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What has been done?
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Ordinary differential equations: well-understood, used in many
fields in applied science (describing dynamical systems for
example).

We also can see them as a computation model: Shannon ('42),
Moore ('96), Costa, Graga, Hainry, Pouly, Bournez...

We focus on their discrete counterparts: discrete ODEs.

= widely studied in numerical optimisation, combinatorial
analysis

Bournez & Durand ('19) established a connection with

complexity theory : characterisation of polynomial time using
discrete ODEs.
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We prove:

Theorem (MCU'22)

A function f : N — R9 js computable in polynomial time if and only
if there exists f : N9T1 s RY' € LDL® such that for all x € N¢,
neN, [f(x,2") —f(x)|| < 27" with LDL® =

[0,1, 7k, £(x),+, —, X, cond(x), 3, composition, linear length ODE]
and:

Theorem

A continuous function f : RY — RY is computable in polynomial time
if and only if there exists f : RY x N2 — R9" € LDL? such that for all
xeRI XeN, xe [—2X,2X}, neN, [[f(x,2X,2" —f(x)|| < 27"

with LDL® and LDL? finite sets of functions and operators.



Discrete differential equations

We characterise polynomial time computable real numbers and

polynomial time computable sequences over the reals (functions
from N to R).

Definition
Let f : N xR+ RR. The discrete derivative of f is defined by
f'(x,y) = Af(x,y) = f(x+1y) = f(x.y).
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Computable analysis: Computability and Complexity
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Definition (e.g. Ker I. Ko)
Let x € R. x is computable if and only if there exists a computable
function ¢ : N+ D such that for all n€ N, |¢(n) —x| <27".

Example
e, T are computable. Y- 2-BB() where BB is the Busy Beavers
function is not.



Computable analysis: Computability and Complexity
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Definition (e.g. Ker I. Ko)

We say that the time (or space) complexity of a computable real
number x is the time (or space) complexity of computing one of its
Cauchy function, where the input n to a Cauchy function is written
in unitary notation 0".

Definition (e.g. Ker I.Ko)

A function 7 : R+ R is computable if there exists a oracle Turing
machine M such that, for all x € R and ¢ a Cauchy function
associated to x (CFy), the function y computed by M with oracle ¢
(w(n)=M®(n)) is in CF(y).



Example: Primitive recursive functions

A function over the integers is primitive recursive, denoted %, if
and only if it belongs to the smallest set of functions that contains

» constant function 0,
> the projection functions nf,
» the functions successor s,

» and that is closed under composition and primitive recursion.

We have % = [0, w!, s; composition, primitive recursion]
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Example: Primitive recursive functions
Let peN, g:NP - Nand h: NP2 5 N,

The function f = REC(g, h) : NPT — N is defined by primitive
recursion from g and h if:

f(0,y) =g(y)
f(x+1,y) = h(f(x,y),x,y)

We can reformulate f through differential discrete equation:

O (o) = B(F(xy) x,9)

h
h(f(x+1,y),x+1,y)—h(f(x,y),x,y)
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Another example: Elementary functions and Grzegorczyk's
hierarchy

» Class &9 : contains the constant function 0, the projection
functions 7r,f’, the successor function s, and is closed under
composition and bounded recursion.

» Class &" for n > 1 : defined similarly except that functions max
and E,, are added to the list of initial functions.

Known results:

» &3 : class of elementary functions (alternative definition by
bounded sum and product)

» &2 = Linspace, &2 = FLinspace (linear space and polynomial
growth)

> &1 C &L for n>3
> PR =;&

Linear ODEs give exactly the elementary functions.
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Bounded recursion

Let g:NP =N, h: NP2 5 Nand j: NPHL 5 N,

The function f = BR(g, h,i) : NP** — N is defined by bounded
recursion from g, h and i if

f(0,y) = &ly)
f(x+1y) = h(f(x,y),x.y)
under the condition that:

fix,y) < i(xy).
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Algebras of functions

Summary

» Characterise complexity classes , in polynomial time, by
algebras of functions

> How?

» Take some basis functions
» Allow classical operations such as composition
» Use a recursion mechanism
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Algebras of functions
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Summary

| 2

Characterise complexity classes , in polynomial time, by
algebras of functions

How?
» Take some basis functions
» Allow classical operations such as composition
» Use a recursion mechanism

Full recursion is too much (primitive recursion). Need to restrict
it.

Applications/goals: programming languages with performance
guarantees



Recursion on notation (Cobham ('62))

Consider sg,s1 : N — N
so(x) =2-x and s1(x) =2-x+1.
Definition

Function f defined by bounded recursion on notations, i.e. BRN,
from functions g, hg, h1 et k when:

) hO(X)y7 f(X7Y)) for x 7é 0
) = hl(X7y7 f(Xay))
k
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Cobham'’s approach

Fp smallest subset of primitive recursive functions

» Containing basis functions :
Fp = [0, 7, s0, 51, #; Composition, BRN]
with #, a "smash funtion" defined by #(x,y) = 2XIxI!

Cobham (62) :  Fp is equal to FP, the class of polynomial time
computable functions
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Why it works
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Why it works

» f is defined from hg, h; and k.
» If |k(x,y)| is polynomial in |x|+ |y|, then so is |f(x,y)]|
» Hence, inner terms do not grow too fast!
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Why it works

> [s1(x)] = [so(x)[ = |x[ +1
» Then the number of induction steps is in O(|x]|).
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Why it works

» Definition of useful functions (addition, concatenation,
conditionals, etc) "easy"
> 4(x,y) = 2%Vl Hence [#(x,y)| = [x| +[y|+1.

