Nombres surréels, intégration, calculs

Quentin Guilmant

LIX, École Polytechnique

Lundi 6 septembre 2021

Intégration

Nombres surréels

Dérivation des surréels

Intégration

Travail sur un sous-corps de nombres surréels

Représentations

Plan

Nombres surréels

Surréels

- \bullet Construction des nombres : $\varnothing \to \mathbb{N} \to \mathbb{Q} \to \mathbb{R}$
- R est l'unique corps archimédien complet.

Surréels

- \bullet Construction des nombres : $\varnothing \to \mathbb{N} \to \mathbb{Q} \to \mathbb{R}$
- R est l'unique corps archimédien complet.
- Mais si on veut aller plus loin? Avec des ordinaux?

Forme normale de Cantor : $\sum\limits_{i=1}^k \omega^{lpha_i} n_i$

On obtient alors les nombres surréels.

Nouvel objet : les nombres surréels

Surréels

0000000000000

- Coupures : $\frac{\omega}{2} = [n \in \mathbb{N} \mid \{\omega n \mid n \in \mathbb{N}\}]$
- Suites de signes : $\frac{\omega}{2} = (+)^{\omega}(-)^{\omega}$
- Séries de Hahn : $\sum_{i<\nu} r_i \omega^{a_i}$

Nouvel objet : les nombres surréels

Surréels

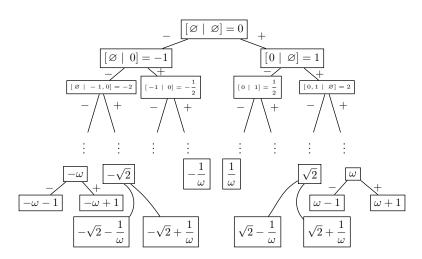
0000000000000

- Coupures : $\frac{\omega}{2} = [n \in \mathbb{N} \mid \{\omega n \mid n \in \mathbb{N}\}]$
- Suites de signes : $\frac{\omega}{2} = (+)^{\omega} (-)^{\omega}$
- Séries de Hahn : $\sum_{i<\nu} r_i \omega^{a_i}$

No désigne la classe des nombres surréels. Elle contient \mathbb{R} , les nombres ordinaux et (beaucoup) d'autres ($\underline{Ex} : \frac{\omega}{2}, \sqrt{\omega}, \omega^{1/\omega} = \ln \omega$).

Surréels

000•00000000000



000000000000000 **Opérations**

Surréels

Définition

$$\sum_{i < \nu} r_i \omega^{a_i} + \sum_{i < \mu} s_i \omega^{b_i} = \sum_{a = a_i = b_j} (r_i + s_j) \omega^a$$

$$x + y = [L_x + y, x + L_y \mid R_x + y, x + R_y]$$

Définition

$$\sum_{a \in \mathbf{No}} \omega^{a} r_{a} \times \sum_{a \in \mathbf{No}} \omega^{a} s_{a} = \sum_{a \in \mathbf{No}} \omega^{a} \sum_{b+c=a} r_{b} s_{c}$$

$$x \times y = \begin{bmatrix} I_{x} y + x I_{y} - I_{x} I_{y} & I_{x} y + x r_{y} - I_{x} r_{y} \\ r_{x} y + x r_{y} - r_{x} r_{y} & r_{x} y + x I_{y} - r_{x} I_{y} \end{bmatrix}$$

Sous-ensembles de nombres surréels

Notation

00000 0000000000

Surréels

$$No_{<\alpha} = \{x \in No \mid length(x) < \alpha\}$$

Sous-ensembles de nombres surréels

Notation

00000 0000000000

Surréels

$$No_{<\alpha} = \{x \in No \mid length(x) < \alpha\}$$

Proposition (Van den Dries and Ehrlich [6], corollaires 3.1, 4.4 et 4.9)

L'ensemble $\mathbf{No}_{<\lambda}$ (muni des opération addition et multiplication) est

- un groupe pour + ssi λ is additif (i.e. de la forme $\lambda = \omega^{\alpha}$)
 - un anneau commutatif ssi λ is multiplicatif (i.e. de la forme $\lambda=\omega^{\omega^{\alpha}}$)
 - un corps iff λ est un ε -nombre (i.e. satisfait l'équation $\lambda=\omega^\lambda$)

Corps de séries de Hahn

Surréels

00000000000000

Définition (Corps de séries de Hahn)

$$\mathbb{K}((t^{\Gamma})) = \{\sum_{\gamma \in \Gamma} a_{\gamma} t^{\gamma} \mid \operatorname{supp}(x) := \{\gamma \mid a_{\gamma} \neq 0\} \text{ est bien ordonné} \}$$

K un corps et Γ un groupe abélien ordonné.

Corps de séries de Hahn

Définition (Corps de séries de Hahn)

$$\mathbb{K}((t^{\Gamma})) = \{ \sum_{\gamma \in \Gamma} a_{\gamma} t^{\gamma} \mid \operatorname{supp}(x) := \{ \gamma \mid a_{\gamma} \neq 0 \} \text{ est bien ordonné} \}$$

K un corps et Γ un groupe abélien ordonné.

Notation

Surréels

0000000000000000

$$\mathbb{K}_{\lambda}^{\mathsf{\Gamma}} = \left\{ x \in \mathbb{K}((t^{\mathsf{\Gamma}})) \mid \mathsf{supp}\, x < \lambda \right\}$$

Notation

Si $(\Gamma_i)_{i\in I}$ est un suite de groupes abélien croissante (avec I ordonné), alors on pose $\mathbb{R}_{\lambda}^{(\Gamma_i)_{i\in I}}=\bigcup\mathbb{R}_{\lambda}^{\Gamma_i}$

Forme normale

00000000000000

Surréels

Théorème (Gonshor, [4, théorème 5.6])

Tout nombre surréel peut s'écrire de manière unique sous la forme

$$\sum_{i<\nu} r_i \omega^{a_i}$$

Pour Γ sgrp abélien ordonné de **No**, $\mathbb{R}^{\Gamma}_{\lambda}$ est un corps de nombres surréels.

