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Preface

» This talk has two parts

» The first part presents work done in the “early days” of hybrid
systems research, some 15 years ago

» It is about decidability and undecidability of some reachability
problem for a simple type of hybrid automata

» This work is interesting and shows relations between
computation, geometry and dynamics, but my current opinion
is that this direction is not very applicable outside the paper
industry

» The second part represents my current work in the domain

» We approximate reachable states of systems defined by linear
and nonlinear differential equations

» | think this is a useful direction but | don't know what | will
think about it in 15 years
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Outline of Talk

» Some generalities on “linear” hybrid automata and PCD
systems

v

Decidability of reachability problems in the plane

v

Undecidability in dimension 3 and above by simulating
pushdown stacks

v

Going higher in the arithmetical hierarchy
So what?

v



A Motivating Example: Buffer Networks

» Consider a network of containers/buffers for water/data

» Channels can be switched on and off

» When a channel is on, its flow rate is a constant

» Each combination of open/close valves leads to a different
derivatives for the buffer levels, based on the difference
between their in- and outflows
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“Linear” Hybrid Automata and PCD Systems

v

A sub-class of hybrid automata

» Can be viewed as piecewise-trivial dynamical systems:

derivatives are constant in every control state (location) and
the evolution is along a straight line

Transition guards (switching surface) and invariants (staying
conditions) are linear (hyperplanes, polytopes)

Local continuous evolution needs no numerical analysis;
Computing the effect of time passage amounts to quantifier
elimination in linear algebra

Investigated a lot by Henzinger et al. (HYTECH), currently
supported by the tool PHAVER (G. Frehse)

PCD (piecewise-constant derivative): a sub-class of linear

hybrid automata closer in spirit to continuous dynamical
systems



PCD (Piecewise-Constant Derivatives) Systems

» Dynamical System: H = (X, f), X =R

» f: X — X defines differential equation dd—?‘ = f(x)

> A trajectory of H starting at xo € X is £ : Ry — X s.t.
> £(0) = xo
» f(&(t)) is defined for every t and is equal to the right

derivative of £(t)
» PCD: X is partitioned into a final number of polyhedra
(regions) and f is constant in each region

» Trajectories are thus broken lines




PCDs are Effective

v

A description of a PCD system: {(P1,¢1),...,(Pn,cpn)}

» each P; is a convex polyhedron (interesection of linear

inequalities) and c; is its corresponding derivative (slope)
Effectiveness: given a PCD description and a rational point

x = £(0)

There exists € > 0 s.t. we can compute precisely x' = £(A) for
every A, 0 < At<e; X' =x+c-A

Unlike arbitrary dynamical systems where you can only
approximate



Decision Problems for PCD

» Point-to-point reachability Reach(H, x, x’):

» Given: a PCD H and x,x’ € X,

> Are there a trajectory £ and t > 0 such that £(0) = x and
§(t) =x7

» Region-to-region reachability R-Reach(H, P, P'):

» Given: a PCD H and two polyhedral sets P, P’ C X

» Are there two points x € P and x’ € P’ such that
Reach(H,x,x’) 7



PCDs on the Plane

» Polyhedral partition of the plane into polygons/regions (P)
» Induced boundary elements: edges (e) and vertices (x)

» A kind of abstract finite alphabet to describe qualitative
behaviors as sequences of regions or edges

P1 P2

X1

P3 e3

P
Py 6 ®



Orientation and Ordering of Boundaries

» Edges (and vertices) can be classified as entry and exit
according to the relation between the slope ¢ and the the
vector e which defines the inequality

» Edge e below is exit for ¢; and entry for c3
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» The whole boundary of a region can be decomposed into two
connected sets, entry In(P) and exit Out(p)
» A linear order can be imposed on each of them:

Out(P) X1




A Fundamental Property of Planar Systems

> Let £ be any trajectory that intersects Out(P) in three
consecutive points, X1, X2 and x3. Then: x; < xp implies
X2 2 X3

» The figure shows why it cannot be otherwise as the trajectory
must intersect itself

» Jordan's theorem, not true in 3 dimensions



Spirals

» Consequently all repetitive behaviors are spirals

Contracting: Expanding:

» The sequences of intersections with an edge is monotonic and
you cannot return to an edge you have “abandoned”

» Since there are finitely many edges we can conclude:

» For every trajectory, the sequence of edges it crosses is
ultimately-periodic: ey, ..., €, (€41, -, €4j)*



Representation (Parametrization)
» A representation scheme for an edge e is a pair of vectors v, u
and an interval [/, h] such that e = {v+ Au: X\ € [/, h]}

» Consider and entry edge e with (u,v) representation and exit

edge €’ with (u’,Vv’) representation
» The corresponding successor function is defined as
feer(A) = X iff by entering P at x = (e, \), you exit as

x' = (e, \)




Successor Function is Linear

» Successor function is well-defined, computable and linear:
N = Ac.e A+ Be s Where
a /
c-a c-(v—v
Ae,e’ = ) and Be,e’ = (7/)
c-a c-a
» Here c is the slope and a and &’ are the normals to e and ¢’
» (Some basic linear algebra, quantifier elimination...)
» Predecessor:
\ = N — Be,e/
Ae,e’
» Moreover: if e € In(P) and €’ € Out(P) then A, s >0



Signature Successor Function

» A cyclic signature: a sequence o = ey, ..., ¢ of edges s.t.
€1 = €k

» The function f, from e; to itself represents the effect on a
point going through a cycle (Poincare map)

» In our case it is linear f,(\) = A, + B, (composition of
linear partial functions)

> A = Aeer  Aeprey - - A

s Aep_1,ek
> B, = ( e ((861,6‘2 : Aez,e3 + 862763) ) Ae3,e4 + Be3,e4) e ) :
Aek—hek + Bek—laek



Intersections of a Spiral and an Edge
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A, —1

» We can compute p* = limp_ oo fin



The Limit of the Sequence

‘ Case ‘ Limit
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Main Positive Result

» An algorithm for deciding Reach(H, x, x'):
» Start “simulating” forward from x

» When you encounter a cycle, compute its limit points on all
edges and determine whether it is the ultimate cycle (limits on
each edge stays inside edge range)

> If not, continue simulating until you leave it (in a finite
number of iterations)

» If it is the ultimate cycle, and x’ is beyond the limit, the
answer is “no”

» If x' is before the limit then continue simulation until you
reach x’ (“yes”) or bypass it (“no”)



Region-to-Region Reachability (Sketch)

» Can be reduced to edge-to-edge reachability
» An entry edge interval splits into finitely many exits edges

x
x1 2 e

€1

I e

» Can build a successor tree and compute a limit along each
branch




Can we go to Higher Dimensions?

» One one hand: calculating successors can be generalized to
higher dimensions (more book-keeping though)

» On the other: no Jordan theorem so trajectories are not
necessary ultimately-periodic (Chaos et co.)

» We show undecidability for 3 dimensions by showing that
PCDs can simulate any TM (2PDA) and hence deciding
reachability for PCDs solves the halting problem

» Interesting “model of computation”



Simulation of Finite-State Automata

» Every finite deterministic automaton can be simulated by a
3-dimensional PCD system

:
sl
b
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Region Defining conditions c=(x,y,2)
F (z=0)A(y<1 0,1,0)
Ujj (x=NAly=1)A(z<]) (0,0,1)
Bij E=DAx+0=-Dy=)A>0 | (—=i—1,0)
D E>0A( =0 ©,0,-1)

> Regions Uj; and Bj; are defined for every /,j such that
(qi) = qj



Push-down Automata (PDA)

» Pushdown stack: an element of X*0%.

