P̃0| = m0 is O(m0LM(n)) where M(n)
is the complexity of matrix-vector multiplication in n
dimensions: ∼ O(n3)

I Can be applied to other representations of objects closed
under linear transformations



Linear Systems with Input

I Systems define by xi+1 = Axi + vi where the vi ’s range over a
bounded convex set V

I The one-step successor of P is defined as

P ′ = {Ax + v : x ∈ P, v ∈ V } = AP ⊕ V

I Minkowski sum A⊕ B = {a + b : a ∈ A ∧ b ∈ b}
I Same algorithm can be applied but the Minkowski sum

increases the number of vertices in every step

P ⊕ V

P

V



Alternative: Pushing Facets

I Over-approximating the reachable set while keeping its
complexity more or less fixed

I Assume P represented as intersection of halfspaces

I For each halfspace H i : aix ≤ bi , let v i ∈ V be the input
vector which pushes it in the “outermost” way

I Apply Ax + Bv i to H i and the intersection of the pushed
halfspaces over-approximates AP ⊕ V

P ′ ⊃ P ⊕ V

P
V

I The problem: over-approximation errors accumulate (the
“wrapping effect”)



Linear Reachability: State of the Art

I New algorithmics by C. Le Guernic and A. Girard

I Efficient computations: linear transformation applied to fixed
number of points in each iteration

I No accumulation of over-approximation errors

I Initially used zonotopes, a class of sets closed under both
linear operations and Minkowski sum; Can be applied to any
“lazy” representation of the sequence of the computed sets

I Based on the observation that two consecutive sets

Pk = AkP0 ⊕ Ak−1V ⊕ Ak−2V ⊕ . . .⊕ V
Pk+1 = Ak+1P0 ⊕ AkV ⊕ Ak−1V ⊕ . . .⊕ V

share a lot of terms

I Can compute within few minutes the reachable set after 1000
steps for linear systems with 200 (!) state variables



Linear Reachability: Some Credits

I Algorithmic analysis of hybrid systems started with tools like
Kronos and HyTech for timed automata and “linear” hybrid
automata: HenzingerSifakisYovine and
HenzingerHoWongtoi - very simple continuous dynamics,
summarized in ACH+95

I Verifying differential equations: Greenstreet96

I Reachability for linear differential equations and hybrid
systems: ChutinanKrogh99, AsarinBournezDangMaler00
(polytopes) KurzhanskiVaraiya00, BotchkarevTripakis00
(ellipsoids), MitchellTomlin00 (level sets)

I Pushing faces and treating inputs: DangMaler98, Varaiya98

I Using zonotopes: Girard05

I New algorithmic scheme Girard LeGuernic06-09



The Nonlinear Challenge

I Ok, bravo, but linear systems were studied to death by
everybody. Real interesting models, biological included, are
nonlinear

I What about systems of the form xi+1 = f (xi , ui ) or even
xi+1 = f (xi ) where f is an arbitrary continuous function, say a
polynomial ?

I Convexity-preservation property of linear maps doesn’t hold

I You can make small time steps, use a local linear
approximation and bloat the obtained set to be safe

I This approach will either accumulate large errors or require
expensive computation in every step



Hybridization: Asarin, Dang and Girard 2003

I Take a nonlinear system xi+1 = f (xi ) and partition the state
space into boxes (linearization domains)

I In each box Xq find a matrix Aq and a convex polytope Vq

s.t. f (x) ∈ Aqx ⊕ Vq for every x ∈ Xq

I Aq is a local linearization of f with error bounded by Vq

I The new dynamics is xi+1 ∈ Aqx ⊕ Vq iff x ∈ Xq

I A piecewise-(linear-with-input) systems, a restricted type of a
hybrid automaton, which over-approximate f in terms of
inclusion of trajectories
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Hybridization (cont.)
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I In the hybrid automaton, x evolves according to the linear
dynamics Aqx ⊕ Vq as long as it remains in Xq

I Reaching the boundary between Xq and Xq′ , it takes a
transition to q′ and evolves according to Aq′x ⊕ Vq′

I Linearization and error are computed only in the passage
between blocks, not in every step

I Quality can be improved by making boxes smaller



Hybrid Reachability
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I Compute in one domain a sequences of sets using linear
techniques until a set intersects with a boundary

I Take the intersection as initial set in next domain with the
next linearization

(a) (b)

A1 A2



Between Theory and Practice

I First problem: intersection may be spread over many steps:

(c)(b)(a)

I Either explosion or union of intersections, error accumulation

I Major problem: a set may leave a box via many facets:

(a) (b)

I Splitting is an artifact of the fixed grid imposed on the
system

I Consequently, static hybridization is practically impossible
beyond 3 dimensions



Our Contribution (at Last!)

I A dynamic hybridization scheme not based on a fixed grid

I In this scheme we do not need intersection at all and we allow
the linearization domains to overlap

I When we leave a domain, we backtrack one step and define a
new linearization domain around the previous set and continue
with the new linearized dynamics from there

Pi
Pi

P0P0

B

(a)

B

(b)

B′

I And it works!



Example: E. Coli Lac Operon

Ṙa = τ − µ ∗ Ra − k2RaOf + k−2(χ− Of )− k3RaI
2
i + k8RiG

2

Ȯf = −k2raOf + k−2(χ− Of )

Ė = νk4Of − k7E

Ṁ = νk4Of − k6M

İi = −2k3RaI
2
i + 2k−3F1 + k5IrM − k−5IiM − k9IiE

Ġ = −2k8RiG
2 + 2k−8Ra + k9IiE

I We can also do a 9-dimensional highly-nonlinear aging model



Conclusions

I Disclaimer: we do not bring any new biological insight on any
concrete system at this point

I Our goal is to develop tools, as general-purpose as possible,
that can aid in the analysis of many non-trivial systems

I Problem specificity cannot be avoided of course: it will
come up at the particular modeling and exploration phases

I Current version is a prototype:
I Fixed-size boxes as linearizarization domains and other

heuristics. Can be improved in efficiency and accuracy;
I It is based on the old algorithmics for linear systems;
I Improving all these aspects is on our immediate agenda

I We also explore alternative approaches for parameter synthesis
based on simulation and sensitivity analysis Donze et al09

I Methodological aspects of the use of such tools in the
biological context should be worked out



Thank You


