
Challenges for an FPGA hardware
implementation of recurrence relations

for real-world problems

Sergey VERLAN

Université Paris Est Créteil

Motivation

• Desire to design a uc model for problem solving competitive with current-
day programming and computer hardware.

• Common point for uc: the models are synchronous, highly distributed and
parallel.

• But this is just the current silicon architecture!
• However, the lack of tools (and the long tradition) pushes the designers to

use microprocessor architectures.
• Obvious choice – custom silicon architecture using FPGA.
• We observed a lack of theoretical methods in the hardware design area.

Why FPGA?

• A technology used to prototype hardware circuits.

• Same device can be programmed to realize different circuits.

• FPGAs are responsible for a major shift in the way digital circuits are
designed.

Field-Programmable Gate Arrays (FPGA)

• A technology used to prototype
hardware circuits.

• A matrix of Configurable logic
blocks (CLBs) with configurable
interconnections.

• Each CLB contains several slices,
each of them containing several
logic cells

Image from http://evergreen.loyola.edu/dhhoe/www/HoeResearchFPGA.htm

Used FPGA

• We used an entry level FPGA board:
Digilent Basys 3

• Based on Xilinx Artrix 7 architecture

• 33,280 logic cells in 5200 slices

• 90 DSP slices

Some tests done on Xilinx VC707 board based on Virtex 7 architecture
485K cells & 2800 DSP slices

Circuit design using FPGA

• The circuits for FPGA are designed using a Hardware Description
Language (HDL).

• The most common are VHDL and Verilog.
• Important: despite of similitudes circuit design is very different from

software programming.
• Basically, it corresponds to the paradigm of data-flow programming.
• There are several levels of HDL design: transistor/gate level, RTL,

behavioral.

Development cycle

Problem HDL design

Verification

Simulation

Synthesis Implementation Hardware
simulation

LUT & MUX InterconnectVerilog/VHDL
reg [N:0] a,b,c;
always @(posedge clk) begin

a <= 2*b+c;
end

Remarks about hardware design

• Hardware design is a tedious task often unique for each project.

• Except for ready-to-use components, the designers operate at a very low
level of abstraction.

• One of our main goals is to design a programming/specification language
and a parallel hardware architecture allowing people to easily program
different algorithms and obtain efficient FPGA designs for them.

• We start with traditional hardware design models and then discuss the
extension.

Sequential and combinational circuits

𝑌𝑌 𝑡𝑡 = 𝐹𝐹(𝑋𝑋 𝑡𝑡) 𝑄𝑄 𝑡𝑡 + 1 = 𝐹𝐹 𝑄𝑄 𝑡𝑡 ,𝑋𝑋 𝑡𝑡
𝑌𝑌 𝑡𝑡 = 𝐺𝐺 𝑄𝑄 𝑡𝑡 ,𝑋𝑋 𝑡𝑡

𝑋𝑋 𝑌𝑌

𝑌𝑌𝑋𝑋

𝑄𝑄

Images from https://techdifferences.com/difference-between-combinational-and-sequential-circuit.html

Mealy/Moore machine

• Natural representation of sequential
circuits.

• A sequential circuit or a Mealy/Moore
machine can be directly translated to HDL
(especially at the behavioral level).

• In fact, the HDL traditional synchronous
design makes an explicit use of a Mealy
machine.

10

1101

00

0/0
1/1

0/0

1/0

1/0

0/0

1/0

0/0

10/0

11/001/0

00/0

0
1

0

1
1

0

1

0

X/1

0

1

1101 sequence detector

Boolean networks & reaction systems
• A B.N. is a particular kind of sequential

dynamical system, used to describe
biological genetic regulatory networks.

