
Reachability for Continuous and Hybrid Systems

Oded Maler

CNRS - VERIMAG
Grenoble, France

RP, September 2009

Preface

I This talk has two parts

I The first part presents work done in the “early days” of hybrid
systems research, some 15 years ago

I It is about decidability and undecidability of some reachability
problem for a simple type of hybrid automata

I This work is interesting and shows relations between
computation, geometry and dynamics, but my current opinion
is that this direction is not very applicable outside the paper
industry

I The second part represents my current work in the domain

I We approximate reachable states of systems defined by linear
and nonlinear differential equations

I I think this is a useful direction but I don’t know what I will
think about it in 15 years

Reachability Analysis of Dynamical Systems
having Piecewise-Constant Derivatives

Eugene Asarin Oded Maler Amir Pnueli

CNRS - VERIMAG
Grenoble, France

1993-1995

Outline of Talk

I Some generalities on “linear” hybrid automata and PCD
systems

I Decidability of reachability problems in the plane

I Undecidability in dimension 3 and above by simulating
pushdown stacks

I Going higher in the arithmetical hierarchy

I So what?

A Motivating Example: Buffer Networks

I Consider a network of containers/buffers for water/data

I Channels can be switched on and off

I When a channel is on, its flow rate is a constant

I Each combination of open/close valves leads to a different
derivatives for the buffer levels, based on the difference
between their in- and outflows

x1

x2

c1

c2

c3

V1

V2

Open 1

Close 2 Close 2

Open 1

A B

C D

ẋ2 = −c3

ẋ1 = 0 ẋ1 = c1
ẋ2 = −c3

ẋ1 = c1 − c2
ẋ2 = c2 − c3

ẋ1 = −c2
ẋ2 = c2 − c3

Close 1

Close 1

Open 2 Open 2

“Linear” Hybrid Automata and PCD Systems

I A sub-class of hybrid automata

I Can be viewed as piecewise-trivial dynamical systems:
derivatives are constant in every control state (location) and
the evolution is along a straight line

I Transition guards (switching surface) and invariants (staying
conditions) are linear (hyperplanes, polytopes)

I Local continuous evolution needs no numerical analysis;
Computing the effect of time passage amounts to quantifier
elimination in linear algebra

I Investigated a lot by Henzinger et al. (HYTECH), currently
supported by the tool PHAVER (G. Frehse)

I PCD (piecewise-constant derivative): a sub-class of linear
hybrid automata closer in spirit to continuous dynamical
systems

PCD (Piecewise-Constant Derivatives) Systems

I Dynamical System: H = (X , f), X = Rd

I f : X → X defines differential equation d+x
dt = f (x)

I A trajectory of H starting at x0 ∈ X is ξ : R+ → X s.t.
I ξ(0) = x0

I f (ξ(t)) is defined for every t and is equal to the right
derivative of ξ(t)

I PCD: X is partitioned into a final number of polyhedra
(regions) and f is constant in each region

I Trajectories are thus broken lines

PCDs are Effective

I A description of a PCD system: {(P1, c1), . . . , (Pn, cn)}
I each Pi is a convex polyhedron (interesection of linear

inequalities) and ci is its corresponding derivative (slope)

I Effectiveness: given a PCD description and a rational point
x = ξ(0)

I There exists ε > 0 s.t. we can compute precisely x′ = ξ(∆) for
every ∆, 0 < ∆t < ε; x ′ = x + c ·∆

I Unlike arbitrary dynamical systems where you can only
approximate

Decision Problems for PCD

I Point-to-point reachability Reach(H, x, x′):

I Given: a PCD H and x, x′ ∈ X ,

I Are there a trajectory ξ and t ≥ 0 such that ξ(0) = x and
ξ(t) = x′?

I Region-to-region reachability R-Reach(H,P,P ′):

I Given: a PCD H and two polyhedral sets P,P ′ ⊆ X

I Are there two points x ∈ P and x′ ∈ P ′ such that
Reach(H, x, x′) ?

