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CRN:
k1*a for a => x+c
k2*b for b => y+c
k3*x*y for x+y => z 
k4*c*z for c+z => r

Theorem [F, Le Guludec, Bournez, Pouly CMSB 2017]
A real function is Turing-computable (in Ptime) if and only if  it can be computed by 
a CRN over a finite set of molecular species (with polynomial length trajectories)

Input: a, b Initialization: x=y=z=r=c=0    
Output: c

Computed function at steady state:
c(∞)= max(a(0),b(0))

Analog Computations with
Chemical Reaction Networks (CRN)
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ODE
da/dt=-k1.a
db/dt=-k2.b
dx/dt=k1.a-k3.x.y
dy/dt=k2.b-k3.x.y
dz/dt=k3.x.y-k4.c.z
dr/dt=k4.c.z
dc/dt=k1.a+k2.b-k4.c.zO

O
O



Rate-Independent CRN/ODE Computation

Input: a(0)=3 b(0)=1     Result c*=3 independently of the reaction rates
k1=0.1, k2=10.0, k3=1, k4=100.0:              k1=0.1, k2=0.1, k3=0.1, k4=0.1:

The I/O functions computed by that CRN are independent of the kinetics terms
a => x+c
b => y+c
x+y => z
c+z => r
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c∗ = max(a(0),b(0)) = a(0)+b(0)−min(a(0),b(0))
x∗ = max(0,a(0)−b(0))
y∗ = max(0,b(0)−a(0))
r∗ = min(a(0),b(0))
z∗ = 0, a∗ = 0, b∗ = 0



Mathematical Characterization of the
Functions Computed by Rate-Independent CRNs

Theorem [Chen Doty Soloveichik 2014 ITCS]
A real function is computable by a rate-independent CRN if and only if it is a 
positive continuous piecewise linear function with rational coefficients. 

Theorem [Chalk Kornerup Reeves Soloveichik 2018 CMSB]
A real function is computable by a composable (i.e. not consuming its
inputs) rate-independent CRN iff it is a superadditive (i.e. 𝑓 𝑥 + 𝑦 ≥
𝑓 𝑥 + 𝑓 𝑦 ) positive continuous piecewise rational linear. 
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Monomolecular Rate-Independent CRN Structures 

A => B
output B: computes the identity function B(∞)=A(0)+B(0) rate-independent !
output A: computes the zero function A(∞)=0 rate-independent !

A => C
B => C

output C: computes the sum C(∞)=A(0)+B(0)+C(0) rate-independent
output A: computes the zero function A(∞)=0 rate-independent !

C => A
C => B

output A: computes A(∞)="
#
C(0)+A(0) not rate-independent !

C => A
C => B
B => C

output A: computes the sum A(∞)=C(0)+B(0)+A(0) rate-independent !

ANR DIfference 2022 François Fages



Bimolecular Rate-Independent CRN Structures 
A+B => C

output C: computes C(∞)=minimum(A(0),B(0))+C(0) rate-independent !
output B: computes B(∞)=max(0,B(0)-A(0)) rate-independent !

C => A+B
output A: makes copies A(∞)=C(0)+A(0) rate-independent !

A => X+C
B => Y+C Rate-independent on all species, why ?
X+Y => Z
C+Z => R
Definition A funnel CRN is a CRN that is:

– fork-free on species nodes
– circuit-free
– synthesis-free

Theorem [Degrand F Soliman CMSB 2020] A funnel CRN (ODE) is rate-independent for 
any output species.
Sufficient condition, not a necessary condition (e.g. harmless fork with circuit)
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Global Rate-Independence Condition

Lemma The structure of a funnel CRN C is a DAG with no reaction source node
Lemma All steady fluxes of a funnel CRN C are equal to 0.
Proof: by induction on the topological order of the graph.
Definition We shall denote x+

i the total amount of species xi available in an 
execution of the corresponding ODE system.

