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algebra or discret ODEs.

» I know nothing about complexity theory, very little about computer
languages.

» But : I have used differential operators as a logical connective.
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» [ will sketch the use of differential operators in proof theory, through
linear logic, and speak of possible applications for programming




Teaser

We know how to speak about differentiation in proof theory:

differential operators.

usual-proof ~~ linear proof
We have a specific connective for linear implication: A — B.
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A —o B represents exactly the type of programs characterized by differentiation

> We just need to find a sensible way to work generalize —o to general




Proof theory and Type theory

Programmes Logique
Terme P = \z.yP [W]
aAr B Preuve
Type A Formula: A,
; A= B,-A
Evalutation
Pt ~pgt Cut-Elimination

A functional program has type A = B.
Proofs are constructed via inference rules:

AFB BrC I''A+B
cut

AFC I'-A=20B
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Linear logic
Usual implication Linear Implication
Linear Logic
A= B=!A—-8B J

Exponential

A proof is linear when it uses only once its hypothesis A.

A linear proof is in particular non-linear.

A B is linear
|A + B is non-linear

dereliction

Applications in programming languages, complexity theory, quantum
computing, category theory ...
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Working tool: semantics

The syntax mirrors the semantics.

Programs Logic Semantics

fun (x:A)-> (t:B) Proofof AFB f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality
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Working tool: semantics

The syntax mirrors the semantics.

Programs Logic Semantics

fun (x:A)-> (t:B) Proofof AFB f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

[ Differentiable Programming } -- —{ D-DiLL H Differential Operators }

( Resources A-calculus ) [ Differential Linear Logic

\/ ﬂ Vectorial Models ]

( Linear Logic [Gir87] )4—\
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Differential Linear Logic

[Ehrhard Regnier ~ 2005]

linear proof e T, -~ non-linear proof
N

Linear Logic

-
S~ o -

Differential Linear Logic

new rules for constructing proofs

{:AEB f:'AEB
(1A B Do(f): AEB
linear — non-linear. non-linear — linear

Marie Kerjean (CNRS & LIPN, Universi



Differential Linear Logic

[Ehrhard Regnier ~ 2005]

Differential Linear Logic

new rules for constructing proofs
{:AEB f:1AEB
(:1A- B Do(f): AEB

linear — non-linear. non-linear < linear

Cut-elimination:

FT,bv: A - FA L AL
FT, Do) 14 ¢ FA¢: 4L
T A cut
—- FT,z: A FAZ: AL

T4, Do0)@ = @) - R=1

The dynamic of proofs/programs computes the differential
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Solving differential equations in proofs

Differential Linear Logic

new rules for constructing proofs
{:AFB
(:'A+-B

f:'1AEB
Do(f): AFB
linear — non-linear.

non-linear < linear
From differentiation to differential operators
g:'pAF-B

gxEp:'AFB

parameter < solution.

f:1AEB
D(f):!pA+B
equations
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differentiation — Diff. operator
The dynamic of proofs/programs computes the solution to a differential




Linear Partial Differential Equations with constant
coefficient

Consider D a LPDO with constant coefficients:

Solution of steady hzal squation

The heat equation in R?
Pu _ du _
oz? ot

U(l‘,y,O) = f(x7y)

Theorem (Malgrange 1956)

For any D LPDOcc, there is Ep € C3°(R™, R)’ such that DEp = dp, and thus
for any ¢ € C*°(R™,R):

D(Ep*¢) = ¢
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Linear Partial Differential Equations with constant
coefficient

Consider D a LPDO with constant coefficients:

Solution of steady hzal squation

The heat equation in R?
Pu _ du _
oz? ot

U(l‘,y,O) = f(x7y)

Theorem (Malgrange 1956)

For any D LPDOcc, there is Ep € C3°(R™, R)’ such that DEp = dp, and thus
for any ¢ € C*°(R™,R):

output D(Ep * ¢) = ¢ input
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All these development on proofs and their syntaz is justified by their
semantics: their mathematical interpretation

Category theory often serves as an intermediate layer between proofs and
their interpretation as functions between mathematical objects.
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Interpreting proofs in a certain category

> A formula A: an object (e.g a vector space) [4]
> A proof of A B : a function from A to B.

» Cut-elimination = composition of functions.

One main law needs to be interpreted: currying.

