Totalization of ODEs

Riccardo Gozzi

École Polytechnique

6 October 2022

Totalization of ODEs

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Motivation

Ordinary differential equations

Let $E \subset \mathbb{R}$ compact. Let $y : [a, b] \to E$ be the unique solution of:

 $\begin{cases} y' = f(y(t)) \\ y(a) = y_0 \end{cases}$

- Obtain y: if f is continuous, Peano's theorem, limit of sequence of continuous functions
- Compute y: if f is continuous, Ten thousand monkeys [CG09]

Question 1:

Relaxing continuity for f, when can we obtain y from f?

Question 2:

What is the set theoretical complexity of y relative to f?

A ロ ト 4 回 ト 4 三 ト 4 三 ト 9 0 0 0

Antiderivative

- Let $F : [a, b] \subseteq \mathbb{R} \to \mathbb{R}$ be a function differentiable on [a, b]
- Let $f : [a,b] \subseteq \mathbb{R} \to \mathbb{R}$ be such that F'(x) = f(x) for all $x \in [a,b]$

Question 1:

When can we obtain F from f?

Question 2:

What is the set theoretical complexity of F relative to f?

- Question 1 investigates methods related to given conditions on f
- Question 2 investigates the complexity of such methods for set descriptive theory

イロト イヨト イヨト イヨト ヨー のくの

Conditions on the derivative

If f satisfies (A) then by (B) we get:

 $F(b) = F(a) + \int_a^b f(x)$

- (A) f continuous
 (B) Fundamental theorem of calculus
 F ∈ C¹([a, b])
- (A) f bounded, continuous almost everywhere (µ_L(D_f) = 0)
 (B) Lebesgue-Vitali theorem
 F ∈ C¹([a, b]) almost everywhere
- (A) f Lebesgue integrable
 (B) Lebesgue differentiation theorem
 F ∈ AC, Absolutely continuous

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Absolutely continuous AC and bounded variation BV

• If $F : [a, b] \rightarrow \mathbb{R} \in \mathsf{AC}$ then $F \in \mathsf{BV}$

Definition 1 (BV) Let $F : [a, b] \to \mathbb{R}$, define the quantity $V(F) = \sup_{P \in \mathcal{P}} \sum_{k} |F(x_{k+1}) - F(x_k)|$. Then, F is of bounded variation if $V(F) < +\infty$

- $F \notin BV$ on $[a, b] \Rightarrow F(b) \neq F(a) + \int_a^b f(x)$
- Bounded variation for $F \longleftrightarrow$ bounded length for y

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQの

Non-integrable derivative

Goal:

Investigate complex, non-integrable derivative

We need to have:

- Baire category theorem $\Rightarrow f$ continuous on a dense subset of [a, b]
- Darboux theorem \Rightarrow f has the Darboux property on [a, b]

Theorem 2 (Darboux)

Let $F : [a, b] \to \mathbb{R}$ be differentiable, and let f be its derivative. Then, for every f(a) < c < f(b) there is a point $x \in (a, b)$ such that c = f(x).

Dirichlet's function

$$f(x) = egin{cases} 1 & ext{if} \;\; x \in [a,b] \cap \mathbb{Q} \ 0 \;\; ext{otherwise} \end{cases}$$

Totalization of ODEs

イロト 不得 トイラト イラト 一日

Darboux functions

- Darboux functions corresponds to continuous functions?
- Topologist's sine curve, f(0) = 0, $f(x) = sin(\frac{1}{x})$
- Conway base 13, strongly Darboux, nowhere continuous

Question:

Can $F \notin BV$ while being an antiderivative?

Function Ω

$$F(x) \equiv \Omega(x) = \begin{cases} x^2 \sin(\frac{1}{x^2}) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$
$$f(x) \equiv \Omega'(x) = \begin{cases} 2x \sin(\frac{1}{x^2}) - \frac{2}{x} \cos(\frac{1}{x^2}) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Graphics

Figure: Function $\boldsymbol{\Omega}$

Figure: Function Ω'

<ロト < 四ト < 三ト < 三ト

æ

More complex derivatives: two problematic discontinuities

Function discontinuous in two points

$$F(x) \equiv \Omega_2(x) = \begin{cases} x^2(1-x)^2 \sin(\frac{1}{x^2(1-x)^2}) & \text{if } 0 < x < 1 \\ 0 & \text{if } x = 0, 1 \end{cases}$$

