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Motivation

Ordinary differential equations

Let £ C R compact. Let y : [a, b] — E be the unique solution of:

{ y' = f(y(t))
y(a) =y

e QObtain y: if f is continuous, Peano’s theorem, limit of sequence of
continuous functions
e Compute y: if f is continuous, Ten thousand monkeys [CG09]

Question 1:
Relaxing continuity for , when can we obtain y from £ 7

Question 2:
What is the set theoretical complexity of y relative to 7
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Integration

Antiderivative

® Let F:[a, b] C R — R be a function differentiable on [a, b]
® Let f:[a,b] CR — R be such that F'(x) = f(x) for all x € [a, b]

Question 1:
When can we obtain F from 7

Question 2:
What is the set theoretical complexity of F relative to ?

® Question 1 investigates methods related to given conditions on f

e Question 2 investigates the complexity of such methods for set
descriptive theory
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Integration

Conditions on the derivative

If f satisfies (A) then by (B) we get:
b
F(b) = F(a) + [, f(x)
® (A) f continuous
(B) Fundamental theorem of calculus
F € CY([a, b])
® (A) f bounded, continuous almost everywhere (1, (Df) = 0)
(B) Lebesgue-Vitali theorem
F € C*([a, b]) almost everywhere

® (A) f Lebesgue integrable
(B) Lebesgue differentiation theorem
F € AC, Absolutely continuous
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Integration

Absolutely continuous AC and bounded variation BV

e If F:[a,b] = R € AC then F € BV

Definition 1 (BV)

Let F : [a, b] — RR, define the quantity V(F) = sup Z |F(xk+1) Xk)|-
PeP

Then, F is of bounded variation if V(F) < 400

e F¢BVon[ab]l = F(b)# F(a —|—f f(x
® Bounded variation for F +— bounded Iength for y
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Integration

Non-integrable derivative
Goal:

Investigate complex, non-integrable derivative

We need to have:
® Baire category theorem = f continuous on a dense subset of [a, b]
¢ Darboux theorem = f has the Darboux property on |a, b]

Theorem 2 (Darboux)

Let F : [a, b] — R be differentiable, and let f be its derivative. Then, for
every f(a) < c < f(b) there is a point x € (a, b) such that ¢ = f(x).

Dirichlet's function

0 otherwise

) {1 if xc[abNQ
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Integration

Darboux functions

® Darboux functions corresponds to continuous functions?
* Topologist's sine curve, f(0) =0, f(x) =sin(%)
® Conway base 13, strongly Darboux, nowhere continuous
Question:
Can F ¢ BV while being an antiderivative?

Function Q
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Integration
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Integration

® Function discontinuous in two points

201 _ )2 ci 1 :
— Qy(x) = {x (1-x) sm(Xg(lix)Q) if 0<x<1

More complex derivatives: two problematic discontinuities

0 if x=0,1

o
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Integration

More complex: uncountable prblematic discontinuities

e Extension Cantor middle third:

Cantor set of discontinuities

Define Q5 , as the scaled Q5 ,(x) = 47 "Qs(x)

Define /p, »: the mth (of 27) removed intervals from the nth step
Define f n(x) = Qz( ) for x € Iy i fm n(x) = 0 otherwise

Define F(x szmn
n=0 m=1

e Since all f,, , are differentiable, F converges and F’ converges
uniformly, F is differentiable

® Using fat Cantor set, Df with full measure
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Denjoy totalization

Extension of Lebesgue integral

Question:
Is there a way to compute such antiderivatives?

Need for another formalization of integration

Denjoy, 1912, [Den12], iterative process, transfinite induction
Luzin, 1915, variation absolute continuity

Perron, 1914, [Perl4] , equivalent to Denjoy

Kurzveil, 1957, [Kur57], gauge integral, similar to Riemann
Henstock, 1957, [Hen57], equivalent to Kurzveil
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Denjoy totalization

Denjoy totalization
e Condition on f : [a, b] — R: f is Lebesgue measurable
® Lebesgue measurable - Lebesgue integrable; ex: f(x) = % if x # 0,
f(0)=0
Definition 3 (Nonsummable points of f)
Let £ be a closed set E C [a, b] and f a Lebesgue measurable function. A

point x € E is a point of nonsummability of f on E if f is not Lebesgue
integrable in every | € E, | an open interval containing x.