Forme normale

0000000000000000

Surréels

Théorème (Gonshor, [4, théorème 5.6])

Tout nombre surréel peut s'écrire de manière unique sous la forme

$$\sum_{i<\nu} r_i \omega^{a_i}$$

Pour Γ sgrp abélien ordonné de **No**, $\mathbb{R}^{\Gamma}_{\lambda}$ est un corps de nombres surréels.

Définition

Pour
$$x = \sum_{i < \nu} r_i \omega^{a_i}$$
 et $y = \sum_{i < \nu'} s_i \omega^{b_i}$,

- $x \prec y \iff x$ plus petit en ordre de grandeur que y
- $x \times y \iff x$ du même ordre de grandeur que y
- $x \leq y \iff x$ au plus du même ordre de grandeur que y
- $x \sim y \iff x \text{ et } y \text{ sont équivalents}$

Fonction exponentielle

Définition

00000000000000

Surréels

$$\exp x = \begin{bmatrix} 0, \exp(x') \sum_{k=0}^{n} \frac{(x-x')^{k}}{k!}, \\ \exp(x'') \sum_{k=0}^{2n+1} \frac{(x-x'')^{k}}{k!} \end{bmatrix} = \frac{\exp(x')}{\sum_{k=0}^{2n+1} \frac{(x'-x)^{k}}{k!}}, \frac{\exp(x'')}{\sum_{k=0}^{n} \frac{(x''-x)^{k}}{k!}} \end{bmatrix}$$

Théorème ([4, théorèmes 10.2, 10.3 and 10.4])

Pour tout $r \in \mathbb{R}$ et tout ε infinitésimal.

$$\exp r = \sum_{k=0}^{\infty} \frac{r^k}{k!}$$
 et $\exp \varepsilon = \sum_{k=0}^{\infty} \frac{\varepsilon^k}{k!}$

et
$$\exp(r+\varepsilon) = \exp(r) \exp(\varepsilon) = \sum_{k=0}^{\infty} \frac{(r+\varepsilon)^k}{k!}$$

Pour tout x purement infini,

$$\exp(x + r + \varepsilon) = \exp(x) \exp(r + \varepsilon)$$

Fonction exponentielle

Surréels

οù

000000000000000

Proposition ([4, théorème 10.5])

Pour x purement infini,

$$\exp x = \left[0, \exp(x') \sum_{k=0}^{n} \frac{(x - x')^{k}}{k!} \, \middle| \, \frac{\exp(x'')}{\sum_{k=0}^{n} \frac{(x'' - x)^{k}}{k!}} \right]$$

Proposition (Gonshor, [4, théorème 10.13])

Si x est purement infini alors

$$\exp x = \omega^{\sum_{i < \nu} r_i \omega^{g(a_i)}}.$$

$$g(a) = [c(a), g(a') \mid g(a'')]$$

et c(a) est le surréel tel que $a \simeq \omega^{c(a)}$.

Fonction logarithme

Définition

0000000000000000

Surréels

$$\ln \omega^{a} = \left[\ln \omega^{a'} + n, \ln \omega^{a''} - \omega^{\frac{a''-a}{n}} \; \middle| \; \ln \omega^{a''} - n, \ln \omega^{a'} + \omega^{\frac{a-a'}{n}} \right]$$

Cette définition est uniforme.

Si
$$x \leq 1$$
 alors on pose $\ln x = \sum_{k \in \mathbb{N}^*} \frac{x^k}{k}$.

$$x=\sum\limits_{i<
u} r_i\omega^{a_i}=r_0\omega^{a_0}(1+\eta)$$
 avec $\eta\prec 1$, alors

$$\ln x = \ln \omega^{a_0} + \ln r_0 + \ln(1+\eta)$$

Proposition (Gonshor [4, théorème 10.8, 10.9 et 10.12])

Pour tout surréel a, $\ln \omega^a$ est purement infiniment grand :

Pour tout
$$x = \sum_{i < \nu} r_i \omega^{a_i}$$
, $\ln \omega^x = \sum_{i < \nu} r_i \omega^{h(a_i)}$

On a $\exp \ln \omega^a = \omega^a$. De plus, pour tout surréel x. $\ln \omega^{\omega^x} = \omega^{h(x)}$.

avec

$$h(x) = \left[0, h(x') \mid h(x''), \frac{\omega^x}{n}\right]$$

Nombres log-atomiques, L

Définition

000000000000000

Surréels

$$\mathbb{L} = \left\{ x \in \mathbf{No} \middle| \begin{array}{c} x \text{ est purement infiniment grand} \\ \forall n \in \mathbb{N} \quad \exists a \in \mathbf{No} \quad \ln_n x := \underbrace{\ln \cdots \ln}_{n \text{ fois}} x = \omega^a \end{array} \right\}$$

Exemple

 ω est un log-atomique : $\ln_n \omega = \omega^{\frac{1}{\omega^n}}$

Nouvelle écriture pour les surréels

Surréels

000000000000000

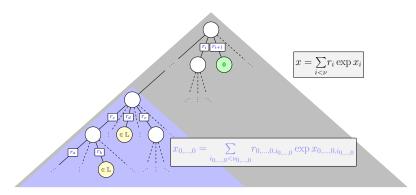
Les nombres de la forme ω^a sont exactement les exponentielles de nombres purement infiniment grands.

Nouvelle écriture pour les surréels

Surréels

000000000000000

Les nombres de la forme ω^a sont exactement les exponentielles de nombres purement infiniment grands.



κ -nombres

Définition

Pour x un nombre surréel, on définit

$$\kappa_{x} = [\exp_{n} 0, \exp_{n} \kappa_{x'} \mid \log_{n} \kappa_{x''}]$$

00000000000000000 κ-nombres

Surréels

Définition

Pour x un nombre surréel, on définit

$$\kappa_{x} = [\exp_{n} 0, \exp_{n} \kappa_{x'} \mid \log_{n} \kappa_{x''}]$$

Ce sont des représentants « canoniques » d'une relation de comparaison d'exponentielles et logarithmes itérés.