» Two operations:

PUSH: 2 X 2% — %“ POP: X% — ¥ x 2%

PUSH(v,S)=v-S pPOP(v-S) =(v,S)

» PDA: an infinite transition system A = (Q x X*0%, )

» @ is finite and ¢ is defined using a finite collection of
statements of one of the following forms:

gi: S :=pusH(v,S); gi: (v,S) :=pop(S);
GOTO g IF v =0 GOTO gqjp;

IF v=k—1GOTO qj, ,;



Encoding Stacks into [0, 1]

» Contents of a stack S = s15,... where s; is the top of the
stack

» Enconding using k-ary representation r : ¥ — [0, 1]

r(S) = i sk~
i=1

» Stack operations have arithmetic counterparts:

S"= pusH(v,S) iff r(S)=(r(S)+v)/k
(S',v) = popr(S) iff r(S')=kr(S)—v



Building Blocks for the Simulation, k =2 and ¥ = {0, 1}

1/2 1/2 —1/2 1/2 3/2
3 H N v 7

vvvvvv

» A trajectory starting at x = (x,0), x € [0,1] and ending at
x' = (x/, 1) satisfies:

» x' =(x+1)/2 (pusH 1), x' =x/2 (pPUusH 0) and
x' =2x—1/2 (pop)

» In other words, x = r(S) at the “input port” (y = 0) of an
element, then x’ = r(S’) at the “output port” (y = 1) where
S’ is the operation outcome.

» The POP element has two output ports which are selected
according to the value of the top element popped



Simulation of PDAs by PCDs

» Put the appropriate element for each state and connect via
“bands” that “carry” the stack value

» A PCD for the PDA defined by:

g1 : S :=PUsH(1, S); GOTO q;
g2 : (v,S) :=pPoP(S); If v =1 THEN GOTO g2 ELSE GOTO q1

y

I

0.0,00

» Every PDA can be simulated by a 3-dimensional PCD system



Simulating 2PDAs

» Automata with 2 push-down stacks can simulate Turing
machines

» We can represent the configuration of two stacks by a point in
[0,1]? and build the corresponding gadgets, e.g. PUSH(Sy,0)

X2y Y
HETE)
: X

» Hence a straightforward realization of 2PDA in 4 dimensions

» With some considerable effort we can squeeze everything into
3 dimensions and conclude:

» The reachability problem for PCD systems in 3 dimensions is
undecidable



Theoreticians go Wild

» Arithmetical hierarchy: the classes 21,%5,... and 1, [y,...
of sets of integers defined inductively:

» Y1 consists of sets P C I such that there is a Turing
machine that halts on an input niff n € P

» The class IM; consists of all the sets P such that P € ¥;

> Y14 is the class of all sets P defined as
P ={n:3m(m,n) € P'} for some P" € IN;, where () is some
computable pairing function

» The arithmetical hierarchy is infinite, satisfying the strict
inclusions I; C X;41 and X; C Mg

» We show (with the help of Zeno paradox) how all the
arithmetical hierarchy can be realized by PCDs



Recognition by PCDs

» PCD recognizer: H= (R, £, 1, r,x2 xB), H = (RY, f) is a
PCD

» | =1[0,1] x {0}~ is a one-dimensional subset of X (the
“input port”)

» r: N —[0,1] N Q is a recursive injective coding function

» x4 xB € RY — | are two distinct points (accepting and
rejecting states)

> We assume that f(x*) = f(x®) =0

> H semi-recognizes P C N iff for every n, the trajectory
starting at (r(n),0,...,0) can continue forever and it
eventually reaches x™ iff n € P

» We say that { (fully) recognizes P when, in addition, this
trajectory reaches x® iff n & P

» Previous result: every ¥ 1 set P is semi-recognized by some
3-dimensional bounded PCD



Principal Lammata

» From a PCD that semi-recognizes P one can construct a
(higher-dimensional) PCD that recognizes P
» From a PCD that recognizes P one can construct:
1. a PCD that semi-recognizes {x : dy (x,y) € P}

2. a PCD that recognizes P.