PCDs on the Plane

I Polyhedral partition of the plane into polygons/regions (P)

I Induced boundary elements: edges (e) and vertices (x)

I A kind of abstract finite alphabet to describe qualitative
behaviors as sequences of regions or edges

P2

P3 e3
e4

e5e7

x2

P1

x1

P5
P4

e2

e1

e6

x3

Orientation and Ordering of Boundaries
I Edges (and vertices) can be classified as entry and exit

according to the relation between the slope c and the the
vector e which defines the inequality

I Edge e below is exit for c1 and entry for c3

c2

c1

c3

e

I The whole boundary of a region can be decomposed into two
connected sets, entry In(P) and exit Out(p)

I A linear order can be imposed on each of them:

e1

e2

e4

Out(P) x1

c

x2
e3

ĉ

In(P)

θ(x2)

θ(x1)

A Fundamental Property of Planar Systems

I Let ξ be any trajectory that intersects Out(P) in three
consecutive points, x1, x2 and x3. Then: x1 � x2 implies
x2 � x3

x3

x′3

x1 x′2

l x2y

x3

x′3

x1

ly

x′2

x2

I The figure shows why it cannot be otherwise as the trajectory
must intersect itself

I Jordan’s theorem, not true in 3 dimensions

Spirals

I Consequently all repetitive behaviors are spirals

Contracting: Expanding:

l

x1

x2

y

x1

ly

x2

I The sequences of intersections with an edge is monotonic and
you cannot return to an edge you have “abandoned”

I Since there are finitely many edges we can conclude:

I For every trajectory, the sequence of edges it crosses is
ultimately-periodic: e1, . . . , ei , (ei+1, . . . , ei+j)

ω

Representation (Parametrization)

I A representation scheme for an edge e is a pair of vectors v,u
and an interval [l , h] such that e = {v + λu : λ ∈ [l , h]}

l

h

v u

λ e

I Consider and entry edge e with (u, v) representation and exit
edge e ′ with (u′, v′) representation

I The corresponding successor function is defined as
fe,e′(λ) = λ′ iff by entering P at x = (e, λ), you exit as
x′ = (e ′, λ′)

v

v′

u

λ

e′

e

λ′
u′

Successor Function is Linear

I Successor function is well-defined, computable and linear:
λ′ = Ae,e′λ+ Be,e′ where

Ae,e′ =
c · a
c · a′

and Be,e′ =
ĉ · (v − v′)

c · a′

I Here c is the slope and a and a′ are the normals to e and e ′

I (Some basic linear algebra, quantifier elimination...)

I Predecessor:

λ =
λ′ − Be,e′

Ae,e′

I Moreover: if e ∈ In(P) and e ′ ∈ Out(P) then Ae,e′ > 0

Signature Successor Function

I A cyclic signature: a sequence σ = e1, . . . , ek of edges s.t.
e1 = ek

e λ

λ′

I The function fσ from e1 to itself represents the effect on a
point going through a cycle (Poincare map)

I In our case it is linear fσ(λ) = Aσλ+ Bσ (composition of
linear partial functions)

I Aσ = Ae1,e2 · Ae2,e3 . . .Aek−1,ek

I Bσ = (· · · ((Be1,e2 · Ae2,e3 + Be2,e3) · Ae3,e4 + Be3,e4) · · ·) ·
Aek−1,ek

+ Bek−1,ek

Intersections of a Spiral and an Edge

µ0
µ1

µ∗

I µi+1 = Aσ · µi + Bσ

I µn =

 µ0 + Bσ · n if Aσ = 1

µ0 · An
σ + Bσ ·

An
σ − 1

Aσ − 1
otherwise

I We can compute µ∗ = limn→∞µn

The Limit of the Sequence

Case Limit

Aσ = 1,Bσ = 0 µ0

Aσ = 1, |Bσ| > 0 ∞
Aσ = 1, |Bσ| < 0 −∞

Aσ < 1
Bσ

1− Aσ

Aσ > 1, µ0 = Bσ
1−Aσ

µ0

Aσ > 1, µ0 >
Bσ

1−Aσ
∞

Aσ > 1, µ0 <
Bσ

1−Aσ
−∞

Main Positive Result

I An algorithm for deciding Reach(H, x, x′):

I Start “simulating” forward from x

I When you encounter a cycle, compute its limit points on all
edges and determine whether it is the ultimate cycle (limits on
each edge stays inside edge range)

I If not, continue simulating until you leave it (in a finite
number of iterations)

I If it is the ultimate cycle, and x′ is beyond the limit, the
answer is “no”

I If x′ is before the limit then continue simulation until you
reach x′ (“yes”) or bypass it (“no”)

Region-to-Region Reachability (Sketch)
I Can be reduced to edge-to-edge reachability
I An entry edge interval splits into finitely many exits edges

e3x1
e2

e1

x2

l
h

e

I Can build a successor tree and compute a limit along each
branch

e1
l1 u1

e2 l2 u2

e3 l3 u3

l4 u4

e4

l′1 u′1

Can we go to Higher Dimensions?

