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Motivation

Ordinary differential equations

Let E ⊂ R compact. Let y : [a, b]→ E be the unique solution of:{
y ′ = f (y(t))
y(a) = y0

• Obtain y : if f is continuous, Peano’s theorem, limit of sequence of
continuous functions

• Compute y : if f is continuous, Ten thousand monkeys [CG09]

Question 1:
Relaxing continuity for f , when can we obtain y from f ?

Question 2:
What is the set theoretical complexity of y relative to f ?
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Integration

Antiderivative

• Let F : [a, b] ⊆ R→ R be a function differentiable on [a, b]

• Let f : [a, b] ⊆ R→ R be such that F ′(x) = f (x) for all x ∈ [a, b]

Question 1:
When can we obtain F from f ?

Question 2:
What is the set theoretical complexity of F relative to f ?

• Question 1 investigates methods related to given conditions on f

• Question 2 investigates the complexity of such methods for set
descriptive theory
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Integration

Conditions on the derivative

If f satisfies (A) then by (B) we get:

F (b) = F (a) +
∫ b
a f (x)

• (A) f continuous
(B) Fundamental theorem of calculus
F ∈ C 1([a, b])

• (A) f bounded, continuous almost everywhere (µL(Df ) = 0)
(B) Lebesgue-Vitali theorem
F ∈ C 1([a, b]) almost everywhere

• (A) f Lebesgue integrable
(B) Lebesgue differentiation theorem
F ∈ AC , Absolutely continuous
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Integration

Absolutely continuous AC and bounded variation BV

• If F : [a, b]→ R ∈ AC then F ∈ BV

Definition 1 (BV)

Let F : [a, b]→ R, define the quantity V (F ) = sup
P∈P

∑
k

|F (xk+1)− F (xk)|.

Then, F is of bounded variation if V (F ) < +∞

• F /∈ BV on [a, b] ⇒ F (b) ̸= F (a) +
∫ b
a f (x)

• Bounded variation for F ←→ bounded length for y
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Integration

Non-integrable derivative

Goal:
Investigate complex, non-integrable derivative

We need to have:
• Baire category theorem ⇒ f continuous on a dense subset of [a, b]

• Darboux theorem ⇒ f has the Darboux property on [a, b]

Theorem 2 (Darboux)

Let F : [a, b]→ R be differentiable, and let f be its derivative. Then, for
every f (a) < c < f (b) there is a point x ∈ (a, b) such that c = f (x).

Dirichlet’s function

f (x) =

{
1 if x ∈ [a, b] ∩Q
0 otherwise
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Integration

Darboux functions

• Darboux functions corresponds to continuous functions?

• Topologist’s sine curve, f (0) = 0, f (x) = sin( 1x )

• Conway base 13, strongly Darboux, nowhere continuous

Question:
Can F /∈ BV while being an antiderivative?

Function Ω

F (x) ≡ Ω(x) =

{
x2 sin( 1

x2
) if x ̸= 0

0 if x = 0

f (x) ≡ Ω′(x) =

{
2x sin( 1

x2
)− 2

x cos(
1
x2
) if x ̸= 0

0 if x = 0
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Integration

Graphics

Figure: Function Ω Figure: Function Ω′
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Integration

More complex derivatives: two problematic discontinuities

• Function discontinuous in two points

F (x) ≡ Ω2(x) =

{
x2(1− x)2 sin( 1

x2(1−x)2
) if 0 < x < 1

0 if x = 0, 1
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Integration

More complex: uncountable prblematic discontinuities

• Extension Cantor middle third:

Cantor set of discontinuities
Define Ω2,n as the scaled Ω2,n(x) = 4−nΩ2(x)
Define Im,n: the mth (of 2n) removed intervals from the nth step
Define fm,n(x) = Ω2(x) for x ∈ Im,n; fm,n(x) = 0 otherwise

Define F (x) =
∞∑
n=0

2n∑
m=1

fm,n(x)

• Since all fm,n are differentiable, F converges and F ′ converges
uniformly, F is differentiable

• Using fat Cantor set, Df with full measure
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Denjoy totalization

Extension of Lebesgue integral

Question:
Is there a way to compute such antiderivatives?

• Need for another formalization of integration

• Denjoy, 1912, [Den12], iterative process, transfinite induction

• Luzin, 1915, variation absolute continuity

• Perron, 1914, [Per14] , equivalent to Denjoy

• Kurzveil, 1957, [Kur57], gauge integral, similar to Riemann

• Henstock, 1957, [Hen57], equivalent to Kurzveil
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Denjoy totalization

Denjoy totalization
• Condition on f : [a, b]→ R: f is Lebesgue measurable
• Lebesgue measurable ⇏ Lebesgue integrable; ex: f (x) = 1

x if x ̸= 0,
f (0) = 0

Definition 3 (Nonsummable points of f )

Let E be a closed set E ⊆ [a, b] and f a Lebesgue measurable function. A
point x ∈ E is a point of nonsummability of f on E if f is not Lebesgue
integrable in every I ∈ E , I an open interval containing x .