э

More complex: uncountable prblematic discontinuities

• Extension Cantor middle third:

Cantor set of discontinuities

Define $\Omega_{2,n}$ as the scaled $\Omega_{2,n}(x) = 4^{-n}\Omega_2(x)$ Define $I_{m,n}$: the *m*th (of 2^n) removed intervals from the *n*th step Define $f_{m,n}(x) = \Omega_2(x)$ for $x \in I_{m,n}$; $f_{m,n}(x) = 0$ otherwise Define $F(x) = \sum_{n=0}^{\infty} \sum_{m=1}^{2^n} f_{m,n}(x)$

- Since all $f_{m,n}$ are differentiable, F converges and F' converges uniformly, F is differentiable
- Using fat Cantor set, D_f with full measure

イロト 不得 トイラト イラト 一日

Denjoy totalization

Extension of Lebesgue integral

Question:

Is there a way to compute such antiderivatives?

- Need for another formalization of integration
- Denjoy, 1912, [Den12], iterative process, transfinite induction
- Luzin, 1915, variation absolute continuity
- Perron, 1914, [Per14] , equivalent to Denjoy
- Kurzveil, 1957, [Kur57], gauge integral, similar to Riemann
- Henstock, 1957, [Hen57], equivalent to Kurzveil

イロト 不得 トイラト イラト 一日

Denjoy totalization

Denjoy totalization

- Condition on $f : [a, b] \rightarrow \mathbb{R}$: f is Lebesgue measurable
- Lebesgue measurable \Rightarrow Lebesgue integrable; ex: $f(x) = \frac{1}{x}$ if $x \neq 0$, f(0) = 0

Definition 3 (Nonsummable points of f)

Let *E* be a closed set $E \subseteq [a, b]$ and *f* a Lebesgue measurable function. A point $x \in E$ is a *point of nonsummability of f on E* if *f* is not Lebesgue integrable in every $I \in E$, *I* an open interval containing *x*.

Definition 4 (Divergence points of F)

Let *F* be a continuous function on [a, b], let $E \subseteq [a, b]$ be closed, and let $\{(a_i, b_i)\}$ be the contiguous intervals of *E* in [a, b]. A point $x \in E$ is a point of divergence of *F* on *E* if $\sum_{I} |F(b_i) - F(a_i)| = \infty$ for all open intervals *I* containing *x*, where \sum_{I}^{I} indicates that we include only the (a_i, b_i) contained in *I*.

Theorem 5

If F is a differentiable function on [a, b] and $E \subseteq [a, b]$ is closed, then the nonsummable points of f on E and the divergence points of F on E form a closed nowhere dense set in E.

Definition 6 (Nowhere dense)

A subset A of a topological space X is nowhere dense in X if the closure of A has empty interior.

- Bad behaved points are few for derivatives
- Outside of them we can simply integrate

Theorem 7

Let $E \subseteq [a, b]$ be closed and $\{(a_i, b_i)\}$ the intervals contiguous to E in [a, b]. Let F be differentiable on [a, b] and assume f = F' is Lebesgue integrable on E and $\sum |F(b_i) - F(a_i)| < \infty$. Then:

$$F(b) - F(a) = \int_E f(x)dx + \sum_i [F(b_i) - F(a_i)].$$

イロト 不得 トイヨト イヨト 二日

Denjoy totalization

Iterative process

Intuition:

We can iteratively compute F(d) - F(c) for all $c, d \in [a, b]$, c < d

- Let E₁ = {x ∈ [a, b] such that x is a nonsummable point of f on [a, b]}, and let {(a¹_i, b¹_i)} be its contiguous intervals
- Obtain F(d) F(c) for all $c, d \in [a, b]$ such that $[c, d] \cap E_1 = \emptyset$
- Since F is continuous, take limits to obtain $F(b_i^1) F(a_i^1)$ for all i.

Iterative step

Let $E_2 = \{x \in [a, b] \text{ such that } x \text{ is a nonsummable point of } f \text{ on } E_1 \text{ or } x \text{ is a divergence point of } F \text{ on } E_1\}$, and let $\{(a_i^2, b_i^2)\}$ be its contiguous intervals

- Repeat the above for E₂
- · Proceed by transfinite induction, taking intersections at limit ordinals

Theorem 8 ([Hob21])

Let P_n be a sequence of closed subsets of \mathbb{R} . If $P_{m+1} \subseteq P_m$ for all indexes m of the sequence, then, either P_α vanishes for some countable ordinal α , or else there is a countable ordinal α , from and after which all the sets are identical.

