
Model Checking as A
Reachability Problem

Moshe Y. Vardi

Rice University

Engines of Progress:
Semiconductor Technology

Gordon Moore (co-founder of Intel) predicted in
1965 that the transistor density of semiconductor
chips would double roughly every 18 months.

Result: Cost of memory and MIPS dropped roughly
six orders of magnitude (106) over the last 40 years.

Semiconductor industry 10-year outlook :
there is no physical barrier to the transistor
effect in silicon being the principal element in
the semiconductor industry to the year 2020.

But : Will the current business model for
the semiconductor industry be viable until
2020?

A Major Challenge: design productivity crisis

• complexity growth rate: 60% per year

• Productivity growth rate: 20% per year

Critical need : better design tools

1

Design Verification

A watershed event : Pentium FDIV bug, 1995

• Bug would result in occasional inaccuracies
when doing floating-point arithmetic.

• Eventually Intel promised to replace all Pentiums
with the fixed chip.

• Cost to Intel: $500M.

Verification methodology :

• Traditional: simulation on carefully chosen
test sequences

• New: formal verification of entire state space

2

Formal Verification

• Theorem proving : formally prove that hardware
is correct

– requires a large number of expert users
– application cycle slower than design cycle

• Model checking :

uncommonly effective debugging tool
– a systematic exploration of the design state

space
– good at catching difficult “corner cases”

3

Designs are Labeled Graphs

Key Idea : Designs can be represented as transition
systems (finite-state machines)

Transition System : M = (W, I,E, F, π)
• W : states
• I ⊆W : initial states
• E ⊆W ×W : transition relation
• F ⊆W : fair states
• π : W → Powerset(Prop): Observation
function

Fairness : An assumption of “reasonableness”
– restrict attention to computations that visit F
infinitely often, e.g., “the channel will be up infinitely
often”.

4

Runs and Computations

Run : w0, w1, w2, . . .

• w0 ∈ I

• (wi, wi+1) ∈ E for i = 0, 1, . . .

Computation : π(w0), π(w1), π(w2), . . .

• L(M): set of computations of M

Verification : System M satisfies specification φ –

• all computations in L(M) satisfy φ.

. . .

. . .

. . .

5

Algorithmic Foundations

Basic Graph-Theoretic Problems :

• Reachability: Is there a finite path from I to F?

I t t F

• Fair Reachability: Is there an infinite path from I
that goes through F infinitely often.

I t t
F

'
&

$
%

Note : These paths may correspond to error traces.

• Deadlock: A finite path from I to a state in
which both write1 and write2 holds.

• Livelock: An infinite path from I along which
snd holds infinitely often, but rcv never holds.

6

Computational Complexity

Complexity : Linear time

• Reachability: breadth-first search or depth-first
search

• Fair Reachability: depth-first search (find a
reachable SCC with fair states)

The fundamental problem of model
checking : the state-explosion problem –
from 1020 states and beyond.

The critical breakthrough : symbolic model
checking

7

Specifications

Specification : properties of computations.

Examples :

• “No two processes can be in the critical section
at the same time.” – safety

• “Every request is eventually granted.” – liveness

• “Every continuous request is eventually
granted.” – liveness

• “Every repeated request is eventually granted.” –
liveness

8

Temporal Logic

Linear Temporal logic (LTL): logic of temporal
sequences (Pnueli’77)

Main feature: time is implicit

• next φ: φ holds in the next state.
• eventually φ: φ holds eventually
• always φ: φ holds from now on
• φ until ψ: φ holds until ψ holds.

Semantics

• π,w |= next ϕ if w • -•
ϕ

- • -• -•. . .

• π,w |= ϕ until ψ if w •
ϕ

-•
ϕ

- •
ϕ

-•
ψ

-•. . .

9

Examples

• always not (CS1 and CS2): mutual exclusion
(safety)

• always (Request implies eventually Grant):
liveness

• always (Request implies (Request until Grant)):
liveness

• always (always eventually Request) implies
eventually Grant: liveness

10

Automata on Finite Words

Nondeterministic Automata (NFA):A = (Σ, S, S0, ρ, F)

• Alphabet: Σ

• States: S

• Initial states: S0 ⊆ S

• Transition function: ρ : S × Σ→ 2S

• Accepting states: F ⊆ S

Input word : a0, a1, . . . , an−1

Run : s0, s1, . . . , sn

• s0 ∈ S0

• si+1 ∈ ρ(si, ai) for i ≥ 0

Acceptance : sn ∈ F .