00000000000000 κ-nombres

Surréels

Définition

Pour x un nombre surréel, on définit

$$\kappa_{\mathsf{x}} = [\exp_n 0, \exp_n \kappa_{\mathsf{x}'} \mid \log_n \kappa_{\mathsf{x}''}]$$

Ce sont des représentants « canoniques » d'une relation de comparaison d'exponentielles et logarithmes itérés.

Exemple

- $\kappa_0 = \omega$
- $\kappa_{-1} = \omega^{\frac{1}{\omega^{\omega}}}$
- $\kappa_1 = \varepsilon_0$

Rang de troncature

Surréels

00000000000000

Définition (Berarducci, Mantova, [2], définition 4.27)

Le rang de troncature de $x \in \mathbf{No}$ est défini par

$$NR(x) = \sup \{ NR(y) + 1 \mid y \triangleleft x \}$$

où sup est l'opérateur usuel sur les ordinaux.

Rang de troncature

Surréels

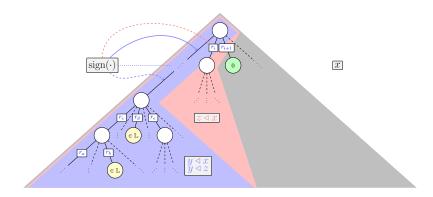
00000000000000

Définition (Berarducci, Mantova, [2], définition 4.27)

Le rang de troncature de $x \in \mathbf{No}$ est défini par

$$NR(x) = \sup \{ NR(y) + 1 \mid y \triangleleft x \}$$

où sup est l'opérateur usuel sur les ordinaux.



Plan

Dérivation des surréels

Dériver un surréel

On peut « dériver » des nombres surréels.

Dériver un surréel

On peut « dériver » des nombres surréels.

Proposition (Berarducci, Mantova [2, corollaires 6.24 et 6.29, propositions 6.26 et 6.28])

- $\forall x \in \mathbb{N}$ **o** $\partial x = 0 \iff x \in \mathbb{R}$
- Si la somme $\sum x_i$ fait sens, alors $\partial \sum x_i = \sum \partial x_i$. En particulier, $i < \alpha$ $i < \alpha$ $i < \alpha$ cette somme a aussi du sens
- $\forall x \in \mathbf{No}$ $\partial \exp x = \exp(x)\partial x$.
- $\forall x, y \in \mathbf{No}$ $\partial(xy) = x\partial y + y\partial x$

Comparaison de dérivées

Proposition (Berarducci, Mantova [2], proposition 6.4)

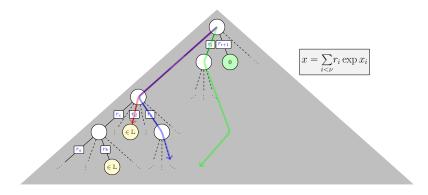
On a

•
$$\forall x, y \in \mathbb{K}$$
 $1 \not\asymp x \succ y \Rightarrow \partial x \succ \partial y$

•
$$\forall x, y \in \mathbb{K}$$
 $1 \not\prec x \sim y \Rightarrow \partial x \sim \partial y$

•
$$\forall x, y \in \mathbb{K}$$
 $1 \not\prec x \asymp y \Rightarrow \partial x \asymp \partial y$

Sommer les contributions de chaque chemin dans l'arbre de la racine à une feuille dans \mathbb{L} .



Plan

Intégration

Intégration asymptotique

Proposition (Berarducci, Mantova [2, propositions 7.4 et 7.6])

Pour tout surréel x, il existe une primitive asymptotique y telle que $\partial y \sim x$. En particulier, il existe une fonction « simple » A qui à x associe un terme tel que $\partial A(x) \sim x$.

Représentations

Intégration

Lemme (Aschenbrenner, van den Dries, van der Hoeven [1, corollary 1.4

Soit Φ fortement linéaire définie sur un corps $\mathbb{K} \subseteq \mathbf{No}$. Si pour tout monôme $\omega^a \in \mathbb{K}$ on a $\Phi(\omega^a) \prec \omega^a$, alors $\sum\limits_{n \in \mathbb{N}} \Phi^i(x)$ a du sens en tant que nombre surréel. De plus si cette somme est un élément de K pour tout Χ,

$$(\mathsf{id} - \Phi)^{-1} = \sum\limits_{n \in \mathbb{N}} \Phi^i$$

Intégration

Lemme (Aschenbrenner, van den Dries, van der Hoeven [1, corollary 1.4

Soit Φ fortement linéaire définie sur un corps $\mathbb{K} \subseteq \mathbf{No}$. Si pour tout monôme $\omega^a \in \mathbb{K}$ on a $\Phi(\omega^a) \prec \omega^a$, alors $\sum\limits_{n \in \mathbb{N}} \Phi^i(x)$ a du sens en tant que nombre surréel. De plus si cette somme est un élément de K pour tout Χ,

$$(\mathsf{id} - \Phi)^{-1} = \sum_{n \in \mathbb{N}} \Phi^i$$

Pour intégrer on peut alors prend $\Phi = id - \partial \circ A$ ${\mathcal A}$ est l'opérateur fortement linéaire associé à $A_{|_{\omega}}$ No La primitive est donnée par $\mathcal{A} \circ \sum \Phi^i$.

Plan

Travail sur un sous-corps de nombres surréels

Résultats

- Majoration de la longueur de la série de ∂x en fonction de NR(x).
- Conditions de stabilité par exp et In. Exemple de construction.
- Forme explicite de l'antidérivée asymptotique.
- Support de la primitive d'un terme, majoration de sa longueur.
- Identification un corps de surréels « raisonnable » stable par exp In, ∂ et anti-dérivation.

Majorer la longueur de la dérivée

Proposition

Pour tout $x \in \mathbf{No}$, l'ensemble $\mathcal{P}_{\mathbb{L}}(x)$ muni de \sqsubseteq est bien ordonné avec pour type d'ordre $\beta < \omega^{\omega^{\omega(\mathrm{NR}(\mathrm{x})+1)}}$. En particulier, $\nu(\partial x) < \omega^{\omega^{\omega(NR(x)+1)}}$

Corollaire

Pour λ un ε -nombre, si NR(x) $< \lambda$ alors $\nu(\partial x) < \lambda$

Stabilité par exponentielle et logarithme

Proposition

Soit λ un ε -nombre et Γ un sous-groupe additif abélien de **No**. Alors \mathbb{R}^1 est stable par \exp et \ln si et seulement si $\Gamma=\mathbb{R}^{\mathcal{S}\left(\Gamma_{+}^{*}\right)}_{\lambda}$.

