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Introduction

• GPAC model by Shannon, 1941 [Sha41]

• Corresponds to solutions of polynomial differential equations [GC03]

• Implementations by means of differential analyzer [Bus31]
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Analog Time Space Computable functions

• Comparison with other analog models of computation, computable
analysis [BHW08]

• Problem of real time computation, introducing limit computation
[BGP17b]

Definition 1 (ATSP)
Let f ⊆ Rn → Rm. We say that f ∈ATSP if and only if there exist
d ∈ N, p ∈ Rd

G [Rd ], q ∈ Rd
G [Rn] and polynomials Π : R2

+ → R+ and
Υ : R2

+ → R+ such that for any x ∈ dom f , there exists (a unique)
y : R+ → Rd satisfying for all t ∈ R+:

• y(0) = q(x) and y ′(t) = p(y(t))

• ∀µ ∈ R+ if t ≥ Π(‖x‖ , µ) then ‖y1..m(t)− f (x)‖ ≤ e−µ

• ‖y(t)‖ ≤ Υ(‖x‖ , t)
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Graphical example

function f : R→ R ∈ ATSP

t

y1(t)
q(x)

f(x)

q(x): initial condition dependent on the input x
y1 : R→ R solution of the dynamical system starting from q(x)
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Emulation and equivalences

• ATSP Class is equivalent to other formulations as showed in
[BGP17a]; the AOP class, or Analog Online Polynomial Computable

• Equivalence at a computability level with computable analysis
[BCGH06]

• Equivalence at a complexity level with functions computable in
polynomial time, FP [BGP17b]

• Equivalence at a complexity level by means of emulation of Turing
machines and real encodings of configurations
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Let Γ be an alphabet and γ an injective mapping γ : Γ→ N \{0}, which
applies letter wise over words.

Definition 2 (Discrete emulation)
Let G be a set of functions over R2 and let k = 2 + max(γ(Γ)). The
function f : Γ∗ → Γ∗ is called emulable under G if there exists g ∈ G
such that for any word w ∈ Γ∗:

g(Ψk(w)) = Ψk(f (w))

where:

Ψk(w) =

 |w |∑
i=1

γ(wi )k
−i , |w |

 (1)

Theorem 3 (FP equivalence [BGP17b])
Let f : Γ∗ → Γ∗, then f ∈ FP if and only if f is emulable under ATSP.
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Exponential version

Question
Is it possible to consider exponential boundaries in the ATSP definition in
order to obtain a characterization of FEXPTIME?

Problems
• Missing equivalence with other classes such as AOP

• Continuous simulation of Turing Machine tailored over properties of
polynomials, such as closure by composition

• unreasonable and unnatural definition of the exponential class
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Example

Let Π and Υ of definition 1 be exponentials. Then given some f ∈ ATSE,
to compute f (x) with accuracy e−µ, we would need to wait a time
t∗ = Π(‖x‖ , µ) exponential in ‖x‖ and µ, due to the second condition of
definition 1. Moreover, due to the third condition, at time t∗, we would
have that the norm of the solution y of the ODE computing f (x) is
bounded by Υ(‖x‖ , t∗) = Υ(‖x‖ ,Π(‖x‖ , µ)), which is a double
exponential in both ‖x‖ and µ, while what would be natural is that
‖y(t∗)‖ is bounded by an exponential in ‖x‖ and µ, and not a double
exponential in these parameters.

Composition problem
We want our exponential class not to be closed by composition, since we
want it to include exponential but not double exponentials. At the same
time we need some sort of composition to be valid for the class in order to
repeat the construction of [BGP17b] that leads to the equivalence result.
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Our solution

Split dependence of Π and Υ in two separate factors, Π1Π2 and Υ1Υ2,
only raising Π1 and Υ1 to exponentials but leaving Π2 and Υ2

polynomials.

Definition 4 (ATSE)
Let f ⊆ Rn → Rm. Let Π1,Υ1 : R+ → R+ be two exponentials and let
Π2,Υ2 : R+ → R+ be two polynomials.
We say that f ∈ ATSE iff there are d ∈ N, p ∈ Rd

G [Rd ], q ∈ Rd
G [Rn] s.t.

for any x ∈ dom f , there is (a unique) y : R+ → Rd satisfying ∀t ∈ R+ :

• y(0) = q(x) and y ′(t) = p(y(t))

• ∀µ ∈ R+ if t ≥ Π1(‖x‖)Π2(µ) then ‖y1..m(t)− f (x)‖ ≤ e−µ

• ‖y(t)‖ ≤ Υ1(‖x‖)Υ2(t)

Theorem 5 (Composition of ATSE and ATSP)
Let f be a function, f ∈ ATSE and g be a function, g ∈ ATSP. Let
f (dom f ) ⊆ dom g . Then g ◦ f ∈ ATSE.
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Exponential result

Theorem 6 (FEXPTIME equivalence)
Let f : Γ∗ → Γ∗, then f ∈ FEXPTIME if and only if f is emulable under
ATSE.