- •
6

� �
0

1-
�

0
•����

6

� �
1

– ends with 1’s

11

Automata on Infinite Words

Nondeterministic Büchi Automaton (NBA): A =
(Σ, S, S0, ρ, F)

• Alphabet: Σ

• States: S

• Initial states: S0 ⊆ S

• Transition function: ρ : S × Σ→ 2S

• Accepting states: F ⊆ S

Input word : a0, a1, . . .

Run : s0, s1, . . .

• s0 ∈ S0

• si+1 ∈ ρ(si, ai) for i ≥ 0

Acceptance : F visited infinitely often

- •
6

� �
0

1-
�

0
•����

6

� �
1

– infinitely many 1’s

12

Temporal Logic vs. Automata

Paradigm : Compile high-level logical specifications
into low-level finite-state language

The Compilation Theorem : V.&Wolper, 1983
Given an LTL formula φ, one can construct
an automaton Aφ such that a computation σ
satisfies φ if and only if σ is accepted by
Aφ. Furthermore, the size of Aφ is at most
exponential in the length of φ.

always eventually p:

- •
6

� �
p

p-
�

p
•����

6

� �
p

– infinitely many p’s

eventually always p:

- •
6

� �
p, p

p
- •����

6

� �
p

– finitely many p’s

13

Model Checking

The following are equivalent :
• M satisfies φ
• all computations in L(M) satisfy φ
• L(M) ⊆ L(Aφ)

• L(M) ∩ L(Aφ) = ∅
• L(M) ∩ L(A¬φ) = ∅
• L(M ×A¬φ) = ∅

In practice : To check that M satisfies φ, compose
M with A¬φ and check whether the composite
system has a reachable (fair) path, that is, a
reachable SCC with an accepting states.

Intuition : A¬φ is a “watchdog” for “bad” behaviors.
A reachable (fair) path means a bad behavior.

14

Catching Bugs with A Lasso

Figure 1: Ashutosh’s blog, November 23, 2005

15

State of The Art: 1996

Two LTL model checkers: Spin , Cadence SMV .

Spin : Explicit-State Model Checker
• Automata Generation: GPVW’95 (optimized
version of VW)
• Lasso Detection: nested depth-first search–
(NDFS) (CVWY’90)

SMV: Symbolic (BDD-based) Model Checker
• Automata Generation: CGH’94 (optimized
symbolic version of VW)
• Lasso Detection: nested fixpoints–NF (EL’86)

Lasso Detection :

• NDFS: one DFS to find reachable accepting
states, second DFS to find cycle from accepting
states.

• NF: inner fixpoint to find states that can reach
accepting states, outer fixpoint to delete states that
cannot reach accepting states.

16

Symbolic Model Checking

Basic idea :

• Encodes states as bit vectors

• Represent set of states symbolically

• Represent transitions symbolically

• Reason symbolically

Example : 3-bit counter

• Variables: v0, v1, v2

• Transition relation: R(v0, v1, v2, v
′

0, v
′

1, v
′

2)

– v′0 ⇔ ¬v0
– v′1 ⇔ v0 ⊕ v1
– v′2 ⇔ (v0 ∧ v1)⊕ v2

17

That Was Then, This Is Now

Summary : We know more, but we are more
confused!

Many Issues :

• Automata generation

• Deterministic vs. nondeterministic automata

• Explicit and symbolic lasso-detection
algorithms

• SAT-based algorithms

• Büchi properties

Bottom Line : No simple recipe for superior
performance!

18

Automata Generation

History :

• VW’83: exponential translation.

• GPVW’95: demand-driven state generation,
avoid exponential blowup in many cases.

• DGV’99: light-weight Boolean reasoning to avoid
redundant states.

• Cou’99: accepting conditions on transitions,
BDDs for Boolean reasoning.

• SB’00,EH’00: pre-generation rewriting, post-
generation minimization.

• V’94, GO’01: alternating automata as intermediate
step

• GL’02,Thi’02,Fri’03,ST’03: more optimizations.

Question : “Mirror, mirror, on the wall, Who in
this land is fastest of all?”

19

Who Is The Fastest?

Difficult to Say !

• Papers focus on minimizing automata size, but
size is just a proxy. What about model checking time
and memory? (Exc., ST’03.)

• Tools often return incorrect answers! (Best tool:
SPOT)

• No tool can handle the formula

((GFp0→ GFp1)&(GFp2→ GFp0)&
(GFp3→ GFp2)&(GFp4→ GFp2)&
(GFp5→ GFp3)&(GFp6→ GF (p5 ∨ p4))&
(GFp7→ GFp6)&(GFp1→ GFp7))→ GFp8

Specialized tool generates 1281 states!