Theorem [Degrand F Soliman CMSB 2020] The ODE system associated to a funnel CRN 
has a single steady state x∗ that does not depend on the kinetic functions fi of C.
Corollary A funnel CRN is globally rate-independent for all species.
Theorem [Degrand F Soliman CMSB 2020] Any function computable by a rate-independent
CRN/ODE is computable by a funnel CRN/ODE.
Proof: by Chen-Doty-Soloveichik’s characterization and Ovchinnikov’s max-min 
representation of continuous piecewise linear functions with rational coefficients.
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Rate-Independence for « Persistent » Outputs

The harmless-fork-with-circuit CRN is rate-independent on outputs A, B, C
C => A C => B        B => C

Def. A species 𝑥
• is a product of a CRN if it can only increase: ∀𝑖 𝑅!(𝑥) ≤ 𝑃!(𝑥)
• is structurally persistent if it is covered by a P-invariant 𝑆, ∀𝑖 𝑆. 𝑅! = 𝑆. 𝑃! , and 

does not belong to a critical (gets empty) siphon (when empty remains empty)

Theorem [Degrand F Soliman CMSB 2020] Any CRN (ODE) is rate-independent on its
structurally persistent products.
Proof: P-invariant covering ensures boundedness and convergence for products.
The species reaching 0 are localized in siphons and exclude persistent outputs.

Implemented in BIOCHAM using Constraint Logic Programming for computing
P-invariants and siphons [Nabli, Martinez, F, Soliman 2016 Constraints]
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Evaluation against
BioModels repository
590 CRNs from SBML models
(many not well-formed CRNs)

[F Gay Soliman 2011 TCS]

94 with rate-independent products
29 with non trivial rate-ind. products
2 globally rate-ind. CRNs

Size of those 29 models: 
• 4-136 species
• 2-316 reactions

Constraint solving time:
• between 0.07 and 151 seconds
• except 2 timeouts >240s
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Biomodel# #species #reactions #products #RI #NTRI NTRI-product species Time (s)

037 12 12 2 2 2 Yi, Pi 0.950

104 6 2 3 3 1 species_4 0.074

105 39 94 11 3 1 AggP_Proteasome 63.366

143 20 20 4 1 1 MLTH_c 3.333

178 6 4 1 1 1 lytic 0.139

227 60 57 2 1 1 s194 17.299

259 17 29 1 1 1 s10 2.308

260 17 29 1 1 1 s10 2.310

261 17 29 1 1 1 s10 2.297

267 4 3 1 1 1 lytic 0.086

283 4 3 1 1 1 Q 0.053

293 136 316 14 4 3 aggE3, aggParkin,
AggP_Proteasome

>240

313 16 16 4 2 1 IL13_DecoyR 2.071

336 18 26 1 1 1 IIa 4.148

344 54 80 7 2 1 AggP_Proteasome >240

357 9 12 1 1 1 T 0.561

358 12 9 4 2 1 Xa_ATIII 0.892

363 4 4 1 1 1 IIa 0.067

366 12 9 4 2 1 Xa_ATIII 0.901

415 10 5 7 7 7 s10, s11, s12, s13, s14, s9, 
s15

0.894

437 61 40 22 8 1 T 16.109

464 14 10 6 3 1 s12 2.282

465 16 14 5 5 1 s23 59.554

525 18 19 8 3 1 p18inactive 33.479

526 18 19 8 3 1 p18inactive 33.858

540 22 11 12 11 8 s14, s15, s16, s17,
s18, s19, s20, s21

56.134

541 37 32 13 9 7 s14, s15, s16, s17, s18, s19, 
s21

31.573

559 90 136 18 2 2 s493, s502 150.954

575 76 58 9 1 1 DA_GSH 66.806



Relevance to Synthetic Biology

• Absolute robustness through rate-independence by design
– Graphical constraints for CRN design
– Constraint-based synthesis method

• Concrete chemical implementation with « morally » rate-independent CRNs
– Rate-independent CRN kernel
– Plus reverse reactions breaking formal rate-independence (limited robustness)
– Boolean function CRNs for coma diagnosis [Courbet Amar F Renard Molina 2018 MSB]
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Time Complexity of the Functions Computed by 
Rate-independent CRN/ODE