• E.g. x 𝑡𝑡 + 1 = 𝑥𝑥 𝑡𝑡 ∧ 𝑧𝑧 𝑡𝑡 ∨ 𝑦𝑦(𝑡𝑡)
𝑦𝑦 𝑡𝑡 + 1 = 𝑦𝑦 𝑡𝑡 ∧ ¬𝑥𝑥(𝑡𝑡)

• The basic variant follows:
𝑄𝑄 𝑡𝑡 + 1 = 𝐹𝐹 𝑄𝑄 𝑡𝑡 ,𝑋𝑋 𝑡𝑡

𝑌𝑌 𝑡𝑡 = 𝐺𝐺 𝑄𝑄 𝑡𝑡 ,𝑋𝑋 𝑡𝑡

• Which is exactly sequential digital circuits
update scheme.

• A R.S. is a different unconventional
computing view on B.N.

• It uses a chemical reaction style:

• 𝑥𝑥 + 𝑧𝑧 → 𝑥𝑥
𝑦𝑦 + ¬𝑥𝑥 → 𝑥𝑥 + 𝑦𝑦

• With the meaning the lhs is a reactant
which is consumed, producing an output
(the rhs) at the next time step

Using hardware to simulate B.N.: 20K variables and 500K operators on an entry-sized board, with 105 speedup.

Example: 2-bit binary counter

Reaction system:

𝑥𝑥1 + ¬𝑠𝑠 → 𝑥𝑥1
𝑥𝑥2 + ¬𝑠𝑠 → 𝑥𝑥2
𝑥𝑥2 + ¬𝑥𝑥1 → 𝑥𝑥2
𝑠𝑠 + ¬𝑥𝑥1 → 𝑥𝑥1
𝑠𝑠 + 𝑥𝑥1 + ¬𝑥𝑥2 → 𝑥𝑥2

Boolean (sequential) circuit:

𝑥𝑥1(𝑡𝑡 + 1) = 𝑥𝑥1 𝑡𝑡 𝑥𝑥𝑥𝑥𝑥𝑥 𝑠𝑠(𝑡𝑡)
𝑥𝑥2 𝑡𝑡 + 1 = 𝑠𝑠 𝑡𝑡 & 𝑥𝑥1 𝑡𝑡 𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥2(𝑡𝑡)

00

01

10

11

0/00

0/01

0/10

0/11

1/01

1/101/11

1/00

Mealy machine
input: 𝑠𝑠, output: 𝑥𝑥2𝑥𝑥1

Next step: Integer Mealy/Moore machine

• Use vectors instead of bits for input/output/state:
𝑄𝑄 𝑡𝑡 + 1 = 𝐹𝐹 𝑄𝑄 𝑡𝑡 ,𝑋𝑋 𝑡𝑡

𝑌𝑌 𝑡𝑡 = 𝐺𝐺(𝑄𝑄 𝑡𝑡 ,𝑋𝑋 𝑡𝑡)

where X,Y and Q are vectors of vectors of bits (= vectors of numbers)
• Mealy machine:

• Can be directly implemented in hardware.
• F & G ?

3,12 64,-5
34,40,11/2,4

The model

Reaction-like Equational (BN-like) Automata-like

? ? Integer Mealy machines

Numerical P systems

• The chemical-style counterpart of equations defined by integer Mealy machines.

• Input/output real-valued variables.

• A model having a graph structure (in case of a tree structure a Venn diagram is used).

• Each node contains:
• Real-valued variables (𝑥𝑥𝑖𝑖)

• Programs (rules) of form:

Pr = 𝐹𝐹 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 → 𝑐𝑐1 𝑣𝑣1 + ⋯+ 𝑐𝑐𝑛𝑛 𝑣𝑣𝑛𝑛

Production function Repartition protocol

Example

1

4

5

3

𝑎𝑎[0], 𝑏𝑏[1]

𝑐𝑐 0 ,𝑑𝑑 0 , 𝑒𝑒[0]

2

𝑓𝑓 0

𝑔𝑔 0 , ℎ[0]

𝑥𝑥 0 ,𝑦𝑦[2]