• Which is better: Büchi automata or generalized
Büchi automata? It is automata generation
vs. model checking.

• LTL is weak, theoretically and practically! What
about industrial languages such as PSL?

Note : BDDs are essentially deterministic automata.
BDD tools can handle BDDs with millions of nodes!

20

Comparison on Counter Formulas

Number of bits in binary counter

T
im

e
in

S
ec

on
ds

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring

Total Processing Time on 2-variable Counter Formulas

Modella
LTL->NBA

TMP

LTL2AUT(W)
Wring

Spot

Correct Results

LTL2Buchi

Figure 2: Translators’ comparison, by K. Rozier

21

Comparison on Random Formulas

Formula length

M
ed

ia
n

T
ot

al
R

un
T

im
e

(s
ec

)

5 10 15 20 25 30 35 40 45 50 55 60 65
0

2

4

6

8

10

12

14

16

18

20

22 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring

Random Formula Analysis: P = 0.5; N = 3

90% Correct or Better

LTL2AUT(B)

LTL2Buchi

LTL2BA
Spot

LTL->NBA

Modella

Figure 3: Translators’ comparison, by K. Rozier

22

Temporal Logic: From Theory to
Practice

• Pnueli, 1977: focus on ongoing behavior, rather
than input/output behavior – LTL
• Intel Design Technology, 2001: LTL augmented

with regular expressions, multiple clocks and
resets – ForSpec
• IBM Haifa Research Lab, 2001: CTL augmented

with regular expressions – Sugar
• IEEE Standard, 2005: LTL augmented with

regular expressions, multiple clocks and resets
– PSL
• IEEE Standard, 2005 LTL augmented with

regular expressions, multiple clocks and resets
– SVA

Today : Support by many CAD companies for
both PSL and SVA – major industrial application
of Büchi automata!

23

Is Determinism Bad?

Key Observation : Most properties are safety
properties, i.e., cycles of lassos not needed.

• KV’99: Replace NBA by NFA, use simpler model
checking algs (NDFS→DFS/BFS, NF→F)

Surprise : Not used by tools other than VIS.

Furthermore : Should we use NFA or DFA?
• DFA can be exponentially larger,
• but search space is smaller!

AEFKV’05: For SAT-based model checking, DFA
are better than NFA.

• Reason: SAT solver searches for a trace, but not
for accepting automaton run.

24

From LTL to DFA

Problem : Blowup is double exponential! (KV’98)

Solution : Represent DFA symbolically! (AEFKV’05).

Example : next a wuntil next b.

Explicit NFA:

25

DFA in Verilog

reg s0, s12, s03;
wire fail, sysclk;
assign fail = s12 && !a & !b;
initial begin

s0 = 1’b1; s12 = 1’b0; s03 = 1’b0;
end
always @(posedge sysclk) begin

s0 <= 1’b0;
s12 <= s0 || !b && s03;
s03 <= s0 || s03 && !b;

end

Size of Symbolic DFA : Linear in size of explicit
NFA.

26

Explicit Lasso Detection

NDFS:

• Improvements by GH’93 and HPY’96: early
termination, hash table, partial-order reduction
(implemented in Spin)

• Improvement by SE’04: early termination with
less auxiliary memory (not implemented in Spin)

A Competing Algorithm: SCC decomposition
(Cou99, GH’04)

Question : “Mirror, mirror, on the wall, Who in
this land is fastest of all?”

It Depends ! SE’04, CDP’05

• NDFS can use bit-state hashing, can handle very
large state spaces.

• SCC decomposition is better for main-memory
execution.

• Cou99 and GH’04 each has some merits.

27

Fair Termination

Fair Transition System : M = (W, I,E, F, π)

• W : state set (not necessarily finite)

• I ⊆W : initial state set

• E ⊆W 2: transition relation

• F ⊆W : fair state set

• π: observation function

Fair path: infinite path in M that visits F infinitely
often.

Fair termination: no fair path in M from I
• Checking livelock can be reduced to fair
termination.
• Model checking LTL properties can be
reduced to fair termination.

Note : On finite fair transition systems fair
termination is the dual of lasso detection.

28

Fair-Termination Checking

M = (W, I,E, F, π)

Definition: Let X,Y ⊆ W . until(X,Y) is the set of
states in X that can properly reach Y , while staying
in X .