- If $P_{m+1} \subseteq P_m$ with P_m nowhere dense in P_{m+1} , $\Rightarrow P_{\alpha} = \emptyset$
- The iterative process converges, E_α = Ø ⇒ F(d) − F(c) for all c, d ∈ [a, b], c < d; Totalization
- Denjoy and Lebesgue, application of Cantor's transfinite set theory to analysis.
- Denjoy, arbitrary number of countable steps

Question: Luzin

Totality of countable ordinals for antiderivatives?

Theorem 9 ([DK91])

The operation of antidifferentiation is not Borel.

Theorem 10 ([DK91])

Let $x \in \mathbb{R}$. Let f be the derivative of F, with f recursive. Then the following are equivalent:

- x is hyperarithmetic,
- x = F(b) F(a)

Definition 11

A set $A \subset \mathbb{N}$ is hyperarithmetic if it is definable by a formula of second-order arithmetic with only existential set quantifiers or with only universal set quantifiers. A number $x \in \mathbb{R}$ is hyperarithmetic if the set $\{q \in \mathbb{Q} \text{ such that } q < x\}$ is hyperarithmetic.

Comparing integration with ODE solving

Back to ordinary differential equations

Let $E \subset \mathbb{R}$ compact. Let $y : [a, b] \to E$ be the unique solution of:

 $\begin{cases} y' = f(y(t)) \\ y(0) = y_0 \end{cases}$

Question 1:

When can we obtain y from f with a totalization?

Question 2:

Can we have hyperarithmetic solutions?

• f is continuous \Rightarrow y: Peano's theorem, Ten thousand monkeys [CG09]

Lebesgue integration \longrightarrow Ten Thousand Monkeys

Nonsummability points in $[a, b] \longrightarrow$ Discontinuity points for f on E

- Let $E_1 = \{x \text{ such that } x \text{ is a discontinuity point of } f \text{ on } E\}$, and let $\{(a_i^1, b_i^1)\}$ be its contiguous intervals
- Obtain y(d) y(c) for all $c, d \in [a, b]$ such that $[c, d] \cap E_1 = \emptyset$
- Since y is continuous, take limits to obtain $y(b_i^1) y(a_i^1)$ for all i.

Intuition:

We can iteratively compute y(d) - y(c) for all $c, d \in [a, b]$, c < d

Main difference with integration:

We are not given the derivative, $f \circ y$, but f. Nonsummability of $f \circ y$ in $[a, b] \Rightarrow$ discontinuity of f on E.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Comparing integration with ODE solving

Challenges

Problem 1: Induced topology

- $E_2 = \{x \text{ such that } x \text{ is a discontinuity point of } f|_{E_1} \text{ on } E_1 \}$
- Continuity and derivatives are in subspace topology of E₁

Problem 2: Convergence of iterations

Which conditions on f such that:

- We need E_m closed $\forall m$
- We need $E_{m+1} \subset E_m$, $\forall m$

Problem 3: How can f be given?

- Depending on solution of problem 2 above
- Identifying set descriptive complexity for f

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

References

References I

- P. Collins and D. S. Graça, Effective computability of solutions of differential inclusions — the ten thousand monkeys approach, Journal of Universal Computer Science 15 (2009), no. 6, 1162–1185.
- A. Denjoy, Une extension de l'intégrale de m. lebesgue., CR Acad.
 Sci. Paris 154 (1912), 859–862.
- R. Dougherty and A. S. Kechris, *The complexity of antidifferentiation.*, Advances in Mathematics 88 (1991), 145–169.
- R. Henstock, On ward's perron-stieltjes integral., Canadian Journal of Mathematics. 9 (1957), 96–109.
- **E**. W. Hobson, *The theory of functions of a real variable and the theory of fourier's series*, The University Press, 1921.

References

References II

- J. Kurzwei, Generalized ordinary differential equations and continuous dependance on a parameter., Czechoslovak Math. J. **7** (1957), 418–446.
- O. Perron, *Ueber den integralbegriff.*, Sitzungsber. Heidelberg. Akad. Wiss. (1914), 1–16.

イロト イボト イヨト イヨト

References

Thank you!

Totalization of ODEs

22 / 22

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで