Totalization of ODEs

Riccardo Gozzi
École Polytechnique

6 October 2022

Ordinary differential equations

Let $E \subset \mathbb{R}$ compact. Let $y:[a, b] \rightarrow E$ be the unique solution of:

$$
\left\{\begin{array}{l}
y^{\prime}=f(y(t)) \\
y(a)=y_{0}
\end{array}\right.
$$

- Obtain y : if f is continuous, Peano's theorem, limit of sequence of continuous functions
- Compute y : if f is continuous, Ten thousand monkeys [CG09]

Question 1:
Relaxing continuity for f, when can we obtain y from f ?
Question 2:
What is the set theoretical complexity of y relative to f ?

Antiderivative

- Let $F:[a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a function differentiable on $[a, b]$
- Let $f:[a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be such that $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$

Question 1:
When can we obtain F from f ?
Question 2:
What is the set theoretical complexity of F relative to f ?

- Question 1 investigates methods related to given conditions on f
- Question 2 investigates the complexity of such methods for set descriptive theory

Conditions on the derivative

If f satisfies (A) then by (B) we get:

$$
F(b)=F(a)+\int_{a}^{b} f(x)
$$

- $(A) f$ continuous
(B) Fundamental theorem of calculus
$F \in C^{1}([a, b])$
- $(A) f$ bounded, continuous almost everywhere $\left(\mu_{L}\left(D_{f}\right)=0\right)$
(B) Lebesgue-Vitali theorem
$F \in C^{1}([a, b])$ almost everywhere
- (A) f Lebesgue integrable
(B) Lebesgue differentiation theorem
$F \in A C$, Absolutely continuous

Absolutely continuous AC and bounded variation BV

- If $F:[a, b] \rightarrow \mathbb{R} \in \mathrm{AC}$ then $F \in \mathrm{BV}$

Definition 1 (BV)
Let $F:[a, b] \rightarrow \mathbb{R}$, define the quantity $V(F)=\sup _{P \in \mathcal{P}} \sum_{k}\left|F\left(x_{k+1}\right)-F\left(x_{k}\right)\right|$.
Then, F is of bounded variation if $V(F)<+\infty$

- $F \notin \mathrm{BV}$ on $[a, b] \Rightarrow F(b) \neq F(a)+\int_{a}^{b} f(x)$
- Bounded variation for $F \longleftrightarrow$ bounded length for y

Non-integrable derivative

Goal:
Investigate complex, non-integrable derivative
We need to have:

- Baire category theorem $\Rightarrow f$ continuous on a dense subset of $[a, b]$
- Darboux theorem $\Rightarrow f$ has the Darboux property on $[a, b]$

Theorem 2 (Darboux)
Let $F:[a, b] \rightarrow \mathbb{R}$ be differentiable, and let f be its derivative. Then, for every $f(a)<c<f(b)$ there is a point $x \in(a, b)$ such that $c=f(x)$.

Dirichlet's function

$$
f(x)= \begin{cases}1 & \text { if } x \in[a, b] \cap \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}
$$

Darboux functions

- Darboux functions corresponds to continuous functions?
- Topologist's sine curve, $f(0)=0, f(x)=\sin \left(\frac{1}{x}\right)$
- Conway base 13 , strongly Darboux, nowhere continuous

Question:

Can $F \notin \mathrm{BV}$ while being an antiderivative?
Function Ω

$$
\begin{gathered}
F(x) \equiv \Omega(x)=\left\{\begin{array}{l}
x^{2} \sin \left(\frac{1}{x^{2}}\right) \text { if } x \neq 0 \\
0 \text { if } x=0
\end{array}\right. \\
f(x) \equiv \Omega^{\prime}(x)=\left\{\begin{array}{l}
2 x \sin \left(\frac{1}{x^{2}}\right)-\frac{2}{x} \cos \left(\frac{1}{x^{2}}\right) \text { if } x \neq 0 \\
0 \text { if } x=0
\end{array}\right.
\end{gathered}
$$

Graphics

Figure: Function Ω

Figure: Function Ω^{\prime}

More complex derivatives: two problematic discontinuities

- Function discontinuous in two points

$$
F(x) \equiv \Omega_{2}(x)=\left\{\begin{array}{l}
x^{2}(1-x)^{2} \sin \left(\frac{1}{x^{2}(1-x)^{2}}\right) \text { if } 0<x<1 \\
0 \text { if } x=0,1
\end{array}\right.
$$