Definition 4 (Divergence points of F)
Let F be a continuous function on [a, b], let E C [a, b] be closed, and let
{(ai, bj)} be the contiguous intervals of E in [a, b]. A point x € E is a
point of divergence of F on E if Z |F(b;) — F(a;)| = oo for all open

/

intervals / containing x, where Z indicates that we include only the
I
(aj, bj) contained in /.
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Denjoy totalization

Theorem 5

If F is a differentiable function on [a, b] and E C |a, b] is closed, then the
nonsummable points of f on E and the divergence points of F on E form
a closed nowhere dense set in E.

Definition 6 (Nowhere dense)

A subset A of a topological space X is nowhere dense in X if the closure
of A has empty interior.

® Bad behaved points are few for derivatives
e Qutside of them we can simply integrate

Theorem 7
Let E C [a, b] be closed and {(a;, b;)} the intervals contiguous to E in
[a, b]. Let F be differentiable on [a, b] and assume f = F' is Lebesgue

integrable on E and Z |F(bj) — F(ai)| < oo. Then:

F(b) — F(a) = [ f(x)dx + Z[F(b,-) — F(a))].
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Denjoy totalization

Iterative process

Intuition:
We can iteratively compute F(d) — F(c) for all ¢, d € [a, b], c < d

® Let £; = {x € [a, b] such that x is a nonsummable point of f on
[a, b]}, and let {(a}, b})} be its contiguous intervals
e Obtain F(d) — F(c) for all ¢, d € [a, b] such that [c,d] N E; =0

® Since F is continuous, take limits to obtain F(b}) — F(a}) for all i.

Iterative step

Let E; = {x € [a, b] such that x is a nonsummable point of  on E; or x is
a divergence point of F on Ei}, and let {(a?, b?)} be its contiguous
intervals

® Repeat the above for E;

® Proceed by transfinite induction, taking intersections at limit ordinals

Totalization of ODEs 14 / 22



Denjoy totalization

Theorem 8 ([Hob21])

Let P, be a sequence of closed subsets of R. If Py, 11 C Py, for all indexes
m of the sequence, then, either P, vanishes for some countable ordinal «,
or else there is a countable ordinal «v, from and after which all the sets are
identical.

e If P,i1 C Py, with P, nowhere dense in P, 1, = P, =10

® The iterative process converges, E, = () = F(d) — F(c) for all
c,d € [a, b], c < d; Totalization

® Denjoy and Lebesgue, application of Cantor’s transfinite set theory to
analysis.

e Denjoy, arbitrary number of countable steps

Question: Luzin
Totality of countable ordinals for antiderivatives?
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Set descriptive complexity

Theorem 9 ([DK91])

The operation of antidifferentiation is not Borel.

Theorem 10 ([DK91])
Let x € R. Let f be the derivative of F, with f recursive. Then the
following are equivalent:

® x is hyperarithmetic,

e x = F(b) — F(a)

Definition 11

A set A C N is hyperarithmetic if it is definable by a formula of
second-order arithmetic with only existential set quantifiers or with only
universal set quantifiers. A number x € R is hyperarithmetic if the set
{q € Q such that g < x} is hyperarithmetic.
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Comparing integration with ODE solving

Back to ordinary differential equations

Let £ C R compact. Let y : [a, b] — E be the unique solution of:

{ y' = f(y(t))
y(0) = yo

Question 1:
When can we obtain y from f with a totalization?

Question 2:
Can we have hyperarithmetic solutions?

® f is continuous = y: Peano’s theorem, Ten thousand monkeys [CGO09]

Totalization of ODEs 17 / 22



Comparing integration with ODE solving

Lebesgue integration ——— Ten Thousand Monkeys

Nonsummability points in [a, b)) —— Discontinuity points for f on E

® Let £; = {x such that x is a discontinuity point of f on E}, and let
{(a}, b})} be its contiguous intervals

1770

® Obtain y(d) — y(c) for all ¢, d € [a, b] such that [c,d] N E; =)

® Since y is continuous, take limits to obtain y(b}) — y(al) for all i.

Intuition:
We can iteratively compute y(d) — y(c) for all ¢,d € [a,b], c < d

Main difference with integration:

We are not given the derivative, f o y, but f.
Nonsummability of o y in [a, b] % discontinuity of f on E.
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Comparing integration with ODE solving

Challenges

Problem 1: Induced topology

e £, = {x such that x is a discontinuity point of f\El on Ei}

e Continuity and derivatives are in subspace topology of E;

Problem 2: Convergence of iterations
Which conditions on f such that:
® We need E,, closed Vm

® We need E;11 C Epy, Vi

Problem 3: How can f be given?

e Depending on solution of problem 2 above

¢ |dentifying set descriptive complexity for
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