Challenges for an FPGA hardware

implementation of recurrence relations
for real-world problems

Sergey VERLAN

Université Paris Est Créteil




Motivation

* Desire to design a uc model for problem solving competitive with current-
day programming and computer hardware.

* Common point for uc: the models are synchronous, highly distributed and

parallel.
* But this 1s just the current silicon architecture!

* However, the lack of tools (and the long tradition) pushes the designers to
use microprocessor architectures.

* Obvious choice — custom silicon architecture using FPGA.

* We observed a lack of theoretical methods in the hardware design area.




Wiy BRG AR

* A technology used to prototype hardware circuits.

. * Same device can be programmed to realize different circuits.

* FPGAs are responsible for a major shift in the way digital circuits are
designed.




Field-Programmable Gate Arrays (FPGA)

Basic Logic Element

° A technology used to prototype By —
hardware circuits. ECELELECED Y ] o H =

Somomom U

* A matrix of Configurable logic = = = S S R Em—m—
blocks (CLBs) with configurable BN @2
interconnections. D T 77

. , BoECcECE

* Each CLB contains several slices, NN EN

R o Switching Block
each of them containing several i ce as
logic cells i ]

_____________Image from http://evergreen.loyola.edu/dhhoe/www/HoeResearchFPGA.htm




Used FPGA

* We used an entry level FPGA board:
Digilent Basys 3

* Based on Xilinx Artrix 7 architecture

| UNWVERSITY PROGRAM

* 33,280 logic cells in 5200 slices L o SR
* 90 DSP slices '

Some tests done on Xilinx VC707 board based on Virtex 7 architecture
485K cells & 2800 DSP slices




Circuit design using FPGA

The circuits for FPGA are designed using a Hardware Description
Language (HDL).

The most common are VHDL and Verilog.

Important: despite of similitudes circuit design 1s very different from
software programming.

Basically, it corresponds to the paradigm of data-flow programming.

There are several levels of HDL design: transistor/gate level, RTL,
behavioral.




Development cycle

reg [N:0] a,b,c;

always @ (posedge clk) begin
a <= Z*b+c;

end

Verification
Problem HDL design /  Synthesis | Implementation [—> Hardwgre
‘ ‘ / _ simulation
‘ . . \\ //
Simulation
VI JVHDL Interconnect




Remarks about hardware design

* Hardware design is a tedious task often unique for each project.

* Except for ready-to-use components, the designers operate at a very low

level of abstraction.

* One of our main goals is to design a programming/specification language
and a parallel hardware architecture allowing people to easily program
different algorithms and obtain efficient FPGA designs for them.

* We start with traditional hardware desigh models and then discuss the
extension.




Sequential and combinational circuits

I

Input Output Y

n Inputs m Outputs — iti
P \ p X Combinational FZ:Z';:;
Circuit
——— = 1 - & —
- Combinational J_I_
Circuit : Y 0
. Clock
Memory &= Signal

Combinational Circuit Sequential Circuit

Y(t) = F(X(t)) Q(t+1) =F(Q(),X(®)
Y(6) = 6(Q(1), X (1))

Images from https://techdifferences.com/difference-between-combinational-and-sequential-circuit.html




Mealy/Moore machine

* Natural representation of sequential

circuits.
. * A sequential circuit or a Mealy/Moore

machine can be directly translated to HDL
(especially at the behavioral level).

* In fact, the HDL traditional synchronous
design makes an explicit use of a Mealy

1101 sequence detector

machine.




Boolean networks & reaction systems

* A B.N.1s a particular kind of sequential * A RS. is a different unconventional
dynamical system, used to describe computing view on B.N.
biological genetic regulatory networks.

* Eg x(t+1)=x(t)Az(t)V y(t)
y(t+1) =y() A =x(t)

* The basic variant follows: NN . .
0t + 1) = F(Q(0), X(©) With the meaning the lhs is a reactant
\ which 1s consumed, producing an output
Y(®) = 6(Q(®), X(t)) (the rhs) at the next time step

* Which 1s exactly sequential digital circuits
update scheme.

* It uses a chemical reaction style:

S Z 2
VTR R SR Y

Using hardware to simulate B.N.: 20K variables and 500K operators on an entry-sized board, with 10° speedup.




