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Probability distribution outcome

fair coin (uniform on B1000) 010101. . . 01

do they match?

No, since the probability of outcome 0101 . . . 01 is
negligible (2−1000).

OK, but this is the case for any outcome!
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“Shuffle machine” paradox

I A casino uses fresh well-shuffled deck of cards of
each game

I Outsourcing shuffling: shrink-wrapped well
shuffled decks

I Shuffling factory: quality control that blocks
decks that are not well shuffled.

I But what does it mean? All orderings are
equiprobable
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Two practical questions

I How do we use probabilistic hypothesis in
practice?

I How do we select a plausible probabilistic
hypothesis?



Cournot principle

I Philosophical: Events with negligible probabilities
are impossible.

I Practical: Having two equally undesirable events,
consider first the event that has greater
probability

E. Borel: . . . Fewer than a million people live in Paris. Newspapers
daily inform us about strange events or accidents that happen to
some of them. Our life would be impossible if we were afraid of all
adventures we read about. So one can say that from a practical
viewpoint one can ignore with probability less than one over
million. . . Often trying to avoid something bad we are confronted
with even worse. . .
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Cournot principle: testing hypotheses

I A hypothesis should be rejected if it assigns a
negligible probability to an event that has
happened

I Needs some restriction – not all events can be
used

I Practitioner: if a very unprobable event specified
in advance has happened

I Mathematician: if a very unprobable simple event
has happened
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Frequency interpretation

Cournot’s principle implies that frequency is close to
probability

Bernoulli distribution Bp on n-bit sequences
Event: |frequency− p| > ε has small probability (and
is simple)
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Kolmogorov complexity

I K (x) = min{l(p) | U(p) = x}
I l(p) — length of program p
I U — an universal interpreter (that makes K
minimal)

I defined up to O(1) additive term
I K (x) ≤ l(x) + O(1)
I for most strings of length n the complexity is
close to n: it is less than n − d for 2−d -fraction
only
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Is Kolmogorov complexity practical?

I defined only up to a constant, so the question
“What is K(010001)” or “Which of the strings
0001 and 100 is simpler” has no sense

I reasonable interpreters give values that differ by
several thousands, so the Kolmogorov complexity
of human DNA is defined with < 1% error

I Kolmogorov complexity is noncomputable;
moreover, it has no computable lower bounds. So
K (DNA) never will be known”

I Kolmogorov complexity does not take into
account resources used by the program that
generates x
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Testing a hypothesis and Kolmogorov complexity

fair coin (theory) string x (data)

Do they match?

Not yes/no-question; measure of disbelief,
“randomness deficiency” d(x) d(x) = l(x)− K (x)

randomness = incompressibility: we reject the
hypothesis of fair coin if the observed string is
compressible

for non-uniform distribution:
d(x) = log2 P(x)− K (x)
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An incompressibility paradox

we do not think that fair coin never produces (or less
frequently produces) compressible sequences, but
they discredit the fairness hypothesis (unlike others)



〈. . .〉 the very Calculus of Probabilities to which I have referred, forbids
all idea of the extension of the parallel 〈. . .〉 This is one of those
anomalous propositions which, seemingly appealing to thought altogether
apart from the mathematical, is yet one which only the mathematician
can fully entertain. Nothing, for example, is more difficult than to
convince the merely general reader that the fact of sixes having been
thrown twice in succession by a player at dice, is sufficient cause for
betting the largest odds that sixes will not be thrown in the third
attempt. A suggestion to this effect is usually rejected by the intellect at
once. It does not appear that the two throws which have been
completed, and which lie now absolutely in the Past, can have influence
upon the throw which exists only in the Future. The chance for throwing
sixes seems to be precisely as it was at any ordinary time—that is to say,
subject only to the influence of the various other throws which may be
made by the dice. And this is a reflection which appears so exceedingly
obvious that attempts to controvert it are received more frequently with
a derisive smile than with any thing like respectful attention. The error
here involved — a gross error redolent of mischief — I cannot pretend to
expose within the limits assigned me at present. (Edgar Poe)



Infinite sequences

I Probability distribution P on the space of all
infinite 0-1-sequences (theory)

I infinite string ω (data) of zeros and ones

do they match?

yes/no-question; ω can be Martin-Löf random with
respect to P or not

it is random if randomness deficiencies of its prefixes
are bounded [if randomness deficiency is defined in a
proper way]
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respect to P or not

it is random if randomness deficiencies of its prefixes
are bounded [if randomness deficiency is defined in a
proper way]



Infinite sequences

I Probability distribution P on the space of all
infinite 0-1-sequences (theory)

I infinite string ω (data) of zeros and ones

do they match?

yes/no-question; ω can be Martin-Löf random with
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Returning to natural sciences

One can be practically sure that fair coin will never
produce a sequence of 106 zeros and ones that can
be zip-compressed at least by 1%.

(Probability less than 2−1000)

Is this law of nature a consequence of mechanical
laws?

Less philosophical version:

Imagine we have a dice (nonsymmetric), know the
position of its center of gravity, and have unlimited
computation power. Can we compute probabilities of
different outcomes using mechanical laws?
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Probability in natural sciences

Phase space of a dice and a flow in this space

Mixing property: the neighborhood of the initial
condition is mapped to outcomes 1 . . . 6, and
preimages are densely mixed, so the conditional
probabilities in a small neighborhood are the same for
different neighborhoods and distributions

Theoretically they can be computed
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Model example

Phase space: [0, 1]

Transformation: at each step x is transformed into
2x mod 1

We observe whether the current position is in the left
half (0) or right half (1)

In this way for initial condition x we get a sequence of
observations: in which half is x ,T (x),T (T (x)), . . .

the same kind of mixing property

what happens: initial condition is revealed bit by bit
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A new law of nature?

mixing does not create randomness but just reveals
the randomness in the initial condition

dynamical laws + one more: the world was created in
an incompressible state

this law together with mixing property implies that
outcomes for a fair coin form an incompressible
sequence
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Pseudorandom number generators (Yao–Micali)

G : B1000 → B1000000

easily computable (polynomial time)

random seed ∈ Bn

converted to “pseudorandom” G (seed)

for every feasible test T : B1000000 → B the fraction
of s ∈ B1000 such that T (G (s)) = True almost
coincides with the fraction of r ∈ B1000000 such that
T (r) = True

“things seem random because we do not know they
are not”
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Thermodynamics

Second Law of Thermodynamics

I entropy can only increase;
I A perpetuum mobile of the second kind does not
exist.

Usual remarks:

I these formulations are equivalent;
I the first one cannot be a corollary of dynamic
laws since it is not time-symmetric
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Perpetuum mobile of the second kind

gaz machine

moves the weight arbitrary high if the reservoir is
large enough (for most states of the gaz in the
reservoir)
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“Proof” of impossibility

Phase space is almost a product S1 × S2

Invariant measure on the phase space:

initial condition: more energy in gaz; final condition:
more energy in the weight

Volume in S1 depends on T much more than in S2

(# of degrees of freedom)

Large set cannot be mapped into a small one
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Quantum mechanics

common wisdom: “unlike statistical mechanics, which
is microscopically deterministic, the quantum
mechanics has intrinsic nondeterminism
(randomness)”

random coin vs. radioactive decay

q-Cournot principle: the events with negligible
amplitude do not happen
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