Proposition

Soit λ un ε -nombre et $(\Gamma_i)_{i\in I}$ une famille de sous-groupes abéliens de **No**. Alors $\mathbb{R}^{(\Gamma_i)_{i\in I}}_{\lambda}$ stable par exp et ln si et seulement si $\bigcup \Gamma_i = \bigcup \mathbb{R}^{g(\Gamma_+^*)}_{\lambda}.$

Γ un sous-groupe abélien de **No** λ un ε -nombre. Soit α tel que $\lambda = \varepsilon_{\alpha}$. On a

$$\lambda = \sup \left(e_{eta}
ight)_{eta < \gamma_{\lambda}}$$

$$\mathsf{avec}\ \gamma_{\lambda} = \begin{cases} \omega & \beta + 1 = \alpha \\ \alpha & \alpha \in \mathbf{Lim} \end{cases}$$

T un sous-groupe abélien de **No**

 λ un ε -nombre. Soit α tel que $\lambda = \varepsilon_{\alpha}$. On a

$$\lambda = \sup \left(e_{eta}
ight)_{eta < \gamma_{\lambda}}$$

$$\mathrm{avec}\ \gamma_{\lambda} = \begin{cases} \omega & \beta+1 = \alpha \\ \alpha & \alpha \in \mathbf{Lim} \end{cases}$$

On pose $\Gamma^{\uparrow\lambda}$ la familles de groupes $(\Gamma_{\beta})_{\beta<\gamma_{\lambda}}$ définie comme suit :

- Γ₀ = Γ
- $\begin{array}{c|c} \blacksquare & \Gamma_{\beta+1} \text{ est le groupe généré par } \Gamma_{\beta}, \ \mathbb{R}^{g\left((\Gamma_{\beta})^*_+\right)}_{e_{\beta}} \text{ et} \\ & \left\{ \left. h(a_i) \, \right| \, \sum\limits_{i < \nu} r_i \omega^{a_i} \in \Gamma_{\alpha} \right\} \end{array}$
- Pour β un ordinal limite, $\Gamma_{\beta} = \bigcup_{\gamma < \beta} \Gamma_{\gamma}$.

Corollaire

Soit Γ un sous-groupe abélien de **No** et λ un ε -nombre. Alors, $\mathbb{R}_{\lambda}^{\Gamma^{\uparrow \lambda}}$ est stable par exp et ln.

Corollaire

Soit Γ un sous-groupe abélien de **No** et λ un ε -nombre. Alors, $\mathbb{R}_{\lambda}^{\Gamma^{\uparrow \lambda}}$ est stable par exp et ln.

Il est aussi stable par ∂ (pour un choix raisonnable de Γ)

Explicitation de l'anti-dérivée asymptotique

Proposition

Soit x un surréel non nul. Écrivons $|x| = \partial u \exp(\varepsilon)$ avec $u = \ln_n \kappa_{-\alpha} = \lambda_{-\omega\alpha-n}$ et $\omega\alpha + n$ minimal tel que $\varepsilon \not\sim -\ln u$. Alors,

$$A(x) = \begin{cases} \frac{t}{s} & \varepsilon \succ \ln u \\ \frac{ut}{(r+1)\partial u} & \varepsilon = r \ln u + \eta \quad r \neq -1, \eta \prec \ln u \end{cases}$$

où t est le terme dominant x et s celui de $\partial \varepsilon$.

Primitive

Rappel : A est l'opérateur fortement linéaire associé à A.

$$\Phi(x) = x - \partial \mathcal{A}(x)$$

Corollaire

 $\operatorname{id} - \Phi$ est inversible d'inverse $\sum\limits_{i \in \mathbb{N}} \Phi^i$. De plus, $\mathcal{A} \circ \sum\limits_{i \in \mathbb{N}} \Phi^i$ est bien défini et a tout surréel x associe une primitive de x.

Majoration de la longueur du support

Proposition

Soit x un surréel. Soit γ le plus petit ordinal tel que $\kappa_{-\gamma} \prec^K P(k_P)$ pour tout chemin $P \in \mathcal{P}_{\mathbb{L}}(x)$. Soit λ le plus petit ε -nombre strictement supérieur à NR(x) et γ . Alors \bigcup supp $\Phi^i(x)$ est inversement bien

ordonné de type d'ordre strictement plus petit que $\omega^{\omega^{\lambda+2}}$.

Majoration de la longueur du support

Proposition

Soit x un surréel. Soit γ le plus petit ordinal tel que $\kappa_{-\gamma} \prec^K P(k_P)$ pour tout chemin $P \in \mathcal{P}_{\mathbb{L}}(x)$. Soit λ le plus petit ε -nombre strictement supérieur à NR(x) et γ . Alors \bigcup supp $\Phi^i(x)$ est inversement bien

ordonné de type d'ordre strictement plus petit que $\omega^{\omega^{\lambda+2}}$.

La preuve est longue et technique.

Majoration de la longueur du support

Proposition

Soit x un surréel. Soit γ le plus petit ordinal tel que $\kappa_{-\gamma} \prec^K P(k_P)$ pour tout chemin $P \in \mathcal{P}_{\mathbb{L}}(x)$. Soit λ le plus petit ε -nombre strictement supérieur à NR(x) et γ . Alors \bigcup supp $\Phi^i(x)$ est inversement bien

ordonné de type d'ordre strictement plus petit que $\omega^{\omega^{\lambda+2}}$.

La preuve est longue et technique.

Idée clé : l'étude par cas et le fait que les cas sont stables.