3 ∗ 𝑎𝑎 + 𝑏𝑏 → 1 𝑎𝑎 + 1 𝑓𝑓 + 1|𝑥𝑥
𝑏𝑏 + 1 → 1|𝑏𝑏

4 ∗ 𝑓𝑓 → 1 𝑐𝑐 + 2 𝑑𝑑 + 1|𝑔𝑔 2 ∗ 𝑥𝑥 + 𝑦𝑦 → 1 𝑏𝑏 + 1 𝑦𝑦

𝑔𝑔 → 1|ℎ

2*𝑐𝑐 ∗ 𝑑𝑑 → 1|𝑒𝑒 + 1|𝑓𝑓

F is generally a polynomial
with integer coefficients

F can use only same node variables The repartition protocol has natural coefficients
Can use only local or neighbor variables

Computation
• It is done in three steps.

• The value of F is computed:

• 𝐹𝐹1=3∗(0+1)=3

• 𝐹𝐹2=4∗(0+2)=8

• The value of used variables (𝑎𝑎, 𝑏𝑏, 𝑥𝑥, 𝑦𝑦) becomes 0.
• Then the repartition protocol specifies which quantity of

the F value goes to each variable. For example, for 𝐹𝐹2:

• 𝐹𝐹2 ∗
1

1+2+1
= 𝐹𝐹2

4
= 2 goes to 𝑏𝑏

• 𝐹𝐹2 ∗
2
4

= 4 goes to 𝑥𝑥

• 𝐹𝐹2 ∗
1
4

= 2 goes to 𝑦𝑦

• For 𝐹𝐹1: 𝑎𝑎, 𝑓𝑓, 𝑥𝑥 each get value 1
• Finally

1

2

𝑎𝑎 0 , 𝑏𝑏 1 ,𝑓𝑓[3]

𝑥𝑥 0 ,𝑦𝑦[2]

3 ∗ 𝑎𝑎 + 𝑏𝑏 → 1 𝑎𝑎 + 1 𝑓𝑓 + 1|𝑥𝑥

4 ∗ 𝑥𝑥 + 𝑦𝑦 → 1 𝑏𝑏 + 2|𝑥𝑥 + 1 𝑦𝑦

a b f x y

1 2 3+1 1+4 2

The model

Reaction-like Equational (BN-like) Automata-like

Numerical P systems ? Integer Mealy machines

Numerical P systems as discrete time series

• 𝑎𝑎 𝑡𝑡 + 1 = 𝑎𝑎 𝑡𝑡 + 𝑏𝑏 𝑡𝑡

• 𝑏𝑏 𝑡𝑡 + 1 = 𝑥𝑥 𝑡𝑡 + 𝑦𝑦 𝑡𝑡

• 𝑓𝑓 𝑡𝑡 + 1 = 𝑓𝑓 𝑡𝑡 + 𝑎𝑎 𝑡𝑡 + 𝑏𝑏 𝑡𝑡

• 𝑥𝑥 𝑡𝑡 + 1 = 2 ∗ 𝑥𝑥 𝑡𝑡 + 𝑦𝑦 𝑡𝑡 +
𝑎𝑎 𝑡𝑡 + 𝑏𝑏(𝑡𝑡)

• 𝑦𝑦 𝑡𝑡 + 1 = 𝑥𝑥 𝑡𝑡 + 𝑦𝑦(𝑡𝑡)

1

2

𝑎𝑎 0 , 𝑏𝑏 1 ,𝑓𝑓[3]

𝑥𝑥 0 ,𝑦𝑦[2]

3 ∗ 𝑎𝑎 + 𝑏𝑏 → 1 𝑎𝑎 + 1 𝑓𝑓 + 1|𝑥𝑥

4 ∗ 𝑥𝑥 + 𝑦𝑦 → 1 𝑏𝑏 + 2|𝑥𝑥 + 1 𝑦𝑦

DTS= recurrences = difference equations

Discrete time series
Systems of recurrences

• A recurrence relation (of order k):
𝑢𝑢 𝑡𝑡 = 𝜑𝜑 𝑢𝑢 𝑡𝑡 − 1 , … ,𝑢𝑢 𝑡𝑡 − 𝑘𝑘 , 𝑡𝑡 ≥ 𝑘𝑘, 𝑡𝑡 ∈ ℕ

• System of recurrences: a relation may also depend on other relations.