Definition 4 (Divergence points of F )

Let F be a continuous function on [a, b], let E ⊆ [a, b] be closed, and let
{(ai , bi )} be the contiguous intervals of E in [a, b]. A point x ∈ E is a

point of divergence of F on E if
∑
I

|F (bi )− F (ai )| =∞ for all open

intervals I containing x , where
∑
I

indicates that we include only the

(ai , bi ) contained in I .
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Denjoy totalization

Theorem 5
If F is a differentiable function on [a, b] and E ⊆ [a, b] is closed, then the
nonsummable points of f on E and the divergence points of F on E form
a closed nowhere dense set in E .

Definition 6 (Nowhere dense)

A subset A of a topological space X is nowhere dense in X if the closure
of A has empty interior.

• Bad behaved points are few for derivatives

• Outside of them we can simply integrate

Theorem 7
Let E ⊆ [a, b] be closed and {(ai , bi )} the intervals contiguous to E in
[a, b]. Let F be differentiable on [a, b] and assume f = F ′ is Lebesgue

integrable on E and
∑
i

|F (bi )− F (ai )| <∞. Then:

F (b)− F (a) =
∫
E f (x)dx +

∑
i

[F (bi )− F (ai )].
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Denjoy totalization

Iterative process

Intuition:
We can iteratively compute F (d)− F (c) for all c , d ∈ [a, b], c < d

• Let E1 = {x ∈ [a, b] such that x is a nonsummable point of f on
[a, b]}, and let {(a1i , b1i )} be its contiguous intervals

• Obtain F (d)− F (c) for all c , d ∈ [a, b] such that [c , d ] ∩ E1 = ∅
• Since F is continuous, take limits to obtain F (b1i )− F (a1i ) for all i .

Iterative step

Let E2 = {x ∈ [a, b] such that x is a nonsummable point of f on E1 or x is
a divergence point of F on E1}, and let {(a2i , b2i )} be its contiguous
intervals

• Repeat the above for E2

• Proceed by transfinite induction, taking intersections at limit ordinals
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Denjoy totalization

Theorem 8 ([Hob21])

Let Pn be a sequence of closed subsets of R. If Pm+1 ⊆ Pm for all indexes
m of the sequence, then, either Pα vanishes for some countable ordinal α,
or else there is a countable ordinal α, from and after which all the sets are
identical.

• If Pm+1 ⊆ Pm with Pm nowhere dense in Pm+1, ⇒ Pα = ∅
• The iterative process converges, Eα = ∅ ⇒ F (d)− F (c) for all
c , d ∈ [a, b], c < d ; Totalization

• Denjoy and Lebesgue, application of Cantor’s transfinite set theory to
analysis.

• Denjoy, arbitrary number of countable steps

Question: Luzin
Totality of countable ordinals for antiderivatives?
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Set descriptive complexity

Theorem 9 ([DK91])

The operation of antidifferentiation is not Borel.

Theorem 10 ([DK91])

Let x ∈ R. Let f be the derivative of F , with f recursive. Then the
following are equivalent:

• x is hyperarithmetic,

• x = F (b)− F (a)

Definition 11
A set A ⊂ N is hyperarithmetic if it is definable by a formula of
second-order arithmetic with only existential set quantifiers or with only
universal set quantifiers. A number x ∈ R is hyperarithmetic if the set
{q ∈ Q such that q < x} is hyperarithmetic.
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Comparing integration with ODE solving

Back to ordinary differential equations

Let E ⊂ R compact. Let y : [a, b]→ E be the unique solution of:{
y ′ = f (y(t))
y(0) = y0

Question 1:
When can we obtain y from f with a totalization?

Question 2:
Can we have hyperarithmetic solutions?

• f is continuous⇒ y : Peano’s theorem, Ten thousand monkeys [CG09]
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Comparing integration with ODE solving

Lebesgue integration Ten Thousand Monkeys

Nonsummability points in [a, b] Discontinuity points for f on E

• Let E1 = {x such that x is a discontinuity point of f on E}, and let
{(a1i , b1i )} be its contiguous intervals

• Obtain y(d)− y(c) for all c , d ∈ [a, b] such that [c , d ] ∩ E1 = ∅
• Since y is continuous, take limits to obtain y(b1i )− y(a1i ) for all i .

Intuition:
We can iteratively compute y(d)− y(c) for all c , d ∈ [a, b], c < d

Main difference with integration:

We are not given the derivative, f ◦ y , but f .
Nonsummability of f ◦ y in [a, b] ⇏ discontinuity of f on E .
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Comparing integration with ODE solving

Challenges

Problem 1: Induced topology

• E2 = {x such that x is a discontinuity point of f |E1
on E1}

• Continuity and derivatives are in subspace topology of E1

Problem 2: Convergence of iterations

Which conditions on f such that:

• We need Em closed ∀m
• We need Em+1 ⊂ Em, ∀m

Problem 3: How can f be given?

• Depending on solution of problem 2 above

• Identifying set descriptive complexity for f
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