Un corps stable

Théorème

Soient α un ordinal limite et $\eta < \varepsilon_{\alpha}$. Soit $(\Gamma_{\beta})_{\beta < \alpha}$ une suite de sous-groupes abéliens de No telle que

- $\forall \beta < \alpha \quad \forall \gamma < \beta \qquad \Gamma_{\gamma} \subseteq \Gamma_{\beta}$
- $\forall \beta < \alpha$ $\omega^{(\Gamma_{\beta})_{+}^{*}} \succ^{K} \kappa_{-\varepsilon_{\beta}}$
- $\forall \beta < \alpha \quad \forall \gamma < \varepsilon_{\beta} \qquad \kappa_{-\gamma} \in \omega^{\Gamma_{\beta}}$
- $\forall \beta < \alpha \quad \exists \eta_{\beta} < \varepsilon_{\beta} \quad \forall x \in \omega^{\Gamma_{\beta}} \qquad \mathsf{NR}(x) < \eta_{\beta}$

Alors $\bigcup \mathbb{R}_{\varepsilon_{\beta}}^{\Gamma_{\beta}^{\uparrow \varepsilon_{\beta}}}$ est stable par exp, ln, ∂ et anti-dérivée. $\beta < \alpha$

Exemple

Pour $\alpha = \omega$ et $n < \omega$, posons

$$\Gamma_n = \{ x \in \mathbf{No}_{<\varepsilon_n} \mid \mathsf{NR}(\omega^x) < \varepsilon_{n-1} \}$$

avec $\varepsilon_{-1} := \omega$. En appliquant le théorème précédent $\bigcup_{n \in \mathbb{N}} \mathbb{R}^{\Gamma_n^{\uparrow \varepsilon_n}}_{\varepsilon_n}$ est stable par exp, ln, ∂ et anti-dérivée.

Exemple

Pour $\alpha = \omega$ et $n < \omega$, posons

$$\Gamma_n = \{ x \in \mathbf{No}_{<\varepsilon_n} \mid \mathsf{NR}(\omega^x) < \varepsilon_{n-1} \}$$

avec $\varepsilon_{-1} := \omega$. En appliquant le théorème précédent $\bigcup \mathbb{R}_{\varepsilon_n}^{\Gamma_n^{\uparrow \varepsilon_n}}$ est stable

par exp, ln,
$$\partial$$
 et anti-dérivée.

Remarquons que

$$\bigcup_{n\in\mathbb{N}}\mathbb{R}_{arepsilon_n}^{\Gamma_n^{\uparrowarepsilon_n}}=igcup_{n\in\mathbb{N}}\mathbb{R}_{arepsilon_n}^{\mathsf{No}^{\uparrowarepsilon_n}}$$

Plan

Représentations

Plusieurs possibilités :

La suite de signes

- La suite de signes
- Les séries de Hahn

- La suite de signes
- Les séries de Hahn (demande une notation des coefficients et des exposants)

- La suite de signes
- Les séries de Hahn (demande une notation des coefficients et des exposants)
- Une notation basée que la définition historique de Conway

Plusieurs possibilités :

- La suite de signes
- Les séries de Hahn (demande une notation des coefficients et des exposants)
- Une notation basée que la définition historique de Conway

Proposition

Toutes ces représentations sont toutes « équivalentes ». Les opérations de corps et l'ordre sont calculables.

Matthias Aschenbrenner, Lou van den Dries, and J. van der Hoeven.

Differentially algebraic gaps.

Selecta Mathematica, 11(2):247-280, 2005.

Alessandro Berarducci and Vincenzo Mantova.

Surreal numbers, derivations and transseries. Journal of the European Mathematical Society, 20(2):339-390, Jan 2018.

D.H.J de Jongh and Rohit Parikh.

Well-partial orderings and hierarchies. Indagationes Mathematicae (Proceedings), 80(3):195 - 207, 1977.

Harry Gonshor.

An Introduction to the Theory of Surreal Numbers. London Mathematical Society. Cambridge University Press, 1986.

Diana Schmidt

Well-Partial Orderings and their Maximal Order Types, pages 351–391. 01 2020.

Lou van den Dries and Philip Ehrlich.

Fields of surreal numbers and exponentiation.

Fundamenta Mathematicae - FUND MATH, 167:173-188, 01 2001.

Andreas Weiermann.

A computation of the maximal order type of the term ordering on finite multisets. pages 488-498, 07 2009.

Plan

Détails

Pourquoi des bornes en $\omega^{\omega^{(\cdot)}}$?

Proposition ([7, Weiermann, corollaire 1])

Soient Γ un groupe abélien ordonné et $S \subseteq \Gamma_+$ un sous-ensemble bien ordonné de type d'ordre α . Alors le monoïde généré par S, $\langle S \rangle$, est bien lui-même bien ordonné avec pour type d'ordre au plus $\omega^{\widehat{\alpha}}$ où, en écrivant α en forme normale de Cantor

$$\alpha = \sum_{i=1}^{n} \omega^{\alpha_i} n_i$$

$$\widehat{\alpha} = \sum_{i=1}^{n} \omega^{\alpha'_i} n_i$$

on a

$$\widehat{\alpha} = \sum_{i=1}^{n} \omega^{\alpha_i'} n_i$$

et

$$\beta' = \begin{cases} \beta + 1 & \text{si } \beta \text{ est un } \varepsilon\text{-nombre} \\ \beta & \text{sinon} \end{cases}$$

En particulier, $\langle S \rangle$ a pour type d'ordre au plus $\omega^{\omega \alpha}$ (où la multiplication est celle de Hessenberg).

Pourquoi des bornes en $\omega^{\omega^{(\cdot)}}$?