• Canonical form (of order 1):
𝑢𝑢𝑖𝑖 𝑡𝑡 = 𝜑𝜑𝑖𝑖 𝑢𝑢1 𝑡𝑡 − 1 , … ,𝑢𝑢𝑚𝑚 𝑡𝑡 − 1 , 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚

• Recalls a discrete fixed-point:
Y 𝑡𝑡 + 1 = 𝑓𝑓(𝑌𝑌 𝑡𝑡)

Relation with difference equations

• Δ𝑓𝑓 𝑡𝑡 = 𝑓𝑓 𝑡𝑡 + 1 − 𝑓𝑓 𝑡𝑡

• Δ2𝑓𝑓 𝑡𝑡 = 𝑓𝑓 𝑡𝑡 + 2 − 2𝑓𝑓 𝑡𝑡 + 1 + 𝑓𝑓(𝑡𝑡)
etc

• This relation can be inverted, hence they are equivalent (satisfied by same
sequences). E.g.

• 3Δ2𝑓𝑓 + 2Δ𝑓𝑓 + 7𝑓𝑓 = 0 is equivalent with

• 3𝑓𝑓 𝑡𝑡 + 2 = 4𝑓𝑓 𝑡𝑡 + 1 − 8𝑓𝑓(𝑡𝑡)

Differential equations (1)

• Discretization using Euler method yields a recurrence:

𝑦𝑦′ 𝑡𝑡 = 𝑓𝑓 𝑡𝑡,𝑦𝑦 𝑡𝑡 ,𝑦𝑦 𝑡𝑡0 = 𝑦𝑦0

𝑦𝑦 𝑛𝑛 + 1 = 𝑦𝑦 𝑛𝑛 + ℎ𝑓𝑓 𝑡𝑡 𝑛𝑛 ,𝑦𝑦 𝑛𝑛 , 𝑡𝑡 𝑛𝑛 = 𝑡𝑡0 + 𝑛𝑛𝑛

Differential equations (2)

• Isomorphism of real-valued sequences and power series:

𝑖𝑖 𝑎𝑎𝑛𝑛 𝑛𝑛 = �
𝑛𝑛∈ℕ

𝑎𝑎𝑛𝑛
𝑛𝑛!
𝑥𝑥𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑎𝑎𝑛𝑛 𝑛𝑛 = 𝑎𝑎𝑛𝑛+1 𝑛𝑛

• E.g.

𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

− 5
𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑

+ 6𝑦𝑦 − 4𝑥𝑥𝑥𝑥2𝑥𝑥 + 2𝑒𝑒2𝑥𝑥 = 0

𝑑𝑑2

𝑑𝑑𝑥𝑥2
𝑎𝑎𝑛𝑛 𝑛𝑛 = 5

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑎𝑎𝑛𝑛 𝑛𝑛 − 6 𝑎𝑎𝑛𝑛 𝑛𝑛 + 4 2𝑛𝑛𝑛𝑛 − 2 2𝑛𝑛 , 𝑦𝑦 = 𝑖𝑖 𝑎𝑎𝑛𝑛 𝑛𝑛

𝑎𝑎𝑛𝑛+2 = 5𝑎𝑎𝑛𝑛+1 − 6𝑎𝑎𝑛𝑛 + 2𝑛𝑛 4𝑛𝑛 − 2

Differential equations (3)

• In (linear) homogeneous case it is even simpler:
• 𝑦𝑦′′′ + 𝑦𝑦′ + 𝑦𝑦 = 0 ⇔ 𝑓𝑓(𝑛𝑛 + 3) + 𝑓𝑓(𝑛𝑛 + 1) + 𝑓𝑓(𝑛𝑛) = 0

• 𝑥𝑥𝑦𝑦′′ + 2𝑦𝑦′ − 𝑦𝑦 = 0 ⇔ 𝑛𝑛𝑛𝑛(𝑛𝑛 + 2) + 2𝑓𝑓(𝑛𝑛 + 1) − 𝑓𝑓(𝑛𝑛) = 0

The model

Reaction-like Equational (BN-like) Automata-like

Numerical P systems Recurrences/
Difference equations Integer Mealy machines

Real numbers

• NPS and difference equations use real numbers.