EC’80: characterization of fair termination

Q←W
while change do

Q← Q ∩ until(Q,Q ∩ F)
endwhile
return (I ∩Q = ∅)

Intuition : Repeatedly delete states that cannot be
on a fair path because they cannot properly reach
F event once.

EL’86: quadratic algorithm for fair termination – NF.

BCMDH’90: can be implemented by means of
BDDs.

29

NF vs. OWCTY

FFKVY’01: OWCTY

Q←W
while change do

while change do
Q← Q ∩ pre(Q)

endwhile
Q← Q ∩ until(Q,Q ∩ F)

endwhile
return (I ∩Q = ∅)

Intuition : Dead-end states cannot lie on a fair path.

Question : “Mirror, mirror, on the wall, Who in
this land is fastest of all?”

• FFKVY’01: OWCTY can be linear, when NF is
quadratic.

• SRB’02: OWCTY may incur linear overhead over
NF.

Bottom Line : Inconclusive!

30

Breaking The Quadratic Barrier

Note : Both NF and OWCTY may involve a O(n2)
number of symbolic operations.

Question : Can we do better?

• Lockstep: O(n logn) symbolic operations.
(BGS’00)

• SCC–Find: O(n) symbolic operations.
(GPP’03)

Theory vs. Practice :

• RBS’00: Lockstep is not better than NF.

• No experimental evaluation of SCC-Find.

31

Hybrid Approach:
Explicit Automata, Symbolic Systems

Basic Intuition :

• Systems are typically large–represent them
symbolically.

• Automata are typically small–represent them
explicitly.

Property-Driven Partitioning :
• System states–W , automaton states–Q
• Product states–W ×Q
• Partition P ⊆W ×Q into
Pq = {w : (w, q) ∈ P , q ∈ Q

Applicability : all symbolic algorithms

• Replace single BDD by array of BDDs

Effectiveness : can be exponentially faster than
standard symbolic algorithms (STV’05).

32

SAT-Based Algorithms

Bounded Model Checking : Is a bad state
reachable in k steps? (BCCZ’00)

I(X) ∧ TR(X,X) ∧ . . . ∧ TR(Xk − 1,X) ∧B(X)

Question : How to encode LTL property?

Many Answers : CRS’04, LBHJ’05

Basic weakness : Ignore work on LTL
translation.
• Treat automata as graphs.
• But nodes have “inner structure” – they are
sets of subformulas.

Also : Different approaches to represent lassos.

• Add cycle variables (LBHJ’05)

• Reduce liveness to safety (BAS’02)

Question : Is there fastest method?

33

Büchi Properties

Motivation : Use Büchi automata to specify desired
behavior, e.g., COSPAN.

The following are equivalent :
• M satisfies A
• L(M) ⊆ L(A)
• L(M) ∩ (Σω − L(A)) = ∅
• L(M) ∩ L(Ac) = ∅
• L(M ×Ac) = ∅

Complementation : L(Ac) = Σω − L(A)

Known : Büchi complementation is hard!

• COSPAN requires property automata to be
deterministic.

Recall : NFA complementation is exponential
(subset construction), but we can complement
NFAs with hundreds of states, in spite of exponential
blowup (TV’05).

34

Büchi Complementation

Problem : subset construction fails!

t

0

0
s

0

t
0

s

0

History

• Büchi’62: doubly exponential construction.

• SVW’85: 216n2

upper bound

• Saf’88: n2n upper bound

• Mic’88: (n/e)n lower bound

• KV’97: (6n)n upper bound

• GKSV’03: optimized implementation of KV’97

• FKV’04: (0.97n)n upper bound

• Yan’06: (0.76n)n lower bound

• Schewe’09: (0.76n)n upper bound

Question : Have we reached practicality?

35

Complementation of Random Automata

0.2
0.4

0.6
0.8

1

1

2

3

4
0

20

40

60

80

100

Density of final states (f)Transition density (r)

P
er

ce
nt

ag
e

of
 ti

m
eo

ut
s

Figure 4: Wring timeouts, by D. Tabakov

Timeout : 3600 sec.
States : Six!

Recent improvements : TV’07,DR’07 (up to 30
states for difficult automata)

36

Summary

History :

• It took 10 years from conception to implementation.

• Much progress in the following 10 years, leading
to industrial adoption.

Challenge :

• Many algorithms.

• Relative merits not always clear.

• Probably no “best” algorithm.

Advocated Approach :

• Abandon “winner-takes-all” approach.

• Borrow from AI a portfolio approach to algorithm
selection, in which we match algorithms to problem
instances.

• E.g., adapt algorithm to property (BRS’99).

37