Théorème ([3, de Jongh, Parikh, théorème 3.11] et [5, Schmidt, théorème 2.9])

Soit (X, \leq) un ensemble bien ordonné de type d'ordre α . Soit X^* l'ensemble des suites finies X. Alors le type d'ordre de X^* , β , satisfait

$$\beta \leq \begin{cases} \omega^{\omega^{\alpha-1}} & \text{si } \alpha \text{ est fini} \\ \omega^{\omega^{\alpha+1}} & \text{si } \varepsilon \leq \alpha < \varepsilon + \omega \text{ pour un certain } \varepsilon\text{-nombre } \varepsilon \\ \omega^{\omega^{\alpha}} & \text{sinon} \end{cases}$$

$$x = \omega + \frac{3}{4} = \left[\mathbb{N}, \omega, \omega + \frac{1}{2} \mid \omega + 1 \right]$$

 $y = -\frac{7}{2} = \left[-4 \mid 0, -1, -2, -3 \right]$

$$x = \omega + \frac{3}{4} = \left[\mathbb{N}, \omega, \omega + \frac{1}{2} \mid \omega + 1 \right]$$

$$y = -\frac{7}{2} = \left[-4 \mid 0, -1, -2, -3 \right]$$

$$\begin{cases} L_x + y = \left\{ -3.5, -2.5, -1.5, -0.5, 0.5, \dots \right\} \\ x + L_y = \left\{ \omega - \frac{13}{4} \right\} \\ R_x + y = \left\{ \omega - \frac{5}{2} \right\} \\ x + R_y = \left\{ \omega + \frac{3}{4}, \omega - \frac{1}{4}, \omega - \frac{5}{4}, \omega - \frac{9}{4} \right\} \end{cases}$$

$$x = \omega + \frac{3}{4} = \left\lfloor \mathbb{N}, \omega, \omega + \frac{1}{2} \middle| \omega + 1 \right\rfloor$$

$$y = -\frac{7}{2} = \left[-4 \middle| 0, -1, -2, -3 \right]$$

$$\begin{cases} L_x + y = \left\{ -3.5, -2.5, -1.5, -0.5, 0.5, \ldots \right\} \\ x + L_y = \left\{ \omega - \frac{13}{4} \right\} \\ R_x + y = \left\{ \omega - \frac{5}{2} \right\} \\ x + R_y = \left\{ \omega + \frac{3}{4}, \omega - \frac{1}{4}, \omega - \frac{5}{4}, \omega - \frac{9}{4} \right\} \end{cases}$$

$$x + y = \left[\omega - \frac{13}{4} \middle| \omega - \frac{5}{2} \right]$$

$$x = \omega + \frac{3}{4} = \left[\mathbb{N}, \omega, \omega + \frac{1}{2} \mid \omega + 1 \right]$$

$$y = -\frac{7}{2} = \left[-4 \mid 0, -1, -2, -3 \right]$$

$$\begin{cases} L_x + y = \left\{ -3.5, -2.5, -1.5, -0.5, 0.5, \dots \right\} \\ x + L_y = \left\{ \omega - \frac{13}{4} \right\} \\ R_x + y = \left\{ \omega - \frac{5}{2} \right\} \\ x + R_y = \left\{ \omega + \frac{3}{4}, \omega - \frac{1}{4}, \omega - \frac{5}{4}, \omega - \frac{9}{4} \right\} \end{cases}$$

$$x + y = \left[\omega - \frac{13}{4} \mid \omega - \frac{5}{2} \right]$$

$$x + y = \left[(+)^{\omega} - - - + + | (+)^{\omega} - - - - - + | (+)^{\omega} - - - - + | (+)^{\omega} - - - - + | (+)^{\omega} - - | (+)^{\omega} - - | (+)^{\omega} - - | (+)^{\omega} - | (+)^{\omega} - - | (+)^{\omega} - |$$

Then

$$x = \omega + \frac{3}{4} = \left[\mathbb{N}, \omega, \omega + \frac{1}{2} \mid \omega + 1 \right]$$

$$y = -\frac{7}{2} = \left[-4 \mid 0, -1, -2, -3 \right]$$

$$\begin{cases} L_x + y = \left\{ -3.5, -2.5, -1.5, -0.5, 0.5, \dots \right\} \\ x + L_y = \left\{ \omega - \frac{13}{4} \right\} \\ R_x + y = \left\{ \omega - \frac{5}{2} \right\} \\ x + R_y = \left\{ \omega + \frac{3}{4}, \omega - \frac{1}{4}, \omega - \frac{5}{4}, \omega - \frac{9}{4} \right\} \end{cases}$$

$$x + y = \left[\omega - \frac{13}{4} \mid \omega - \frac{5}{2} \right]$$

$$x + y = \left[(+)^{\omega} - - - + + \mid (+)^{\omega} - - - + \right]$$

Basically we have to choose between

$$(+)^{\omega} - - - - + + +$$
 and $(+)^{\omega} - - - + -$

$$x = \omega + \frac{3}{4} = \left[\mathbb{N}, \omega, \omega + \frac{1}{2} \mid \omega + 1 \right]$$

$$y = -\frac{7}{2} = \left[-4 \mid 0, -1, -2, -3 \right]$$

$$\begin{cases} L_x + y = \left\{ -3.5, -2.5, -1.5, -0.5, 0.5, \dots \right\} \\ x + L_y = \left\{ \omega - \frac{13}{4} \right\} \\ R_x + y = \left\{ \omega - \frac{5}{2} \right\} \\ x + R_y = \left\{ \omega + \frac{3}{4}, \omega - \frac{1}{4}, \omega - \frac{5}{4}, \omega - \frac{9}{4} \right\} \end{cases}$$

$$x + y = \left[\omega - \frac{13}{4} \mid \omega - \frac{5}{2} \right]$$

$$x + y = \left[(+)^{\omega} - - - + + | (+)^{\omega} - - - + | (+)^{\omega} - |$$