More complex: uncountable prblematic discontinuities

- Extension Cantor middle third:

Cantor set of discontinuities
Define $\Omega_{2, n}$ as the scaled $\Omega_{2, n}(x)=4^{-n} \Omega_{2}(x)$
Define $I_{m, n}$: the m th (of 2^{n}) removed intervals from the nth step
Define $f_{m, n}(x)=\Omega_{2}(x)$ for $x \in I_{m, n} ; f_{m, n}(x)=0$ otherwise
Define $F(x)=\sum_{n=0}^{\infty} \sum_{m=1}^{2^{n}} f_{m, n}(x)$

- Since all $f_{m, n}$ are differentiable, F converges and F^{\prime} converges uniformly, F is differentiable
- Using fat Cantor set, D_{f} with full measure

Extension of Lebesgue integral

Question:

Is there a way to compute such antiderivatives?

- Need for another formalization of integration
- Denjoy, 1912, [Den12], iterative process, transfinite induction
- Luzin, 1915, variation absolute continuity
- Perron, 1914, [Per14], equivalent to Denjoy
- Kurzveil, 1957, [Kur57], gauge integral, similar to Riemann
- Henstock, 1957, [Hen57], equivalent to Kurzveil

Denjoy totalization

- Condition on $f:[a, b] \rightarrow \mathbb{R}: f$ is Lebesgue measurable
- Lebesgue measurable \nRightarrow Lebesgue integrable; ex: $f(x)=\frac{1}{x}$ if $x \neq 0$, $f(0)=0$

Definition 3 (Nonsummable points of f)
Let E be a closed set $E \subseteq[a, b]$ and f a Lebesgue measurable function. A point $x \in E$ is a point of nonsummability of f on E if f is not Lebesgue integrable in every $I \in E, I$ an open interval containing x.

Definition 4 (Divergence points of F)

Let F be a continuous function on $[a, b]$, let $E \subseteq[a, b]$ be closed, and let $\left\{\left(a_{i}, b_{i}\right)\right\}$ be the contiguous intervals of E in $[a, b]$. A point $x \in E$ is a point of divergence of F on E if $\sum_{l}\left|F\left(b_{i}\right)-F\left(a_{i}\right)\right|=\infty$ for all open intervals / containing x, where \sum_{l} indicates that we include only the $\left(a_{i}, b_{i}\right)$ contained in $/$.

Theorem 5

If F is a differentiable function on $[a, b]$ and $E \subseteq[a, b]$ is closed, then the nonsummable points of f on E and the divergence points of F on E form a closed nowhere dense set in E.

Definition 6 (Nowhere dense)
A subset A of a topological space X is nowhere dense in X if the closure of A has empty interior.

- Bad behaved points are few for derivatives
- Outside of them we can simply integrate

Theorem 7
Let $E \subseteq[a, b]$ be closed and $\left\{\left(a_{i}, b_{i}\right)\right\}$ the intervals contiguous to E in $[a, b]$. Let F be differentiable on $[a, b]$ and assume $f=F^{\prime}$ is Lebesgue integrable on E and $\sum_{i}\left|F\left(b_{i}\right)-F\left(a_{i}\right)\right|<\infty$. Then:
$F(b)-F(a)=\int_{E} f(x) d x+\sum_{i}\left[F\left(b_{i}\right)-F\left(a_{i}\right)\right]$.

Iterative process

Intuition:

We can iteratively compute $F(d)-F(c)$ for all $c, d \in[a, b], c<d$

- Let $E_{1}=\{x \in[a, b]$ such that x is a nonsummable point of f on $[a, b]\}$, and let $\left\{\left(a_{i}^{1}, b_{i}^{1}\right)\right\}$ be its contiguous intervals
- Obtain $F(d)-F(c)$ for all $c, d \in[a, b]$ such that $[c, d] \cap E_{1}=\emptyset$
- Since F is continuous, take limits to obtain $F\left(b_{i}^{1}\right)-F\left(a_{i}^{1}\right)$ for all i.

Iterative step

Let $E_{2}=\left\{x \in[a, b]\right.$ such that x is a nonsummable point of f on E_{1} or x is a divergence point of F on $\left.E_{1}\right\}$, and let $\left\{\left(a_{i}^{2}, b_{i}^{2}\right)\right\}$ be its contiguous intervals

- Repeat the above for E_{2}
- Proceed by transfinite induction, taking intersections at limit ordinals

Theorem 8 ([Hob21])

Let P_{n} be a sequence of closed subsets of \mathbb{R}. If $P_{m+1} \subseteq P_{m}$ for all indexes m of the sequence, then, either P_{α} vanishes for some countable ordinal α, or else there is a countable ordinal α, from and after which all the sets are identical.