Example: 2-bit binary counter

Reaction system: Boolean (sequential) circuit: Mealy machine
input: S, output: X,Xq
. X1+ S = x4 x1(t + 1) = x,(t) xor s(t)
Xy + 1S > X, X, (t+1) = (s(t)& xl(t)) x0T X, (t)

xZ'l"_le")XZ
SRS RN
S+x1+ X, 2 Xy




Next step: Integer Mealy/Moore machine

* Use vectors instead of bits for input/output/state:

Q(t+1) =F(Q®), X))
Y(t) = GQ(), X(1))

where XY and Q) are vectors of vectors of bits (= vectors of numbers)

* Mealy machine: 34,40,11/2,4
3,12 > 64,-5

* Can be directly implemented in hardware.

& E&aGrr




The model

Equational (B ke

P P Integer Mealy machines




Numerical P systems

The chemical-style counterpart of equations defined by integer Mealy machines.

Input/output real-valued variables.

A model having a graph structure (in case of a tree structure a Venn diagram is used).

Each node contains:
* Real-valued variables (x;)
* Programs (rules) of form:

Pr=F(xq,..,x;) 2 cq|lvy + -+ CTlvn

Production function Repartition protocol

e s r— — . — . T O T




F can use only same node variables

F 1s generally a polynomjal
with integer coefficlents

The repartition protocol has natural coefficients

EXﬂmple Can use only local or neighbor variables |

. y x[0], y[2] h
/ 4*fé 2 (x+y) > 1lb+1ly
P

) -

J
3
) Ty T

/ b+1-1|b
=/ /
2
9)




Computation

* It1s done in three steps.
* 'The value of F is computed:
o F,=3%(0+1)=3
o F,=4x(0+2)=8
* 'The value of used variables (a, b, x, y) becomes 0.

* Then the repartition protocol specifies which quantity of
the ¥ value goes to each variable. For example, for F,:

1 N & D

RS R 2 goes to b

2
S FZ*Z=4goestox

. Fz*i=2goestoy

* For Fy: a, f, x each get value 1

* Finally ﬂﬂ---

3+1 1+4 2

//fdﬂﬁhbﬂﬂ ﬁ\\

(X0l y[2] h

4x(x+y)—>1lb+2|x+ 1|y

- J
2

\ 3*(a+b)—>1|a+1|f+1|x/

1




The model

Equational (B ke

Numerical P systems ? Integer Mealy machines




Numerical P systems as discrete time series

* a(t+ 1) =a(t) + b(t)

e e a0l f3) O

* f(t+1) = f(®) +al®) +b(t) C x[oly[2) h

e x(t+1) =2 (x(®) + y(®)) + At y) > db+2le+ 1y
a(t) + b(t) N -

s y(t + 1) =x(t) +y(t) \ 3*(a+b)—>1|a+1|f+1|x/

DTS= recurrences = difference equations

1




Discrete time series ;
Systems of recurrences :

* A recurrence relation (of order k):

= <p(u(t =) s k)),t >k,t €N

* System of recurrences: a relation may also depend on other relations.

* Canonical form (of order 1):
() = goi(ul(t — 1), .., Uy, (t — 1)), =

* Recalls a discrete fixed-point:

MR DR R0AGE)




Relation with difference equations

AR = A L )
(M) =Fle+2)—2fE L1+ f(D)

SEC

This relation can be inverted, hence they are equivalent (satisfied by same
sequences). E.g.

3A%f + 2Af + 7f = 0 is equivalent with
3f(t+2)=4f(t+1) —8f(¢t)




Ditterential equations (1)

* Discretization using Euler method yields a recurrence:

. y' (@) = f(t,y(®),y(to) = ¥o

y(n+1) =y(n)+ hf(t(n),y(n)), t(n) =ty + nh




Ditterential equations (2)

* Isomorphism of real-valued sequences and power series:

neN

N d
i((andn) = ) —2a™ and hence — ((@n)n) = (@ns1)n

Qe

giy Ny 3 2
ﬁ—5@+6y—4xe e —

d2 N d n n e 1
—— (@n = 5——(an)n — 6(an)n +4(2"n) = 2(2"), ¥ =i(an)n

Cln_|_2 == San+1 R 6an + Zn(41’l e 2)




Ditterential equations (3)

* In (linear) homogeneous case it is even simpler:

. c y'+y' +y=0fn+3)+f(n+1)+f(n) =0
s xy' +2y —y=0nf(n+2)+2f(n+1)—-f(n)=0




The mo del

Recurrences/

= Equational (B ke

Numerical P systems Integer Mealy machines

Ditference equations




Real numbers

* NPS and difference equations use real numbers.

. * But real numbers do not exist in practice: they are replaced by fixed-point or

floating-point approximations, which are indeed integers.