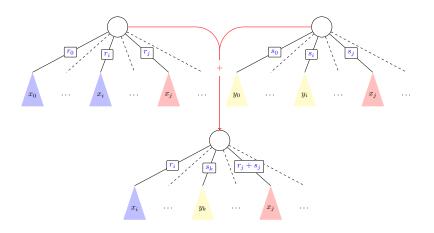
Basically we have to choose between

$$(+)^{\omega} - - - - + + +$$
 and $(+)^{\omega} - - - + -$

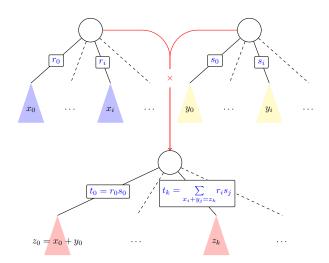
Simplicity property:

$$x + y = (+)^{\omega} - - - + - = \omega - \frac{11}{4}$$

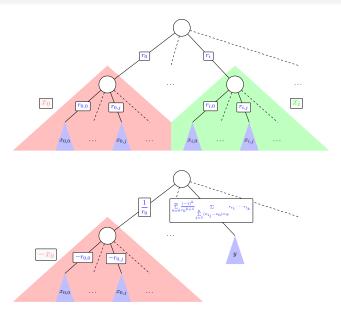
Addition



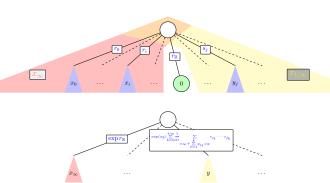
Multiplication



Inverse



Exponentielle



Lemme

Supposons que $x = \omega^a = \partial u \exp \varepsilon$ avec $\varepsilon = r \ln u + \eta$ et $u = \ln_n \kappa_{-\alpha}$. Soit $b \in \text{supp } \Phi(\omega^a)$. Alors il existe un chemin $P \in \mathcal{P}(\eta)$ tel que

$$\omega^{b} \asymp \partial u \exp \left(r \ln u + \eta - \sum_{m=n+2}^{+\infty} \ln_{m} \kappa_{-\alpha} - \sum_{\beta > \alpha, m \in \mathbb{N}^{*}} \ln_{m} \kappa_{-\beta} + \sum_{i=0}^{+\infty} \ln |P(i)| \right)$$

$$\beta \mid \kappa_{-\beta} \succeq^{K} P(k_{P})$$

Proposition

Supposons que $x = \omega^a = \partial u \exp \varepsilon$ avec $\varepsilon = r \ln u + \eta$ et $u = \ln_n \kappa_{-\alpha}$. If existe un ensemble E définissable à partir de η tel que pour $b \in \bigcup \operatorname{supp} \Phi^{\ell}(\omega^{a})$, il existe $y \in \langle E \rangle$ tel que

$$\ell=0$$
 $\omega^bsymp \partial u \exp(r \ln u + \eta + y)$

$$\omega^{b} \simeq \partial u \exp(r \ln u + \eta + y)$$

Proposition

Supposons que $x=\omega^a=\partial u\exp\varepsilon$ avec $\varepsilon=r\ln u+\eta$ et $u=\ln_n\kappa_{-\alpha}$. Il existe un ensemble E définissable à partir de η tel que pour

$$b \in \bigcup_{\ell=0}^{\infty} \operatorname{supp} \Phi^{\ell}(\omega^{a})$$
, il existe $y \in \langle E \rangle$ tel que

$$\omega^b \simeq \partial u \exp(r \ln u + \eta + y)$$

Soit γ le plus petit ordinal tel que $\kappa_{-\gamma} \prec^K P(k_P)$ pour tout chemin $P \in \mathcal{P}_{\mathbb{L}}(\eta)$. Soit λ le plus petit ε -nombre strictement supérieur à NR(x) et γ alors E est inversement bien ordonné avec pour type d'ordre au plus $2\lambda + \omega(\gamma + 1)$, puis, $\bigcup_{\ell=0}^{+\infty} \operatorname{supp} \Phi^{\ell}(\omega^a)$ est inversement bien ordonné de type d'ordre au plus $\omega^{\omega(2\lambda+\omega(\gamma+1)+1)}$.

Lemme

et

Soit $x = \omega^a = \partial u \exp \varepsilon$ avec $\varepsilon > \ln u$ et $u = \ln_n \kappa_{-\alpha}$. Soit $b \in \operatorname{supp} \Phi(\omega^a)$. Alors, l'un des cas suivants est vérifié :

• Il existe un chemin $P \in \mathcal{P}(\eta)$ et $i \in \mathbb{N}$ tel que

$$\omega^b symp \partial u \exp \left(arepsilon - \sum_{eta \geq lpha, \ m \in \mathbb{N}^* \atop eta \mid P_0(k_{P_0}) \succ^K \kappa_{-eta} \succeq^K P(k_P)} \ln \left| \frac{P(i+j)}{P_0(j)} \right|
ight)$$

Lemme

Soit $x = \omega^a = \partial u \exp \varepsilon$ avec $\varepsilon > \ln u$ et $u = \ln_n \kappa_{-\alpha}$. Soit $b \in \operatorname{supp} \Phi(\omega^a)$. Alors. I'un des cas suivants est vérifié :

- - ...
 - Il existe un couple $(\beta, m) <_{lex} (\alpha, n)$ tel qu'il existe $\eta \prec \ln_m \kappa_{-\beta}$ tel que $\omega^b \asymp \partial (\ln_m \kappa_{-\beta}) \exp \eta$ avec $\eta = \varepsilon + \eta'$ et η' dépendant uniquement de α, β, n, m et P_0 , le chemin dominant ε :

$$\eta' = \sum_{\substack{(\zeta, p) >_{lex} (\beta, m) \\ \zeta \mid \kappa_{-\zeta} \succeq^{K} P_0(k_{P_0})}} \ln_{p} \kappa_{-\zeta} - \sum_{\substack{(\beta, m) <_{lex}(\zeta, p) <_{lex}(\alpha, n) \\ (\beta, m) <_{lex}(\zeta, p) <_{lex}(\alpha, n)}} \ln_{p} \kappa_{-\zeta} - \sum_{i=0}^{+\infty} \ln|P_0(i)|$$

$$\eta' = \sum_{ egin{array}{c} (\zeta,p) \geq_{lex} (lpha,n) \ \zeta \mid \kappa_{-\zeta} \succeq^K P_0(k_{P_0}) \ \end{array}} \ln_p \kappa_{-\zeta} - \sum_{i=0}^{+\infty} \ln|P_0(i)|$$

Proposition

Supposons que $x=\omega^a=\partial u\exp\varepsilon$ avec $\varepsilon\succ\ln u$ et $u=\ln_n\kappa_{-\alpha}$. Il existe des ensembles $E^{(\beta,m)}$ et définissables à partir de ε , β et m, avec $(\beta,m)\leq_{lex}(\alpha,n)$, et $H^{(\beta,m)}$ finis définissables à partir du chemin dominant de ε , de β et de m, tels que pour $b\in\bigcup_{q=0}^{+\infty}\operatorname{supp}\Phi^q(\omega^a)$, il existe $\eta\in H^{(\beta,m)}$ et $y\in \left\langle E^{(\beta,m)}\right\rangle$ tels que

$$\omega^b \asymp \partial (\ln_m \kappa_{-\beta}) \exp(\varepsilon + \eta + y)$$

pour un certain couple $(\beta, m) \leq_{lex} (\alpha, n)$.