I One one hand: calculating successors can be generalized to
higher dimensions (more book-keeping though)

I On the other: no Jordan theorem so trajectories are not
necessary ultimately-periodic (Chaos et co.)

I We show undecidability for 3 dimensions by showing that
PCDs can simulate any TM (2PDA) and hence deciding
reachability for PCDs solves the halting problem

I Interesting “model of computation”

Simulation of Finite-State Automata

I Every finite deterministic automaton can be simulated by a
3-dimensional PCD system

q1 q2 q3

q1 q2 q3

z

z = 0

z = 1

z = 2

z = 3

(0, 0, 0)

y

x

Region Defining conditions c = (ẋ, ẏ, ż)
F (z = 0) ∧ (y < 1) (0, 1, 0)
Uij (x = i) ∧ (y = 1) ∧ (z < j) (0, 0, 1)

Bij (z = j) ∧ (x + (j − i)y = j) ∧ (y > 0) (j − i,−1, 0)

D (z > 0) ∧ (y = 0) (0, 0,−1)

I Regions Uij and Bij are defined for every i , j such that
δ(qi) = qj

Push-down Automata (PDA)

I Pushdown stack: an element of Σ∗0ω.

I Two operations:

push: Σ× Σω → Σω pop: Σω → Σ× Σω

push(v , S) = v · S pop(v · S) = (v ,S)

I PDA: an infinite transition system A = (Q × Σ∗0ω, δ)

I Q is finite and δ is defined using a finite collection of
statements of one of the following forms:

qi : S :=push(v ,S);
goto qj

qi : (v ,S) :=pop(S);
if v = 0 goto qi0 ;
. . .
if v = k − 1 goto qik−1

;

Encoding Stacks into [0, 1]

I Contents of a stack S = s1s2 . . . where s1 is the top of the
stack

I Enconding using k-ary representation r : Σω → [0, 1]

r(S) =
∞∑
i=1

sik
−i

I Stack operations have arithmetic counterparts:

S ′ = push(v ,S) iff r(S ′) = (r(S) + v)/k
(S ′, v) = pop(S) iff r(S ′) = kr(S)− v

Building Blocks for the Simulation, k = 2 and Σ = {0, 1}

0

1/2 3/21/2 1/2 −1/2

1 0 1 0 1/2 1

push 1 push 0 pop

I A trajectory starting at x = (x , 0), x ∈ [0, 1] and ending at
x′ = (x ′, 1) satisfies:

I x ′ = (x + 1)/2 (push 1), x ′ = x/2 (push 0) and
x ′ = 2x − 1/2 (pop)

I In other words, x = r(S) at the “input port” (y = 0) of an
element, then x ′ = r(S ′) at the “output port” (y = 1) where
S ′ is the operation outcome.

I The pop element has two output ports which are selected
according to the value of the top element popped

Simulation of PDAs by PCDs

I Put the appropriate element for each state and connect via
“bands” that “carry” the stack value

I A PCD for the PDA defined by:

q1 : S :=push(1, S); goto q2;
q2 : (v , S) :=pop(S); If v = 1 then goto q2 else goto q1

z

(0, 0, 0) q1
q2

x

y

I Every PDA can be simulated by a 3-dimensional PCD system

Simulating 2PDAs

I Automata with 2 push-down stacks can simulate Turing
machines

I We can represent the configuration of two stacks by a point in
[0, 1]2 and build the corresponding gadgets, e.g. push(S1, 0)

yx2

x1

(x1, x2)

(x′1, x2)

I Hence a straightforward realization of 2PDA in 4 dimensions

I With some considerable effort we can squeeze everything into
3 dimensions and conclude:

I The reachability problem for PCD systems in 3 dimensions is
undecidable

Theoreticians go Wild

I Arithmetical hierarchy: the classes Σ1,Σ2, . . . and Π1,Π2, . . .
of sets of integers defined inductively:

I Σ1 consists of sets P ⊆ IN such that there is a Turing
machine that halts on an input n iff n ∈ P

I The class Πi consists of all the sets P such that P ∈ Σi

I Σi+1 is the class of all sets P defined as
P = {n : ∃m 〈m, n〉 ∈ P ′} for some P ′ ∈ Πi , where 〈〉 is some
computable pairing function

I The arithmetical hierarchy is infinite, satisfying the strict
inclusions Πi ⊂ Σi+1 and Σi ⊂ Πi+1

I We show (with the help of Zeno paradox) how all the
arithmetical hierarchy can be realized by PCDs

Recognition by PCDs

I PCD recognizer: Ĥ = (Rd , f , I , r , xa, xr), H = (Rd , f) is a
PCD

I I = [0, 1]× {0}d−1 is a one-dimensional subset of X (the
“input port”)

I r : IN → [0, 1] ∩Q is a recursive injective coding function

I xa, xr ∈ Rd − I are two distinct points (accepting and
rejecting states)

I We assume that f (xa) = f (xr) = 0

I Ĥ semi-recognizes P ⊆ N iff for every n, the trajectory
starting at (r(n), 0, . . . , 0) can continue forever and it
eventually reaches xa iff n ∈ P

I We say that Ĥ (fully) recognizes P when, in addition, this
trajectory reaches xr iff n 6∈ P

I Previous result: every Σ1 set P is semi-recognized by some
3-dimensional bounded PCD

Principal Lammata

I From a PCD that semi-recognizes P one can construct a
(higher-dimensional) PCD that recognizes P

I From a PCD that recognizes P one can construct:

1. a PCD that semi-recognizes {x : ∃y 〈x , y〉 ∈ P}
2. a PCD that recognizes P.

I The last two are relatively-easy and trivial (respectively)

I The main idea of the first:

x1

x2

Gadgets used in the Construction
I Division by 2:

y

x

B

C D

A

I Projectivisation:

I Corollary: PCDs can realize the whole arithmetical hierarchy

Credits and Follow-ups

I Decidability : OM and A. Pnueli, Reachability Analysis of
Planar Multi-Linear Systems, 1993

I Generalized by Asarin, Pace, Schneider and Yovine to planar
differential inclusions (and implemented)

I Undecidability: E. Asarin and OM, On some Relations
between Dynamical Systems and Transition Systems, 1994

I Numerous papers on decidability boundaries for linear hybrid
automata (Henzinger et al)

I Some small open problems remain, e.g. M. Mahfoudh,
B. Krogh and OM, On Control with Bounded Computational
Resources, 2002

I Higher undecidability: E. Asarin and OM, Achilles and the
Tortoise Climbing Up the Arithmetical Hierarchy, 1995

I Studied extensively by O. Bournez

So What?

I Beyond the nice intellectual exercise (and a warm-up for those
whose geometry and linear algebra are, at best, rusty) the
results are rather disappointing

I Even for these systems, whose continuous dynamics is trivial
we cannot answer anything

I How will we cope with “real” dynamics?

I We are asking the wrong questions, inspired by our discrete
verification background

I In the continuous world having precise/exact answers is an
oxymoron

I We should ask weaker, approximate questions on stronger
systems with real differential equations

Computing Reachable States for Nonlinear
Biological Models

Thao Dang Colas Le Guernic Oded Maler

CNRS - VERIMAG
Grenoble, France

2009

Summary

I We propose a computer-aided methodology to help analyzing
certain biological models

I Domain of applicability: biochemical reactions modeled as
differential equations. State variables denote
concentrations

I We propose reachability computation, a kind of set-based
simulation, that may replace uncountably-many simulations

I The continuous analogue of algorithmic verification
(model-checking), emerged from more than a decade of
research on hybrid systems

I Since this is not part of the local culture, we first introduce the
domain and only later move to the contribution of this paper

Outline

I Under-determined dynamical models and their biological
relevance

I Continuous dynamical systems and abstract reahcability

I Effective representation of sets and concrete algorithms for
linear systems

I Treating nonlinear systems via hybridization

I Dynamic hybridization: idea and preliminary results

I Conclusions

Dynamical Models with Nondeterminism

I Dynamical system: state space X and a rule x ′ = f (x , v)

I The next state as a function of the current state and some
external influence (or unknown parameters) v ∈ V

I In discrete domains: a transition system with input (alphabet)

I System becomes nondeterministic if input is projected away

I Given initial state, many possible evolutions (“runs”)

I Simulation: picking one input and generating one behavior

I Symbolic verification: magically computing all runs in
parallel

I Reachability computation: adapting these ideas to systems
defined by differential equations or hybrid automata
(differential equations with mode switching)

Why Bother?