Proposition. The input-output function computed by a rate-independent 
CRN/ODE with rational kinetics and rational inputs is computable in time 
𝑂(𝑛 log 𝑛) and log space on a multitape Turing machine where 𝑛 is the number of 
bits to encode the rational inputs with exact precision.
Proof. By Chen Doty Soloveichik 2014 ICTS the function computed by a rate 
independent CRN is a continuous positive piecewise linear function
𝑦 = ∑!"#$ 𝑎! 𝑥! = ∑!"#$ 𝑎! 𝑥! where
• The fixed 𝑘 rational coefficients 𝑎! ’s can be encoded with by pairs of integers
• the 𝑥! ’s are the input rational numbers encodable by pairs of integers of 𝑛 bits
• and 𝑦 is the output rational number similarly encoded with a pair of integers
By Harvey and Van der Hoeven 2021 multiplication is in 𝑂 𝑛 log 𝑛 on a multitape 
Turing machine (required for the output with common denominator), 
addition and substraction are in 𝑂 𝑛 as piece-wise discrimination.
Hence the function computed by a rate-independent CRN/ODE is computable in
𝑂 𝑛 log 𝑛 time and log space.
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Analog Characterization of Low Complexity Class? 

Rational Polynomials can also be evaluated in O(n log n) time and log space 
on a multitape Turing machine with binary encoding of the inputs.
There is no notion of O(n log n) nor O(n) complete problems.

Characterizing L the Logspace complexity class for decision problems ?

• Turing machine with 3 tapes: R input 𝑛, RW work log 𝑛, W output 𝑃(𝑛)
• L= 𝐷𝑆𝑃𝐴𝐶𝐸(𝑂(log 𝑛)) ⊆ 𝐷𝑇𝐼𝑀𝐸 2%('() *) = 𝐷𝑇𝐼𝑀𝐸 𝑛% # = P
• L⊆ NL⊆ P but it is unknown wheter L=NL, NL=P, even L=NP

• 2-SAT and ST-connectivity are NL-complete under log-space reduction
• ST-connectivity is also NL-complete under First-Order reduction
• L = languages expressible in FO + transitive closure predicate (data 

complexity)
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Logspace reduction ≤!

Defined on languages 𝐿# ≤, 𝐿- such that 𝐿- ∈ L implies 𝐿# ∈ L
𝐿# ≤, 𝐿- if 𝑥 ∈ 𝐿# ↔ 𝑓 𝑥 ∈ 𝐿- where 𝑓 is computable in LOGSPACE.

Space complexity for computing a function:
• Turing machine with 3 tapes: R input 𝑛, RW work log 𝑛, W output 𝑃(𝑛)
• Problem f(x) may be large, so consider TM computing f(x) bitwise on the fly

f ∈ SPACE(S(n)) if both languages L’ and L” are in SPACE(S(n))
L'= {(x, i) : fi(x) = 1} and 

L” = {(x, i) : i ≤ |f(x)|} 
This gives 
• Transitivity: 𝐿# ≤, 𝐿- and 𝐿- ≤, 𝐿. implies 𝐿# ≤, 𝐿.
• The composition of two L computable functions is L computable
• Yet every decision problem in L is L-complete under ≤, (useful w.r.t. P not L)
• Stronger notion of reduction for meaningful L-completeness, e.g. ≤/%
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Conclusion

• Funnel CRN/ODE structure: fork-free, circuit-free, synthesis-free

– Theorem. Any funnel CRN/ODE is rate-independent on all outputs
– Theorem [Soloveichik et al. 2014]. Any function computed by a rate independent

CRN/ODE is a continuous piecewise linear rational function.
– Theorem. Any function computed by a rate independent CRN/ODE can be

computed by a funnel CRN/ODE

• Relevance to low analog computational complexity classes
– Functions computed by rate-independent CRN/ODE are in 𝑂 𝑛 log 𝑛 time and 

logspace on a multitape Turing machine with binary representation of the inputs
– Investigate Logspace completeness with an appropriate notion of reduction? 

≤$%%&?

• Meaning for rate-independent difference equations?
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