> The last two are relatively-easy and trivial (respectively)

» The main idea of the first:

x2

X1



Gadgets used in the Construction
» Division by 2:

NS

» Projectivisation:

» Corollary: PCDs can realize the whole arithmetical hierarchy



Credits and Follow-ups

» Decidability : OM and A. Pnueli, Reachability Analysis of
Planar Multi-Linear Systems, 1993

» Generalized by Asarin, Pace, Schneider and Yovine to planar
differential inclusions (and implemented)

» Undecidability: E. Asarin and OM, On some Relations
between Dynamical Systems and Transition Systems, 1994

» Numerous papers on decidability boundaries for linear hybrid
automata (Henzinger et al)

» Some small open problems remain, e.g. M. Mahfoudh,
B. Krogh and OM, On Control with Bounded Computational
Resources, 2002

» Higher undecidability: E. Asarin and OM, Achilles and the
Tortoise Climbing Up the Arithmetical Hierarchy, 1995

» Studied extensively by O. Bournez



So What?

» Beyond the nice intellectual exercise (and a warm-up for those
whose geometry and linear algebra are, at best, rusty) the
results are rather disappointing

» Even for these systems, whose continuous dynamics is trivial
we cannot answer anything

» How will we cope with “real” dynamics?

» We are asking the wrong questions, inspired by our discrete
verification background

» In the continuous world having precise/exact answers is an
oxymoron

» We should ask weaker, approximate questions on stronger
systems with real differential equations
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Summary

» We propose a computer-aided methodology to help analyzing
certain biological models

» Domain of applicability: biochemical reactions modeled as
differential equations. State variables denote
concentrations

» We propose reachability computation, a kind of set-based
simulation, that may replace uncountably-many simulations

» The continuous analogue of algorithmic verification
(model-checking), emerged from more than a decade of
research on hybrid systems

» Since this is not part of the local culture, we first introduce the
domain and only later move to the contribution of this paper



Outline

» Under-determined dynamical models and their biological
relevance

» Continuous dynamical systems and abstract reahcability

» Effective representation of sets and concrete algorithms for
linear systems

» Treating nonlinear systems via hybridization
» Dynamic hybridization: idea and preliminary results

» Conclusions



Dynamical Models with Nondeterminism

» Dynamical system: state space X and a rule x' = f(x, v)

v

vV v . v. v Y

The next state as a function of the current state and some
external influence (or unknown parameters) v € V

In discrete domains: a transition system with input (alphabet)
System becomes nondeterministic if input is projected away
Given initial state, many possible evolutions (“runs”)
Simulation: picking one input and generating one behavior

Symbolic verification: magically computing all runs in
parallel

Reachability computation: adapting these ideas to systems
defined by differential equations or hybrid automata
(differential equations with mode switching)



Why Bother?

» Differential models of biochemical reactions are very imprecise
for many reasons:

» They are obtained by measuring populations, not individuals

» Kinetic parameters are based on isolated experiments not
always under same conditions

» Etc.

» It is nice to match an experimentally-observed behavior by a
deterministic model, but can we do better?

» After all, biological systems are supposed to be robust under
variations in environmental conditions and parameters

» Showing that all trajectories corresponding to a range of
parameters exhibit the same qualitative behavior is much
stronger



Preliminary Definitions and Notations

» A time domain T = R, state space X C R”, input space
vV CR™

» Trajectory: partial function £ : T — X, Input signal:
¢ : T — V both defined over an interval [0,t] C T

» A continuous dynamical system S = (X, V,f)

» Trajectory £ with endpoints x and x’ is the response of S to
input signal C if

> ¢ is the solution of x = f(x, v) for initial condition x and
v(:) = ¢, denoted by x S
> R(x,(,t) = {x'} denote the fact that x’ is reachable from x

by ¢ within t time, that is, x & 0 and Il =1¢l=t



Reachability

> R(x,(,t) = {x'} speaks of one initial state, one input signal
and one time instant

» Generalizing to a set Xp of initial states, to all time instants
in an interval / = [0, t] and all admissible input signals:

rioo = U UURe

x€Xo tel ¢

» Depth-first vs. breadth-first

UUR(X’Q’ t) = UUR(X7§> t)

¢ tel tel ¢



Abstract Reachability Algorithm

» The reachability operator satisfies the semigroup property:

R[O,t1+t2] (XO) = R[O,t2](R[0,t1] (XO))

» We can choose a time step r and apply the following iterative
algorithm:

Input: A set Xp C X
Output: Q = R[O,L](XO)

P=Q:=Xp
repeat i =1,2...
P := Rjo,n(P)
Q=QUP
until i = L/r

» Remark: we look at bounded time horizon and do not mind
about reaching a fixpoint



From Abstract to Concrete Algorithms

» The algorithm performs operations on subsets of R" which,
mathematically speaking, can be weird objects

» Like any computational geometry we restrict ourselves to
classes of subsets (boxes, polytopes, ellipsoids, zonotopes)
having nice properties:

» Finite syntactic representation
» Effective decision procedure for membership

» Closure (or approximate closure) under the reachability
operator

» In this talk we use convex polytopes and their finite unions



Convex Polytopes

» Halfspace: all points x satisfying a linear inequality a- x < b

» Convex polyhedron: intersection of finitely many halfspaces;
Polytope: bounded convex polyhedron

» Convex combination of a set of points {xi,...,x;} is any
X = A1x1 + -+ Axg such that S/ N =1
> The convex hull conv(P) of a set P of points is the set of all
convex combinations of elements in P
» Polytope representations:
» Vertices: a polytope P admits a finite minimal set P

(vertices) such that P = conv(P).
» Inequalities: a polytope P admits a canonical set of

halfspaces/inequalities such that P = A\, a' - x < b/



Autonomous (Closed, Deterministic) Linear Systems

» Systems defined by linear differential equations of the form
x = Ax where A is a matrix are the most well-studied
» There is a standard technique to fix a time step r and work in
discrete time, a recurrence equation of the form x;;1 = Ax;
» The image of a set P by the linear transformation A is
AP = {Ax :x € P} (one-step successors)
» It is easy to compute, for example, for polytopes represented
by vertices:
P = conv({xi,...,x;}) = AP = conv({Axi,...,Ax})




Algorithm 1: Discrete-Time Linear Reachability

> Input: A set Xo C X represented as conv(Pp)

> Output: Q = R 1j(Xo) represented as a list
{conv(Py),...,conv(P)}

P=Q:=Fh
repeat i =1,2...
P:= AP

QR =QUP

until i = L

» Complexity assuming |Po| = mg is O(moLM(n)) where M(n)
is the complexity of matrix-vector multiplication in n
dimensions: ~ O(n%)

» Can be applied to other representations of objects closed
under linear transformations



Linear Systems with Input

» Systems define by x;+1 = Ax; + v; where the v;’s range over a
bounded convex set V

» The one-step successor of P is defined as
PP={Ax+v:xePveV}=APaV

» Minkowski sum A@ B={a+b:ac AANb€ b}

» Same algorithm can be applied but the Minkowski sum
increases the number of vertices in every step



Alternative: Pushing Facets

» Over-approximating the reachable set while keeping its
complexity more or less fixed

» Assume P represented as intersection of halfspaces
» For each halfspace H' : a’x < b, let v/ € V be the input
vector which pushes it in the “outermost” way

> Apply Ax + Bv' to H' and the intersection of the pushed
halfspaces over-approximates AP @& V

» The problem: over-approximation errors accumulate (the
“wrapping effect”)



Linear Reachability: State of the Art

» New algorithmics by C. Le Guernic and A. Girard

» Efficient computations: linear transformation applied to fixed
number of points in each iteration

» No accumulation of over-approximation errors

» Initially used zonotopes, a class of sets closed under both
linear operations and Minkowski sum; Can be applied to any
“lazy” representation of the sequence of the computed sets

» Based on the observation that two consecutive sets
P = APb@pAIV@ ARV pV
Pioi = AP g ARV @ ARV g a Vv
share a lot of terms

» Can compute within few minutes the reachable set after 1000
steps for linear systems with 200 (!) state variables



Linear Reachability: Some Credits

» Algorithmic analysis of hybrid systems started with tools like
Kronos and HyTech for timed automata and “linear” hybrid
automata: HenzingerSifakisYovine and
HenzingerHoWongtoi - very simple continuous dynamics,
summarized in ACH*95