• But real numbers do not exist in practice: they are replaced by fixed-point or
floating-point approximations, which are indeed integers.

• So, it can be assumed that their implementations use “integers”. However,
arithmetic operations are a bit different for floating-point encodings.

NPS to Verilog

• Two-steps process:
• Transform NPS to recurrences.

• Transform recurrences to Verilog.

• Encode real values using a fixed-point
integer encoding.

• The resulting code runs at the clock speed.

2 ∗ 𝑏𝑏 + 𝑐𝑐 → 1|𝑎𝑎
transforms to

𝑎𝑎 𝑡𝑡 + 1 = 2 ∗ 𝑏𝑏 𝑡𝑡 + 𝑐𝑐 𝑡𝑡
that transforms to

reg [N:0] a,b,c;
always @(posedge clk) begin

a <= 2*b+c;
end

Some problems

• Update functions can be arbitrary.
However, even * is costly to implement in hardware.

• The computation of update
functions is too long.

• Communication paths are too long.

• Use linear functions.

• Bound the depth and split the
function or slow down the clock.

• Enforce the locality for updates –
as in NPS model.

Non-linearity

• Not everything can be linear.

• One way to tackle the non-linearity is to use piecewise-linear functions to
approximate it.

Generalized NPS (GNPS)

• To implement piecewise linearity we consider that the applicability of a rule
is controlled by a predicate from the FO theory (ℝ, +, >). For example:
𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑧𝑧;𝐸𝐸,𝐹𝐹 = 𝐸𝐸 > 𝑥𝑥 && (𝐹𝐹 > 𝑦𝑦 ∗ 2 + 0.3 ∗ 𝑧𝑧 𝐸𝐸 + 𝐹𝐹 > 𝑥𝑥 + 2 ∗ 𝑦𝑦 + 𝑧𝑧)

• Then a rule would be just
𝑃𝑃 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘;𝐸𝐸1, … ,𝐸𝐸𝑚𝑚 ; 𝐹𝐹 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 → 𝑐𝑐1 𝑣𝑣1, … , 𝑐𝑐𝑛𝑛 𝑣𝑣𝑛𝑛

• Where F is linear.

Example

u = 1 |x + 1 → 𝑥𝑥
𝑢𝑢 = 0 |𝑥𝑥 → 𝑥𝑥

𝑥𝑥[0]

u = 0 |y + 1 → 𝑦𝑦
𝑢𝑢 = 1 |𝑦𝑦 → 𝑦𝑦

y[0]

𝑢𝑢[−] Global function:

𝑥𝑥 𝑡𝑡 + 1 = �
𝑥𝑥 𝑡𝑡 + 1, 𝑖𝑖𝑖𝑖 𝑢𝑢 = 1
𝑥𝑥 𝑡𝑡 , 𝑖𝑖𝑖𝑖 𝑢𝑢 = 0
0, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

y 𝑡𝑡 + 1 = �
𝑦𝑦 𝑡𝑡 + 1, 𝑖𝑖𝑖𝑖 𝑢𝑢 = 0
𝑦𝑦 𝑡𝑡 , 𝑖𝑖𝑖𝑖 𝑢𝑢 = 1
0, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑥𝑥 0 = 0, 𝑦𝑦 0 = 0