I Differential models of biochemical reactions are very imprecise
for many reasons:

I They are obtained by measuring populations, not individuals

I Kinetic parameters are based on isolated experiments not
always under same conditions

I Etc.

I It is nice to match an experimentally-observed behavior by a
deterministic model, but can we do better?

I After all, biological systems are supposed to be robust under
variations in environmental conditions and parameters

I Showing that all trajectories corresponding to a range of
parameters exhibit the same qualitative behavior is much
stronger

Preliminary Definitions and Notations

I A time domain T = R+, state space X ⊆ Rn, input space
V ⊆ Rm

I Trajectory: partial function ξ : T → X , Input signal:
ζ : T → V both defined over an interval [0, t] ⊂ T

I A continuous dynamical system S = (X ,V , f)

I Trajectory ξ with endpoints x and x ′ is the response of S to
input signal ζ if

I ξ is the solution of ẋ = f (x , v) for initial condition x and

v(·) = ζ, denoted by x
ζ/ξ−→ x ′

I R(x , ζ, t) = {x ′} denote the fact that x ′ is reachable from x

by ζ within t time, that is, x
ζ/ξ−→ x ′ and |ζ| = |ξ| = t

Reachability
I R(x , ζ, t) = {x ′} speaks of one initial state, one input signal

and one time instant
I Generalizing to a set X0 of initial states, to all time instants

in an interval I = [0, t] and all admissible input signals:

RI (X0) =
⋃

x∈X0

⋃
t∈I

⋃
ζ

R(x , ζ, t)

x0x0
x0

I Depth-first vs. breadth-first⋃
ζ

⋃
t∈I

R(x , ζ, t) =
⋃
t∈I

⋃
ζ

R(x , ζ, t)

Abstract Reachability Algorithm

I The reachability operator satisfies the semigroup property:

R[0,t1+t2](X0) = R[0,t2](R[0,t1](X0))

I We can choose a time step r and apply the following iterative
algorithm:

Input: A set X0 ⊂ X
Output: Q = R[0,L](X0)

P := Q := X0

repeat i = 1, 2 . . .
P := R[0,r](P)
Q := Q ∪ P

until i = L/r

I Remark: we look at bounded time horizon and do not mind
about reaching a fixpoint

From Abstract to Concrete Algorithms

I The algorithm performs operations on subsets of Rn which,
mathematically speaking, can be weird objects

I Like any computational geometry we restrict ourselves to
classes of subsets (boxes, polytopes, ellipsoids, zonotopes)
having nice properties:

I Finite syntactic representation

I Effective decision procedure for membership

I Closure (or approximate closure) under the reachability
operator

I In this talk we use convex polytopes and their finite unions

Convex Polytopes

I Halfspace: all points x satisfying a linear inequality a · x ≤ b

I Convex polyhedron: intersection of finitely many halfspaces;
Polytope: bounded convex polyhedron

I Convex combination of a set of points {x1, . . . , xl} is any
x = λ1x1 + · · ·+ λlxl such that

∑l
i=1 λi = 1

I The convex hull conv(P̃) of a set P̃ of points is the set of all
convex combinations of elements in P̃

I Polytope representations:
I Vertices: a polytope P admits a finite minimal set P̃

(vertices) such that P = conv(P̃).
I Inequalities: a polytope P admits a canonical set of

halfspaces/inequalities such that P =
∧k

i=1 ai · x ≤ bi

Autonomous (Closed, Deterministic) Linear Systems

I Systems defined by linear differential equations of the form
ẋ = Ax where A is a matrix are the most well-studied

I There is a standard technique to fix a time step r and work in
discrete time, a recurrence equation of the form xi+1 = Axi

I The image of a set P by the linear transformation A is
AP = {Ax : x ∈ P} (one-step successors)