* So, it can be assumed that their implementations use “integers”. However,
arithmetic operations are a bit different for floating-point encodings.




NPS to Verilog

* 'Two-steps process:

2xb+c—-1|a

transforms to

* Transform NDPS to recurrences. a(t+1) =2x*b(t) + c(t)

* Transform recurrences to Verilog.

that transforms to

reg [N:0] a,b,c;

* Encode real values using a fixed-point always @ (posedge clk) begin

integer encoding.

* The resulting code runs at the clock speed.

a <= ’*pb+c;
end




Some problems

* Update functions can be arbitrary. * Use linear functions.

However, even * is costly to implement in hardware.
. * The computation of update * Bound the depth and split the
functions 1s too long. function or slow down the clock.

* Communication paths are too long.  * Enforce the locality for updates —
as in NPS model.




Non-linearity

* Not everything can be linear.

|

. * One way to tackle the non-linearity 1s to use piecewise-linear functions to

approximate it. s




Generalized NPS (GNPS)

* To implement piecewise linearity we consider that the applicability of a rule

is controlled by a predicate from the FO theory (R, +, >). For example:
. P(x,y,ZELF)=E>x&& (F>y*24+03*x2)||(E4+F>x+2*y+ z))

* Then a rule would be just

Prp et B s Rhe e = e lessa el

* Where Fis linear.




Example

ul-]

x[0]
(u=1|x+1-x
(u=0)x - x

y[O]
(u=0)y+1-y
(u=1Dly-y

Global function:
fx(t)+1, FRUANL
x(t+1) =< x(b), ifu=20

0, otherwise

(y(t)+1, ifu=0

y(t+1) =1{y(), ifu=1
0, otherwise

x(0) =0, y(0) =0




Conditional recurrences

* The translation of GNPS to equations yields conditional recurrences.
N Eg Pl( ), Fl() SR AN kla ... and Pz( ), Fz() AR klla
* This yields the following conditional recurrence:

A\ A SR R NER RPN & & P (G NEhen B
elseif P;(...)&&!P,(...) then ...
e%se if 'P;(...)&&P,(...)then ...
else ...

* Conditional recurrences can be constructed directly by attaching conditions to a
tecuttence B .o

a(t+1) =if (E(t) > a(t)) then 2 * b(t) + c(t) else a(t)




Transtorming to Verilog (2)

* a(t+1) =if (E(t) > a(t)) then 2 = b(t) + c(t) else a(t) transforms

to a conditional expression.

reg [N:0] a,b,c;

always (@ (posedge clk) begin
A=\ ESa R EoE N

end

* Any predicate as previously discussed transforms directly to Verilog.




Generalizing: Numerical Networks ot Cells

* Cells containing variables (discrete time seties) over a monoid (G, +, 0).

* Rules g | f — x, with guard g and update function f for variable x.

* FPollowing natural restrictions can be used:
° Locality — all variables of g and f are from the same ot neighbor cells.
° g from the FO theory (G, +, 0, <) (suppose that G has a total order relation <).

* f member of the vector space (G, +,0) over N (“linearity”).

* Capture (G)NPS, BN, mvBN, PN, DOL and various fuzzy-based

computational models.




Synchronous languages

* The equation view of (G)NPS can be directly translated to synchronous
programming languages, more specifically to LUSTRE.

* Itis a family of languages (SIGNAL, ESTEREL, LUSTRE) aiming to make
the same abstraction for programming languages as the synchronous
abstraction in digital circuits.

* Allows easy verification for concurrent conditions.

* Used for the design of a critical software (nuclear plants, aeronautics,
satellites).




Compiler chains

C Compiler Verified

software

Lustre
compile

Compiler 2
GNPS )

Subset of

Tustre

Verification and simulation

(using Lustre tools)

Synthesis
Verilog/VHDL M H;;d(\}vzre
Compiler 1 ( )
Equational U Environment

domain language

‘ Compiler 3

Verification and simulation

(using Verilog tools)




The goal

Create a compiler toolchain that will compile from (G)NPS to circuit
description.

Having standard 1O libraries, this allows to code an algorithm in (G)NPS,
translate it to an FPGA circuit, run it and get the result/interaction over
serial port or IO pins, without any FPGA /electronics knowledge!

As a side effect can transform the algorithm to a verified C code.

Another side effect — can compile and run some Lustre programs on FPGA.




Verification

* SystemVerilog has important verification (assertion-based) constructs (SVA).