Proposition

Supposons que $x=\omega^a=\partial u\exp\varepsilon$ avec $\varepsilon\succ\ln u$ et $u=\ln_n\kappa_{-\alpha}$. Il existe des ensembles $E^{(\beta,m)}$ et définissables à partir de ε , β et m, avec $(\beta,m)\leq_{lex}(\alpha,n)$, et $H^{(\beta,m)}$ finis définissables à partir du chemin dominant de ε , de β et de m, tels que pour $b\in\bigcup_{q=0}^{+\infty}\operatorname{supp}\Phi^q(\omega^a)$, il existe $\eta\in H^{(\beta,m)}$ et $y\in \left\langle E^{(\beta,m)}\right\rangle$ tels que

$$\omega^b \approx \partial(\ln_m \kappa_{-\beta}) \exp(\varepsilon + \eta + y)$$
un certain couple $(\beta, m) \leq (\alpha, n)$

pour un certain couple $(\beta, m) \leq_{lex} (\alpha, n)$.

Corollaire

Supposons que $\omega^a = \partial u \exp \varepsilon$ avec $\varepsilon \succ \ln u$ et $u = \ln_n \kappa_{-\alpha}$. Soit γ le plus petit ordinal tel que $\kappa_{-\gamma} \prec^K P(k_P)$ pour tout chemin $P \in \mathcal{P}_{\mathbb{L}}(\varepsilon)$. Soit λ le plus petit ε -nombre strictement supérieur à $\operatorname{NR}(x)$ et γ . Alors, $\bigcup_{\ell=0}^{+\infty} \operatorname{supp} \Phi^{\ell}(\omega^a)$ est inversement bien ordonné de type d'ordre au plus $\omega^{\omega(2\lambda+\omega(\gamma+1)+1)}$.

Relations sur les ordres de grandeur

Définition

Pour
$$x = \sum_{i < \nu} r_i \omega^{a_i}$$
 et $y = \sum_{i < \nu'} s_i \omega^{b_i}$,

$$x \prec y \iff y \neq 0 \land (x = 0 \lor a_0 < b_0)$$

$$\iff \forall n \in \mathbb{N} \quad n|x| < |y|$$

$$x \asymp y \iff (x = y = 0) \lor (a_0 = b_0)$$

$$\iff \exists n \in \mathbb{N} \quad -n|x| \leq |y| \leq n|x|$$

$$x \preceq y \iff x \prec y \lor x \asymp y$$

$$\iff \exists n \in \mathbb{N} \quad |x| \leq n|y|$$

$$x \sim y \iff (x = y = 0) \lor (a_0 = b_0 \land r_0 = s_0)$$

$$\iff x - y \prec 1$$

Dérivée d'un log-atomique

Définition

Soit $x \in \mathbb{L}$.

$$\partial_{\mathbb{L}} x = \exp \left(- \sum_{\substack{m \in \mathbb{N} \\ \beta \mid \kappa_{-\beta} \succeq^{\kappa} x}} \ln_{m} \kappa_{-\beta} + \sum_{m \in \mathbb{N}} \ln_{m} x \right)$$

Chemins

Définition

Soit x un surréel. Un chemin de x est une suite telle que

- P(0) est un terme de x
- P(n+1) est un terme purement infiniment grand de $\ln |P(n)|$.

On note $\mathcal{P}(x)$ l'ensemble des chemin de x.

Chemins

Définition

Soit x un surréel. Un chemin de x est une suite telle que

- P(0) est un terme de x
- P(n+1) est un terme purement infiniment grand de $\ln |P(n)|$.

On note $\mathcal{P}(x)$ l'ensemble des chemin de x.

Chemin dominant de x : P tel que P(0) est le terme dominant de x et pour tout entier n, P(n+1) est le terme dominant de $\ln |P(n)|$.

Dérivée d'un chemin

Définition (Berarducci, Mantova, [2, définition 6.13])

Soit P un chemin. On définit la quantité $\partial P \in \mathbb{R}\omega^{\mathbf{No}}$ par

$$\partial P = egin{cases} P(0) \cdots P(k-1) \partial_{\mathbb{L}} P(k) & P(k) \in \mathbb{L} \ 0 & orall k \in \mathbb{N} & P(k)
otin \mathbb{L} \end{cases}$$

Notation

Soit
$$\mathcal{P}_{\mathbb{L}}(x) = \{ P \in \mathcal{P}(x) \mid \partial P \neq 0 \}$$
 k_P désigne le pus petit entier tel que $P(k_P) \in \mathbb{L}$.

Dérivée d'un surréel

Définition (Berarducci, Mantova [2, définition 6.21])

$$\partial x = \sum_{P \in \mathcal{P}_{\mathbb{L}}(x)} \partial P$$

Troncature

Définition (Berarducci and Mantova, [2], définition 4.3)

- $x \leq_0 y$ si $x = \sum_{i < \nu} r_i \omega^{a_i}$ et $y = \sum_{i < \nu'} r_i \omega^{a_i}$ quand $\nu < \nu'$.
- $x \leq_{n+1} y$ s'il existe $\gamma, \delta \in \mathbb{J}^*$ tels que $x = u + \operatorname{sign}(r) \exp(\gamma)$ et $y = u + r \exp(\delta) + v$ où supp $u \succ \exp \gamma$, supp $u \succ \exp \delta \succ v$, $r \in \mathbb{R}$ et $\gamma \leq_n \delta$.

 $x \leq y \ ssi \ x \leq_n y \ pour \ un \ certain \ entier \ naturel \ n.$