Conditional recurrences

• The translation of GNPS to equations yields conditional recurrences.
• E.g. 𝑃𝑃1 … ;𝐹𝐹1 … → ⋯𝑘𝑘|𝑎𝑎… and 𝑃𝑃2 … ;𝐹𝐹2 … → ⋯𝑘𝑘𝑘|𝑎𝑎…
• This yields the following conditional recurrence:
• 𝑎𝑎 𝑡𝑡 + 1 = 𝑖𝑖𝑖𝑖 𝑃𝑃1 … && 𝑃𝑃2 … 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 …

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑃𝑃1 … && !𝑃𝑃2 … 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 …
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 !𝑃𝑃1 … &&𝑃𝑃2 … 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 …
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 …

• Conditional recurrences can be constructed directly by attaching conditions to a
recurrence. E.g.

𝑎𝑎 𝑡𝑡 + 1 = 𝑖𝑖𝑖𝑖 𝐸𝐸(𝑡𝑡) > 𝑎𝑎 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 2 ∗ 𝑏𝑏 𝑡𝑡 + 𝑐𝑐 𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎(𝑡𝑡)

Transforming to Verilog (2)

• 𝑎𝑎 𝑡𝑡 + 1 = 𝑖𝑖𝑖𝑖 𝐸𝐸(𝑡𝑡) > 𝑎𝑎 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 2 ∗ 𝑏𝑏 𝑡𝑡 + 𝑐𝑐 𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎(𝑡𝑡) transforms
to a conditional expression.

reg [N:0] a,b,c;

always @(posedge clk) begin

a <= E>a ? 2*b+c : a;

end

• Any predicate as previously discussed transforms directly to Verilog.

Generalizing: Numerical Networks of Cells

• Cells containing variables (discrete time series) over a monoid (𝐺𝐺, +, 0).
• Rules 𝑔𝑔 | 𝑓𝑓 → 𝑥𝑥, with guard 𝑔𝑔 and update function 𝑓𝑓 for variable 𝑥𝑥.
• Following natural restrictions can be used:

• Locality – all variables of 𝑔𝑔 and 𝑓𝑓 are from the same or neighbor cells.

• 𝑔𝑔 from the FO theory (𝐺𝐺, +, 0, <) (suppose that G has a total order relation <).

• 𝑓𝑓 member of the vector space (𝐺𝐺, +, 0) over ℕ (“linearity”).

• Capture (G)NPS, BN, mvBN, PN, D0L and various fuzzy-based
computational models.

Synchronous languages

• The equation view of (G)NPS can be directly translated to synchronous
programming languages, more specifically to LUSTRE.

• It is a family of languages (SIGNAL, ESTEREL, LUSTRE) aiming to make
the same abstraction for programming languages as the synchronous
abstraction in digital circuits.

• Allows easy verification for concurrent conditions.
• Used for the design of a critical software (nuclear plants, aeronautics,

satellites).

Compiler chains

GNPS

C

Verilog/VHDL Hardware
(FPGA)

Verified
software

Subset of
Lustre

Compiler 2

Lustre
compiler

Compiler 3

Verification and simulation
(using Lustre tools)

Verification and simulation
(using Verilog tools)

C Compiler

Synthesis

Environment

=

Equational
domain language

Compiler 1

The goal

• Create a compiler toolchain that will compile from (G)NPS to circuit
description.

• Having standard IO libraries, this allows to code an algorithm in (G)NPS,
translate it to an FPGA circuit, run it and get the result/interaction over
serial port or IO pins, without any FPGA/electronics knowledge!

• As a side effect can transform the algorithm to a verified C code.

• Another side effect – can compile and run some Lustre programs on FPGA.

Verification

• SystemVerilog has important verification (assertion-based) constructs (SVA).

• It is more-or-less equivalent to a temporal logic specification.

• We provide a verified version of support I/O libraries.

• We are working on a property language specification that would translate to
SVA or other languages.