* It 1s more-ot-less equivalent to a temporal logic speciﬁcation.

* We provide a verified version of support I/O libraries.

* We are workine on a property lanocuage specification that would translate to
g property language sp

SVA or other languages.




FExample of the eq domain language program

const{ START:=1; DIST THRESHOLD := RN

use ultrasonic as us { dataPin := V21; }

input sy =spialio(iA ) B\usdistance i =tus i dihstanceyi
output {res := pinOut(led,count); }

membrane ml {
COUNENSSTART,
count = if (sw!=0) then if (us distance > DIST THRESHOLD) then count +

else count -

else count;




rEnp B
I_T Y '!' %! F[ﬁ

e (o
o I o O

—tSil D
‘BaASYS 3 EWS




Test bed

Proportional-integral—derivative (PID)
controller for the motion of Pioneer 3

DX robot.

We tested several programs allowing to
operate sensors and actuators directly

by the circuit generated from (G)NPS.

It allows to be very reactive (~15ns), so
the approach is particularly interesting
with hi-speed sensors.

It uses a relatively low number of
hardware resources.







Non-linearity (revised) (

* In some cases it is simpler to implement several non-linear functions directly.

* Theoretically, this means extending the basic system with a functional symbol in the
Y 2 S y

signature of the theory, e.g. use predicates over FO theory (R, +, <, \/i_)

* The cost 1s slower or larger design as the implementation of corresponding
functions can take several clock cycles or larger surface if using lookup tables.

* There are blocks for widely used functions like sin, cos, sqrt and sqr.




IEEE 754

We did experiments on using IEEE 754 floating-point number

representation in the implementation of the RRT path-planning algorithm
on FPGA.

We have used functional symbols (implemented as blocks) for +,-* and -

Feasible, but a lot of work with the resource allocation.




Summary

* (Conditional) recurrences translate simply to hardware circuits.

* The use of conditions simplifies a lot practical algorithm design.

* Natural applications: control theory, physics and biology.

* Theoretical challenges for the restriction of the model to map an efficient
implementation.

* Functional extensions useful in practice.




Conclusions

* Unconventional (and membrane) computing gives new methods for distributed and
parallel algorithm design with applications ranging from optimization to control
theory.

* (G)NPS/conditional recurrences are good candidates for parallel algorithm
specification to be implemented in hardware.

* They provide equivalences with well-known methods based on difference equations
and ensure efficient HDI./hardware translation.

* There are several developed tools that show enormous (> 10°) speedups with
respect to software implementations, as well as high 1O response time (~10ns).

* We started a big project aiming to develop a specification language and a compiler
chain to transform GNPS algorithms into hardware description by non-specialists.




Further work

Logic:
°  Turther restrictions of the model (in order to minimize the depth of functions — on FPGA only some constant depth can be efficiently implemented).
°  Use different (full) signatures according to implementation facility (e.g. bit shifts instead of a constant multiplication).
°  Translation algorithms (from one theory to another).
Verification:
°  Add verification constructs and facilitate the verification workflow.
. Provide more verified I/O constructs.
Algorithmic:
®  Search for conditions on algorithms yielding efficient implementations.
*  Elaborate a clean differential equations => hardware implementation workflow, including for non-linear and partial cases.
Robotics
*  Implement and compare different PID algorithms.
*  Finish the implementation of path-planning algorithm.

Finalize the UI for the compilers.




	Challenges for an FPGA hardware implementation of recurrence relations for real-world problems
	Motivation
	Why FPGA?
	Field-Programmable Gate Arrays (FPGA)
	Used FPGA
	Circuit design using FPGA
	Development cycle
	Remarks about hardware design
	Sequential and combinational circuits
	Mealy/Moore machine
	Boolean networks & reaction systems
	Example: 2-bit binary counter
	Next step: Integer Mealy/Moore machine
	The model
	Numerical P systems
	Example
	Computation
	The model
	Numerical P systems as discrete time series
	Discrete time series�Systems of recurrences
	Relation with difference equations
	Differential equations (1)
	Differential equations (2)
	Differential equations (3)
	The model
	Real numbers
	NPS to Verilog
	Some problems
	Non-linearity
	Generalized NPS (GNPS)
	Example
	Conditional recurrences
	Transforming to Verilog (2)
	Generalizing: Numerical Networks of Cells
	Synchronous languages
	Compiler chains
	The goal
	Verification
	Example of the eq domain language program
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Non-linearity (revised)
	IEEE 754
	Summary
	Conclusions
	Further work