- If $P_{m+1} \subseteq P_{m}$ with P_{m} nowhere dense in $P_{m+1}, \Rightarrow P_{\alpha}=\emptyset$
- The iterative process converges, $E_{\alpha}=\emptyset \Rightarrow F(d)-F(c)$ for all $c, d \in[a, b], c<d$; Totalization
- Denjoy and Lebesgue, application of Cantor's transfinite set theory to analysis.
- Denjoy, arbitrary number of countable steps

Question: Luzin

Totality of countable ordinals for antiderivatives?

Theorem 9 ([DK91])

The operation of antidifferentiation is not Borel.
Theorem 10 ([DK91])
Let $x \in \mathbb{R}$. Let f be the derivative of F, with f recursive. Then the following are equivalent:

- x is hyperarithmetic,
- $x=F(b)-F(a)$

Definition 11

A set $A \subset \mathbb{N}$ is hyperarithmetic if it is definable by a formula of second-order arithmetic with only existential set quantifiers or with only universal set quantifiers. A number $x \in \mathbb{R}$ is hyperarithmetic if the set $\{q \in \mathbb{Q}$ such that $q<x\}$ is hyperarithmetic.

Back to ordinary differential equations

Let $E \subset \mathbb{R}$ compact. Let $y:[a, b] \rightarrow E$ be the unique solution of:

$$
\left\{\begin{array}{l}
y^{\prime}=f(y(t)) \\
y(0)=y_{0}
\end{array}\right.
$$

Question 1:
When can we obtain y from f with a totalization?
Question 2:
Can we have hyperarithmetic solutions?

- f is continuous $\Rightarrow y$: Peano's theorem, Ten thousand monkeys [CG09]

Lebesgue integration \longrightarrow Ten Thousand Monkeys

Nonsummability points in $[a, b] \longrightarrow$ Discontinuity points for f on E

- Let $E_{1}=\{x$ such that x is a discontinuity point of f on $E\}$, and let $\left\{\left(a_{i}^{1}, b_{i}^{1}\right)\right\}$ be its contiguous intervals
- Obtain $y(d)-y(c)$ for all $c, d \in[a, b]$ such that $[c, d] \cap E_{1}=\emptyset$
- Since y is continuous, take limits to obtain $y\left(b_{i}^{1}\right)-y\left(a_{i}^{1}\right)$ for all i.

Intuition:
We can iteratively compute $y(d)-y(c)$ for all $c, d \in[a, b], c<d$
Main difference with integration:
We are not given the derivative, $f \circ y$, but f.
Nonsummability of $f \circ y$ in $[a, b] \nRightarrow$ discontinuity of f on E.

Challenges

Problem 1: Induced topology

- $E_{2}=\left\{x\right.$ such that x is a discontinuity point of $\left.f\right|_{E_{1}}$ on $\left.E_{1}\right\}$
- Continuity and derivatives are in subspace topology of E_{1}

Problem 2: Convergence of iterations
Which conditions on f such that:

- We need E_{m} closed $\forall m$
- We need $E_{m+1} \subset E_{m}, \forall m$

Problem 3: How can f be given?

- Depending on solution of problem 2 above
- Identifying set descriptive complexity for f

References I

P. Collins and D. S. Graça, Effective computability of solutions of differential inclusions - the ten thousand monkeys approach, Journal of Universal Computer Science 15 (2009), no. 6, 1162-1185.
围 A. Denjoy, Une extension de l'intÃ©grale de m. lebesgue., CR Acad. Sci. Paris 154 (1912), 859-862.
R. Dougherty and A. S. Kechris, The complexity of antidifferentiation., Advances in Mathematics 88 (1991), 145-169.
R R. Henstock, On ward's perron-stieltjes integral., Canadian Journal of Mathematics. 9 (1957), 96-109.
E. W. Hobson, The theory of functions of a real variable and the theory of fourier's series, The University Press, 1921.

References II

圊 J. Kurzwei, Generalized ordinary differential equations and continuous dependance on a parameter., Czechoslovak Math. J. 7 (1957), 418-446.
(0. Perron, Ueber den integralbegriff., Sitzungsber. Heidelberg. Akad. Wiss. (1914), 1-16.

Thank you!