I It is easy to compute, for example, for polytopes represented
by vertices:
P = conv({x1, . . . , xl}) ⇒ AP = conv({Ax1, . . . ,Axl})

v1

v2

v4

v5

v6

v3

P

v ′4 = Av4

v ′5 = Av5

v ′6 = Av6

v ′1 = Av1

AP

v ′3 = Av3

v ′2 = Av2

Algorithm 1: Discrete-Time Linear Reachability

I Input: A set X0 ⊂ X represented as conv(P̃0)

I Output: Q = R[0..L](X0) represented as a list

{conv(P̃0), . . . , conv(P̃L)}

P := Q := P̃0

repeat i = 1, 2 . . .
P := AP
Q := Q ∪ P

until i = L

I Complexity assuming |P̃0| = m0 is O(m0LM(n)) where M(n)
is the complexity of matrix-vector multiplication in n
dimensions: ∼ O(n3)

I Can be applied to other representations of objects closed
under linear transformations

Linear Systems with Input

I Systems define by xi+1 = Axi + vi where the vi ’s range over a
bounded convex set V

I The one-step successor of P is defined as

P ′ = {Ax + v : x ∈ P, v ∈ V } = AP ⊕ V

I Minkowski sum A⊕ B = {a + b : a ∈ A ∧ b ∈ b}
I Same algorithm can be applied but the Minkowski sum

increases the number of vertices in every step

P ⊕ V

P

V

Alternative: Pushing Facets

I Over-approximating the reachable set while keeping its
complexity more or less fixed

I Assume P represented as intersection of halfspaces

I For each halfspace H i : aix ≤ bi , let v i ∈ V be the input
vector which pushes it in the “outermost” way

I Apply Ax + Bv i to H i and the intersection of the pushed
halfspaces over-approximates AP ⊕ V

P ′ ⊃ P ⊕ V

P
V

I The problem: over-approximation errors accumulate (the
“wrapping effect”)

Linear Reachability: State of the Art

I New algorithmics by C. Le Guernic and A. Girard

I Efficient computations: linear transformation applied to fixed
number of points in each iteration

I No accumulation of over-approximation errors

I Initially used zonotopes, a class of sets closed under both
linear operations and Minkowski sum; Can be applied to any
“lazy” representation of the sequence of the computed sets

I Based on the observation that two consecutive sets

Pk = AkP0 ⊕ Ak−1V ⊕ Ak−2V ⊕ . . .⊕ V
Pk+1 = Ak+1P0 ⊕ AkV ⊕ Ak−1V ⊕ . . .⊕ V

share a lot of terms

I Can compute within few minutes the reachable set after 1000
steps for linear systems with 200 (!) state variables

Linear Reachability: Some Credits

I Algorithmic analysis of hybrid systems started with tools like
Kronos and HyTech for timed automata and “linear” hybrid
automata: HenzingerSifakisYovine and
HenzingerHoWongtoi - very simple continuous dynamics,
summarized in ACH+95

I Verifying differential equations: Greenstreet96

I Reachability for linear differential equations and hybrid
systems: ChutinanKrogh99, AsarinBournezDangMaler00
(polytopes) KurzhanskiVaraiya00, BotchkarevTripakis00
(ellipsoids), MitchellTomlin00 (level sets)

I Pushing faces and treating inputs: DangMaler98, Varaiya98

I Using zonotopes: Girard05

I New algorithmic scheme Girard LeGuernic06-09

The Nonlinear Challenge

I Ok, bravo, but linear systems were studied to death by
everybody. Real interesting models, biological included, are
nonlinear

I What about systems of the form xi+1 = f (xi , ui) or even
xi+1 = f (xi) where f is an arbitrary continuous function, say a
polynomial ?