ANB=C=A=B=(C
Monoidal closedeness (linear version):

L(A® B,C) ~ L(A,L(B,(C))
Cartesian closedeness (non-linear version):

C®(A x B,C) ~ C®(A,C®(B,C))

Also: we’re linear classical. ——A = A
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Interpreting in a real mathematical structure

Combining notions as : topological tensor products, higher-order smooth
functions, Mackey/Weak/quasi complete spaces, reflexive spaces ...

Historically: discrete models and quantitative semantics : 1A =" A®"

Exponentials as distributions [LICS2018]

A smooth and classical model of Differential Linear Logic where:

1A = C®(A,R)".

Result: functional programming < functional analysis.

Currying for smooth functions Kernel theorems
IA®!B~(Ax B) C®(E,R)QC>®(F,R) ~C®(E x F,R)
Currying for linear functions Grothendieck’s topological problem
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Exponential as Distributions

generalisations of functions with compact support:

¢f¢9€C°°(Rn,R)’—*/fg-

> Distributions with compact support are elements of C>°(R™,R)’, seen as
> In a classical and Smooth model of Differential Linear Logic, the
exponential is a space of distributions with compact support.

\ Théorie des distributions, Schwartz, 1947.

Al =A= 1
L(E,R) ~ C®(E,R)
(IE)" ~ C>=(E,R)
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|E ~C>(E,R)
» Seely’s isomorphism corresponds to the Kernel theorem:

C(E,R)'&C(F,R) ~ C®(E x F,R)/




Exponentials as spaces of solutions

Hypothesis: a classical logic interpreted by reflexive spaces: A ~ A” .

f €C>®(A,R) is linear iff Vz, f(z) = Do(f)(x)

iff 3g € C>(R™,R), f = dg

peA"~A iff I elA Dy(p) =1
belpA iff 3 €A, D) = ¢

Generalizing differentiation

IpA = { distribution ¢ solution to a differential equation D¢ = 9 }

e.g.: ![dA ~ 1A !DOA ~ A

Works only when D is a LPDO with constant coefficient.

Linearity /Non-linearity ~» Solutions/Parameter of a differential equation
Reduction of proofs/programs ~ resolution of an equation.

=] 5
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The same cut-elimination

- 'pE — C®(E,R) C*(E,R) = pE
dp : dp :
¢ D¢ Y=y
FD,p:!pA _ FAg:7pA-

FT,D0:14 P FA .74t P

FT.A D) (Epvg) R=1 ™

FT,o:1pA FAg:7pA
L, A, D(é(g) # d(g) : R= 1

cut
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The same cut-elimination

JD:{!DE%COO(E’R)' L ferERY 5 B
¢~ D¢ D W > Y Ep

FT,0:1pA - FAg:?7pAt
FT,Do: 1A “P LA gxEp:?4t i
FT,A,D(0)(Ep+g) = dlg) :R=1 "

FT,o:1pA FAg:7pA

cut
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D-DiLL

DiLL
T FT,?7A,74 FT,A
FT,74 Fr.74 ¢ Fr,74 ¢
D FT,JA  FAIA FDz: A
FT,14 FT,A14 °© FT, Do(Q(@)4 %
D — DiLL
FT FT,f:74,9g:7pA FT,f:7pA
=L wp @ dp
FT,[D:7pA FT,fg:7pA FT,f+Ep:?A
= Tp param. F ', ¢ : A sol. FAJY : IpA - FT,¢y:!1pA
FEp:lpA FL,A, ¢+ pA P FT,Dy.1a 9P

A deterministic cut-elimination.
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D-DiLL

DiL.L
KT, FT,74,74 FT,A
FT,74 FT,74 F1,74 ¢
kD FT,1A A A FD,o: A
FT,14 FT,A, 14 FT, Do()(@)iA ¢
D — DiLL
T FT,f:74,9g:7pA FT,f:7pA d
FT,[D:?pA FT,fg:7pA FT,f+xEp:74 °°
= _ inputk T', ¢ : 1A outputk A9 : Ip A . FT,¢:1pA
FEp:!pA FL,A 6% pA P T, Dy1a 9P

A deterministic cut-elimination.
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Conclusion:

Stay home message:
» Logical formulas can represent solutions to differential equations.

» Cut-elimination can represent the computation of a solution to a
differential equation.

Perspectives:
» Can we incorporate the real-life computation/approximation of a
PDE/ODE in this system ?

» The concept of linearity in proof theory was a game-changing discovery.
What’s the computational concepts defined by more general equations ?
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