» Help to obtain "counters" of polynomial size.
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LDL and FP

Definition
» [P is the class of functions computed by deterministic Turing
machines in polynomial time
» FPSPACE is the class of functions computed by deterministic
Turing machines in polynomial space
» We have FP C #P C FPSPACE
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LDL and FP

Definition
» [P is the class of functions computed by deterministic Turing
machines in polynomial time

» FPSPACE is the class of functions computed by deterministic
Turing machines in polynomial space

» We have FP C #P C FPSPACE

Theorem (Bournez & Durand, '19)

For discrete functions, we have LDL = FP
where LDL =
[0,1, 7r,-k,€(x), +,—, X, cond(x); composition, linear length ODE].
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Definition (f Linear length ODE)

0y =g) and T ii(y) hiey)xy) (1)

where u is essentially linear in f(x,y).

= introduced in (Bournez & Durand '19) (1) is similar to classical
formula for classical continuous ODEs:
6f(x,y) _ 64(x) Of(x.y)
Sx  Ox  8(x)’

and hence this is similar to a change of variable: ¢ = /(x)



ODE for complexity classes

» Elementary functions are of high complexity, but linear systems
are the simplest kind of system

» Expressive and believed to help better understand computation
for both discrete and continuous settings
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LDIL = FPTIME: Why it works

Proof of (C): (main ideas)

» The derivation along ¢(x) (or any .Z with polylog "jumps")
permits to control the number of steps

» Linearity of the system permits to control the size of the output

Proof of (2): By a direct expression of a polynomial computation
of a register machine.
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Computing reals in polynomial time
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LDL® =
[0,1, 75, ¢(x),+,—, x,cond(x), ¥; composition, linear length ODE]

with cond(x) some piecewise linear continuous function that takes
value 1 for x > 2 and 0 for x < 3.
Proposition

All functions of LDIL® are computable in the sense of computable
analysis in polynomial time.



LDL®* C FP
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Proof.

By structural induction.

The
>
>

case of the closure under composition:
Take COMP(f,g)

By induction hypothesis, f and g are in FP, so there exists two
Turing machines My and M, that respectively compute f and g

Deterministic polynomial times Turing machines are closed
under composition, so COMP(f,g) is computable in
deterministic polynomial time.



Computing reals in polynomial time : FP C LDIL*®
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For any polynomial time computable function f : N9 — RY | we can
construct some function f € LDL® that simulates the computation

of f :

This basically requires to be able to simulate the computation of a
Turing machine using the functions from LDIL®.



Computing reals in polynomial time : FP C LDIL*®

Main ideas of the proof:

> We take a Turing machine M, with bi-infinite tapes computing
f, we assume the reals are in base 4:

l.

o ‘ro‘r

—_—N——
| r

» We encode each transition of M with functions of LIDIL®.

» We characterise the complete execution of M on some input as
a composition of the transitions: we know M is polynomial, so
we can bound the number of steps.
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Computing sequences in polynomial time

We are now able to compute sequences in polynomial time
f:N—R.
Main ideas of the proof:

» Encode the binary extension using only 1 and 3: computable in
LDL*®

Why? — Functions in LIDIL® are all continuous. Here, we use
discontinuous functions, but on disjoint intervals
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Computing sequences in polynomial time

We are now able to compute sequences in polynomial time
f:N—R.
Main ideas of the proof:

» Encode the binary extension using only 1 and 3: computable in
LDL®

» We use the same trick as for computing reals.

» We decode the result: computable in LDL®.

N Encode (1,3}
f ™
1,3}
R Decode {13}
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Function over the reals

We still need to characterise fuctions over the reals in polynomial
time:

R —EngQde (1,3}
f ™

1,3}

Decode {13}
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We introduce:
LDL® =
[0,1, 75, ¢(x),+,—,cond(x), 5; composition, linear length ODE],

and we prove:
Theorem

A continuous function f : Bd — RY is computable in polynomial time
if and only if there exists f : RY x N2 — RY e LDL? such that for all

xR XN, xe [—2X,2X}, neN, [f(x,2X,2") —f(x)|| < 27"
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Main ideas of the proof:

» We construct approximations of the fractional part, the integer
part, the division by 2, the modulo 2 in LDL?:

f

Integer Part  Division by 2 Modulo 2

» We construct two functions fi, > € LDL? such that either f; or
f» is equal to f on some intervals, and that overlap well.

> We use those functions to define another function A, which is
an adaptative barycenter such that :

f=AA+(1-2)h

» We use again the trick simulating the execution of the Turing
machine with function in LDL?.



Conclusion
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We were able to characterise computable real numbers and
sequences over the reals in polynomial time:

Theorem
A function f: N9 - R is computable in polynomial time if and
only if all its components belong to ILDILL®.

And functions over the reals:

Theorem
A continuous function f Rd — R is computable in polynomial time
if and only if there exists f : RY x N2 — RY e LDL? such that for all

xR, XN, xe [—2X,2X}, neN, [f(x,2%,2" —f(x)|| < 27"
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