I Convexity-preservation property of linear maps doesn’t hold

I You can make small time steps, use a local linear
approximation and bloat the obtained set to be safe

I This approach will either accumulate large errors or require
expensive computation in every step

Hybridization: Asarin, Dang and Girard 2003

I Take a nonlinear system xi+1 = f (xi) and partition the state
space into boxes (linearization domains)

I In each box Xq find a matrix Aq and a convex polytope Vq

s.t. f (x) ∈ Aqx ⊕ Vq for every x ∈ Xq

I Aq is a local linearization of f with error bounded by Vq

I The new dynamics is xi+1 ∈ Aqx ⊕ Vq iff x ∈ Xq

I A piecewise-(linear-with-input) systems, a restricted type of a
hybrid automaton, which over-approximate f in terms of
inclusion of trajectories

10

1101

00

x2 ≥ d2x2 ≤ d2x2 ≤ d2

x1 ≥ d1

x1 ≤ d1

x1 ≥ d1

x1 ≤ d1

ẋ ∈ A00 · x ⊕ V00 ẋ ∈ A10 · x ⊕ V10

ẋ ∈ A01 · x ⊕ V01 ẋ ∈ A11 · x ⊕ V11

x2 ≥ d2

d1

x1
X10X00

X01 X11d2

x2

Hybridization (cont.)

10

1101

00

x2 ≥ d2x2 ≤ d2x2 ≤ d2

x1 ≥ d1

x1 ≤ d1

x1 ≥ d1

x1 ≤ d1

ẋ ∈ A00 · x ⊕ V00 ẋ ∈ A10 · x ⊕ V10

ẋ ∈ A01 · x ⊕ V01 ẋ ∈ A11 · x ⊕ V11

x2 ≥ d2

d1

x1
X10X00

X01 X11d2

x2

I In the hybrid automaton, x evolves according to the linear
dynamics Aqx ⊕ Vq as long as it remains in Xq

I Reaching the boundary between Xq and Xq′ , it takes a
transition to q′ and evolves according to Aq′x ⊕ Vq′

I Linearization and error are computed only in the passage
between blocks, not in every step

I Quality can be improved by making boxes smaller

Hybrid Reachability

10

1101

00

x2 ≥ d2x2 ≤ d2x2 ≤ d2

x1 ≥ d1

x1 ≤ d1

x1 ≥ d1

x1 ≤ d1

ẋ ∈ A00 · x ⊕ V00 ẋ ∈ A10 · x ⊕ V10

ẋ ∈ A01 · x ⊕ V01 ẋ ∈ A11 · x ⊕ V11

x2 ≥ d2

d1

x1
X10X00

X01 X11d2

x2

I Compute in one domain a sequences of sets using linear
techniques until a set intersects with a boundary

I Take the intersection as initial set in next domain with the
next linearization

(a) (b)

A1 A2

Between Theory and Practice

I First problem: intersection may be spread over many steps:

(c)(b)(a)

I Either explosion or union of intersections, error accumulation

I Major problem: a set may leave a box via many facets:

(a) (b)

I Splitting is an artifact of the fixed grid imposed on the
system

I Consequently, static hybridization is practically impossible
beyond 3 dimensions

Our Contribution (at Last!)

I A dynamic hybridization scheme not based on a fixed grid

I In this scheme we do not need intersection at all and we allow
the linearization domains to overlap

I When we leave a domain, we backtrack one step and define a
new linearization domain around the previous set and continue
with the new linearized dynamics from there

Pi
Pi

P0P0

B

(a)

B

(b)

B′

I And it works!

Example: E. Coli Lac Operon

Ṙa = τ − µ ∗ Ra − k2RaOf + k−2(χ− Of)− k3RaI
2
i + k8RiG

2

Ȯf = −k2raOf + k−2(χ− Of)

Ė = νk4Of − k7E

Ṁ = νk4Of − k6M

İi = −2k3RaI
2
i + 2k−3F1 + k5IrM − k−5IiM − k9IiE

Ġ = −2k8RiG
2 + 2k−8Ra + k9IiE

I We can also do a 9-dimensional highly-nonlinear aging model

Conclusions

I Disclaimer: we do not bring any new biological insight on any
concrete system at this point

I Our goal is to develop tools, as general-purpose as possible,
that can aid in the analysis of many non-trivial systems

I Problem specificity cannot be avoided of course: it will
come up at the particular modeling and exploration phases

I Current version is a prototype:
I Fixed-size boxes as linearizarization domains and other

heuristics. Can be improved in efficiency and accuracy;
I It is based on the old algorithmics for linear systems;
I Improving all these aspects is on our immediate agenda

I We also explore alternative approaches for parameter synthesis
based on simulation and sensitivity analysis Donze et al09

I Methodological aspects of the use of such tools in the
biological context should be worked out

Thank You