Example of the eq domain language program

…

const{ START:=1; DIST_THRESHOLD := 30; …}

use ultrasonic as us { dataPin := V21; }

input { sw := pinIn(V17); us_distance := us.distance; }

output {res := pinOut(led,count); }

membrane m1{

count:=START;

count = if (sw!=0) then if (us_distance > DIST_THRESHOLD) then count + 1

else count – 1

else count;

}

Test bed
• Proportional–integral–derivative (PID)

controller for the motion of Pioneer 3
DX robot.

• We tested several programs allowing to
operate sensors and actuators directly
by the circuit generated from (G)NPS.

• It allows to be very reactive (~15ns), so
the approach is particularly interesting
with hi-speed sensors.

• It uses a relatively low number of
hardware resources.

Non-linearity (revised)

• In some cases it is simpler to implement several non-linear functions directly.

• Theoretically, this means extending the basic system with a functional symbol in the
signature of the theory, e.g. use predicates over FO theory (ℝ, +, <, 1

.
).

• The cost is slower or larger design as the implementation of corresponding
functions can take several clock cycles or larger surface if using lookup tables.

• There are blocks for widely used functions like sin, cos, sqrt and sqr.

IEEE 754

• We did experiments on using IEEE 754 floating-point number
representation in the implementation of the RRT path-planning algorithm
on FPGA.

• We have used functional symbols (implemented as blocks) for +,-,* and 1
.

• Feasible, but a lot of work with the resource allocation.

Summary

• (Conditional) recurrences translate simply to hardware circuits.

• The use of conditions simplifies a lot practical algorithm design.

• Natural applications: control theory, physics and biology.

• Theoretical challenges for the restriction of the model to map an efficient
implementation.

• Functional extensions useful in practice.

Conclusions

• Unconventional (and membrane) computing gives new methods for distributed and
parallel algorithm design with applications ranging from optimization to control
theory.

• (G)NPS/conditional recurrences are good candidates for parallel algorithm
specification to be implemented in hardware.

• They provide equivalences with well-known methods based on difference equations
and ensure efficient HDL/hardware translation.

• There are several developed tools that show enormous (> 105) speedups with
respect to software implementations, as well as high IO response time (~10ns).

• We started a big project aiming to develop a specification language and a compiler
chain to transform GNPS algorithms into hardware description by non-specialists.

Further work
• Logic:

• Further restrictions of the model (in order to minimize the depth of functions – on FPGA only some constant depth can be efficiently implemented).

• Use different (full) signatures according to implementation facility (e.g. bit shifts instead of a constant multiplication).

• Translation algorithms (from one theory to another).

• Verification:
• Add verification constructs and facilitate the verification workflow.

• Provide more verified I/O constructs.

• Algorithmic:
• Search for conditions on algorithms yielding efficient implementations.

• Elaborate a clean differential equations => hardware implementation workflow, including for non-linear and partial cases.

• Robotics
• Implement and compare different PID algorithms.

• Finish the implementation of path-planning algorithm.

• Finalize the UI for the compilers.

	Challenges for an FPGA hardware implementation of recurrence relations for real-world problems
	Motivation
	Why FPGA?
	Field-Programmable Gate Arrays (FPGA)
	Used FPGA
	Circuit design using FPGA
	Development cycle
	Remarks about hardware design
	Sequential and combinational circuits
	Mealy/Moore machine
	Boolean networks & reaction systems
	Example: 2-bit binary counter
	Next step: Integer Mealy/Moore machine
	The model
	Numerical P systems
	Example
	Computation
	The model
	Numerical P systems as discrete time series
	Discrete time series�Systems of recurrences
	Relation with difference equations
	Differential equations (1)
	Differential equations (2)
	Differential equations (3)
	The model
	Real numbers
	NPS to Verilog
	Some problems
	Non-linearity
	Generalized NPS (GNPS)
	Example
	Conditional recurrences
	Transforming to Verilog (2)
	Generalizing: Numerical Networks of Cells
	Synchronous languages
	Compiler chains
	The goal
	Verification
	Example of the eq domain language program
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Non-linearity (revised)
	IEEE 754
	Summary
	Conclusions
	Further work