» Verifying differential equations: Greenstreet96

» Reachability for linear differential equations and hybrid
systems: ChutinanKrogh99, AsarinBournezDangMaler(00
(polytopes) KurzhanskiVaraiya00, BotchkarevTripakis00
(ellipsoids), MitchellTomlin00 (level sets)

» Pushing faces and treating inputs: DangMaler98, Varaiya98
» Using zonotopes: Girard05
» New algorithmic scheme Girard LeGuernic06-09



The Nonlinear Challenge

» Ok, bravo, but linear systems were studied to death by
everybody. Real interesting models, biological included, are
nonlinear

» What about systems of the form x;11 = f(x;, u;) or even
Xj+1 = f(x;) where f is an arbitrary continuous function, say a
polynomial 7

» Convexity-preservation property of linear maps doesn't hold

» You can make small time steps, use a local linear
approximation and bloat the obtained set to be safe

» This approach will either accumulate large errors or require
expensive computation in every step



Hybridization: Asarin, Dang and Girard 2003

» Take a nonlinear system x;11 = f(x;) and partition the state
space into boxes (linearization domains)

> In each box Xj find a matrix Ag and a convex polytope V,
s.t. f(x) € Agx @ Vg for every x € Xq

> Ag is a local linearization of f with error bounded by V,
» The new dynamicsis  xjy1 € Agx ® Vg, iff x € Xq

» A piecewise-(linear-with-input) systems, a restricted type of a
hybrid automaton, which over-approximate f in terms of
inclusion of trajectories




Hybridization (cont.)

X € Au - x® Vo €A -xs Vi

[ N .

X € A x5 Voo X €A xS Vig

» In the hybrid automaton, x evolves according to the linear
dynamics Agx @ V4 as long as it remains in X,

» Reaching the boundary between X, and X/, it takes a
transition to ¢’ and evolves according to Ay x @ Vi

» Linearization and error are computed only in the passage
between blocks, not in every step

» Quality can be improved by making boxes smaller



Hybrid Reachability

X € Ag - x @ Voo X €A x® Vi

» Compute in one domain a sequences of sets using linear
techniques until a set intersects with a boundary

» Take the intersection as initial set in next domain with the
next linearization

A Az

(a) (b)



Between Theory and Practice

» First problem: intersection may be spread over many steps:

)

(@) ®) ©

» Either explosion or union of intersections, error accumulation

» Major problem: a set may leave a box via many facets:
&

(@) ()

» Splitting is an artifact of the fixed grid imposed on the
system

» Consequently, static hybridization is practically impossible
beyond 3 dimensions



Our Contribution (at Last!)

» A dynamic hybridization scheme not based on a fixed grid

» In this scheme we do not need intersection at all and we allow
the linearization domains to overlap

» When we leave a domain, we backtrack one step and define a
new linearization domain around the previous set and continue
with the new linearized dynamics from there

2

(a) (b)

» And it works!



Example: E. Coli Lac Operon

—2k3R,1? + 2k_3F1 + ks, M — k_sl;M — kol;E
= —2kgR;G? 4 2k_gR, + kol;E

R, = 7—pu*Rs—koR.Of + k_o(x — Of) — ksR,I? + kg R; G2
Of = —kor,Of + kfz(X — Of)

E = vkaOr — ksE

M = vkOf — keM

Ii

G

» We can also do a 9-dimensional highly-nonlinear aging model



Conclusions

» Disclaimer: we do not bring any new biological insight on any
concrete system at this point

» Qur goal is to develop tools, as general-purpose as possible,
that can aid in the analysis of many non-trivial systems

» Problem specificity cannot be avoided of course: it will
come up at the particular modeling and exploration phases
» Current version is a prototype:
» Fixed-size boxes as linearizarization domains and other
heuristics. Can be improved in efficiency and accuracy;
> It is based on the old algorithmics for linear systems;
» Improving all these aspects is on our immediate agenda
» We also explore alternative approaches for parameter synthesis
based on simulation and sensitivity analysis Donze et al09

» Methodological aspects of the use of such tools in the
biological context should be worked out



Thank You