• A similar theorem is obtained from the above to characterize the
class of sets EXPTIME following the example of what was done for
P in [BGP17b]

• the result is obtained by abandoning the idea of convergence of the
solution y(t) and instead requiring stability of y(t) ≥ 1 for accepted
inputs and of y(t) ≤ −1 for rejected inputs once the solution of the
system has reached exponential length
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Generalization

Let A be a class of functions from R+ to R+. We call ATSC(A) the
analog class obtained from ATSE with Π1,Υ1 ∈ A

Definition 7 (Sufficient conditions)

(1) if f , g ∈ A then there exists h ∈ A such that f ? g(x) ≤ h(x) for
every x ∈ R+, where ? denotes any operator in the list of
arithmetical operations: (+,−,×)

(2) if p is polynomial and f ∈ A then there exists g ∈ A such that
p ◦ f (x) ≤ g(x) and f ◦ p(x) ≤ g(x) for every x ∈ R+. Moreover,
the identity operator belongs to A

(3) if f : N→ N, f ∈ A, then there exists g ∈ A such that f (n) ≤ g(n)
for every n ∈ N and g ∈ ATSC(A)

(4) if f ∈ A then there exists g : N→ N, g ∈ A such that f (n) ≤ g(n)
for every n ∈ N and g is a time-constructible function.

Grzegorczyk Hierarchy, elementary functions, PR functions
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FPSPACE

Question
Is it possible to adapt the same treatment for describing space complexity
classes?

Problems
• The encoding in (1) is not practical for the length of the tape

• The convergence of y(t) in definition 4 begins after exponential time
t∗; reverse direction of the equivalence needs to compute t∗
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Different encoding

Definition 8
Ψ̂(x) = w if x ∈ R is such that d(x ,

∑n
i=1 γ(wi )k

i−1) < 1/2, where
d(x , y) = ‖x − y‖, in the papers [GCB08], [BCGH06], [BCGH07];

• previous encoding in (1) can be expressed as: Ψ̄ (x , y) = w if

(x , y) ∈ R2 is s.t. (x , y) =
(∑|w |

i=1 wik
−i , |w |

)
• By means of Ψ̂(x) we keep the connection with the length of the

input without needing two arguments

• New encoding: many different x ∈ R encode the same word w ∈ Γ∗

• The encoding Ψ̂(x) is more robust to small perturbations.
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• The norm of the encoded value x s.t. Ψ̂(x) = w is exponential on
|w |, while before it was linear: ‖(x , y)‖ s.t. Ψ̄(x , y) = w equals |w |.

• the function f (x) = x is a Ψ̄-bound, while the function g(x) = 2x+1

is a Ψ̂-bound

• The way the emulation of the Turing machine is done has to be
different from the one used until now

Definition 9 (Encoding bounds)
Let Ψ : D ⊆ Rk → Γ∗ be an encoding and let g : N→ N. We say that a
function φ : R→ R is a Ψ-bound if for all v ,w ∈ Γ∗, |v | ≤ |w | implies
that ‖x‖ ≤ φ(‖y‖) whenever Ψ(x) = v and Ψ(y) = w .
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Space emulation I

Definition 10
Let f : Γ∗ → Γ∗ and g : R+ → R+ be two functions. We say that f is
(Ψ-)emulable in space g by an ODE{

y ′ = p(y , z)
z ′ = q(y , z)

(2)

where p, q are functions formed by polynomial components, if there are
two (vector-valued) function r , s ∈ GPVAL, and ε > 0, τ ≥ α > 0,
j , l , k ∈ N with 0 < j ≤ l such that, for all w ∈ dom(f ) ⊆ Γ∗ and for any
Ψ-bound φ one has that the solution of the IVP formed by (2) and the
initial condition y(0) = r(x), z(0) = s(y(0)) = s ◦ r(x), where
Ψ(x) = w , satisfies:

Definition 10 (cont.)
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Space emulation II

1. (halting 1) If t0 > 0 is s.t. y1(t0) ≥ 1, then y1(t) ≥ 1 ∀t ≥ t0 and
y1(t) ≥ 3/2 ∀t ≥ t0 + 1;

2. (halting 2) There is some t0 ≥ 0 such that y1(t0) ≥ 1;

3. (correct output) If y1(t) ≥ 1, then Ψ(y2(t), . . . , yj(t)) = f (w);

4. (bound) ‖(y(t), z(t))‖ ≤ φ ◦ g(x), ∀t ≥ 0, ∀x s.t. Ψ(x) = w ;

5. (robustness 1) For any t̄0 ≥ 0, if z1(t̄0) ≥ 1 and ȳ0 is s.t.
‖ȳ0 − y(t̄0)‖ ≤ ε, then solution (ȳ , z̄) of (2) with ȳ(0) = ȳ0 and
z̄(0) = s(ȳ0) is s.t. 1–4 above hold;

6. (robustness 2) For any b > a ≥ 0 s.t |b − a| ≥ τ , there
I = [c , d ] ⊆ [a, b], with |d − c | ≥ α, s.t. z1(t) ≥ 3/2 ∀t ∈ I ;

7. (robustness 3) If (ỹ , z̃) is a solution of (2) with ỹ(0) = ỹ0,
z̃(0) = s(ỹ0) s. t. ‖ỹ0 − y(t̄0)‖ ≤ ε as in condition 5, then we can
take ỹ in place of y in conditions 5 and 6 if t̄0 ≥ τ . There will
always be some t0, counted from t = 0 in (2), s.t. condition 1 holds.
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Our result

Theorem 11
Let f : Γ∗ → Γ∗ be a function. Then f ∈ FPSPACE iff f is Ψ̂-emulable in
polynomial space by a polynomial ODE.

• Direct direction of the proof: emulation of Turing machine by system
like Branicky’s [Bra95],[GCB08] that keeps the solution bounded

• Reverse direction by computing ODE solution (FPSPACE algorithm)
and restart thanks to auxiliary variables.

• It follows the same characterization for the class of sets PSPACE
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Thank you!
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