A Characterisation of Computable Functions over $$\mathbb{R}$$ Using Ordinary Differential Equations

Manon BLANC École Polytechnique, LIX

State of the art

Discrete differential equations

Computable analysis: Computability and Complexity

▲日 ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ●

LDL and FP

LDL and FP

Computing real numbers in polynomial time

Computing sequences in polynomial time

Computing sequences in polynomial time

Functions over the reals

Conclusion

What has been done?

- Ordinary differential equations: well-understood, used in many fields in applied science (describing dynamical systems for example).
- We also can see them as a computation model: Shannon ('42), Moore ('96), Costa, Graça, Hainry, Pouly, Bournez...
- ► We focus on their discrete counterparts: discrete ODEs. ⇒ widely studied in numerical optimisation, combinatorial analysis
- Bournez & Durand ('19) established a connection with complexity theory : characterisation of polynomial time using discrete ODEs.

We prove:

Theorem (MCU'22)

A function $f : \mathbb{N}^d \to \mathbb{R}^{d'}$ is computable in polynomial time if and only if there exists $\tilde{f} : \mathbb{N}^{d+1} \to \mathbb{R}^{d'} \in \mathbb{LDL}^{\bullet}$ such that for all $x \in \mathbb{N}^d$, $n \in \mathbb{N}$, $\|\tilde{f}(x,2^n) - f(x)\| \leq 2^{-n}$ with $\mathbb{LDL}^{\bullet} =$ $[0,1,\pi_i^k, \ell(x), +, -, \times, cond(x), \frac{x}{2}$; composition, linear length ODE] and:

Theorem

A continuous function $f : \mathbb{R}^d \to \mathbb{R}^{d'}$ is computable in polynomial time if and only if there exists $\tilde{f} : \mathbb{R}^d \times \mathbb{N}^2 \to \mathbb{R}^{d'} \in \mathbb{LDL}^{\oslash}$ such that for all $x \in \mathbb{R}^d$, $X \in \mathbb{N}$, $x \in \left[-2^X, 2^X\right]$, $n \in \mathbb{N}$, $\|\tilde{f}(x, 2^X, 2^n) - f(x)\| \leq 2^{-n}$.

・ロト ・ 一下・ ・ コト ・ コト ・ ヨー

with \mathbb{LDL}^{\bullet} and \mathbb{LDL}^{\oslash} finite sets of functions and operators.

We characterise polynomial time computable real numbers and polynomial time computable sequences over the reals (functions from \mathbb{N} to \mathbb{R}).

Definition

Let $f : \mathbb{N} \times \mathbb{R} \mapsto \mathbb{R}$. The discrete derivative of f is defined by $f'(x,y) = \Delta f(x,y) = f(x+1,y) - f(x,y)$.

Computable analysis: Computability and Complexity

Definition (e.g. Ker I. Ko)

Let $x \in \mathbb{R}$. x is computable if and only if there exists a computable function $\phi : \mathbb{N} \mapsto \mathbb{D}$ such that for all $n \in \mathbb{N}$, $|\phi(n) - x| \leq 2^{-n}$.

Example

e, π are computable. $\sum_{i\geq 1} 2^{-BB(i)}$, where BB is the Busy Beavers function is not.

Computable analysis: Computability and Complexity

Definition (e.g. Ker I. Ko)

We say that the *time* (or *space*) complexity of a computable real number x is the time (or space) complexity of computing one of its Cauchy function, where the input n to a Cauchy function is written in unitary notation 0^n .

Definition (e.g. Ker I.Ko)

A function $f : \mathbb{R} \mapsto \mathbb{R}$ is computable if there exists a oracle Turing machine M such that, for all $x \in \mathbb{R}$ and ϕ a Cauchy function associated to x (CF_x), the function ψ computed by M with oracle ϕ ($\psi(n) = M^{\phi}(n)$) is in $CF_{f(x)}$.

Example: Primitive recursive functions

A function over the integers is primitive recursive, denoted \mathscr{PR} , if and only if it belongs to the smallest set of functions that contains

- constant function 0,
- the projection functions π_i^p ,
- the functions successor s,
- ▶ and that is closed under composition and primitive recursion.

We have $\mathscr{PR} = [O, \pi_i^p, s; composition, primitive recursion]$

Example: Primitive recursive functions

Let $p \in \mathbb{N}$, $g : \mathbb{N}^p \to \mathbb{N}$ and $h : \mathbb{N}^{p+2} \to \mathbb{N}$.

The function $f = \operatorname{REC}(g, h) : \mathbb{N}^{p+1} \to \mathbb{N}$ is defined by primitive recursion from g and h if:

$$\begin{cases} f(0,y) = g(y) \\ f(x+1,y) = h(f(x,y),x,y) \end{cases}$$

We can reformulate f through differential discrete equation:

$$\frac{\partial f}{\partial x}(x,y) = \overline{h}(f(x,y),x,y)$$
$$= h(f(x+1,y),x+1,y) - h(f(x,y),x,y)$$

Another example: Elementary functions and Grzegorczyk's hierarchy

- Class &⁰ : contains the constant function 0, the projection functions π^p_i, the successor function s, and is closed under composition and bounded recursion.
- Class *Eⁿ* for n ≥ 1 : defined similarly except that functions max and E_n are added to the list of initial functions.

Known results:

- &³: class of elementary functions (alternative definition by bounded sum and product)
- *E*²_∗ = Linspace, *E*² = *F*_{Linspace} (linear space and polynomial growth)

▶
$$\mathscr{E}^n \subsetneq \mathscr{E}^{n+1}$$
 for $n \ge 3$

$$\blacktriangleright \mathscr{PR} = \bigcup_i \mathscr{E}^i$$

Linear ODEs give exactly the elementary functions.

Bounded recursion

Let $g: \mathbb{N}^p \to \mathbb{N}$, $h: \mathbb{N}^{p+2} \to \mathbb{N}$ and $i: \mathbb{N}^{p+1} \to \mathbb{N}$.

The function $f = BR(g, h, i) : \mathbb{N}^{p+1} \to \mathbb{N}$ is defined by bounded recursion from g, h and i if

$$f(0,y) = g(y)$$

$$f(x+1,y) = h(f(x,y),x,y)$$

under the condition that:

$$f(x,y) \leq i(x,y).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Algebras of functions

Summary

 Characterise complexity classes , in polynomial time, by algebras of functions

- ► How?
 - Take some basis functions
 - Allow classical operations such as composition
 - Use a recursion mechanism

Algebras of functions

Summary

- Characterise complexity classes , in polynomial time, by algebras of functions
- ► How?
 - Take some basis functions
 - Allow classical operations such as composition
 - Use a recursion mechanism
- Full recursion is too much (primitive recursion). Need to restrict it.
- Applications/goals: programming languages with performance guarantees

Recursion on notation (Cobham ('62))

Consider $s_0,s_1:\mathbb{N}\to\mathbb{N}$

$$s_0(x) = 2 \cdot x$$
 and $s_1(x) = 2 \cdot x + 1$.

Definition

Function f defined by bounded recursion on notations, i.e. BRN, from functions g, h_0 , h_1 et k when:

$$\begin{cases} f(0,y) = g(y) \\ f(s_0(x),y) = h_0(x,y,f(x,y)) \text{ for } x \neq 0 \\ f(s_1(x),y) = h_1(x,y,f(x,y)) \\ f(x,y) \le k(x,y) \end{cases}$$

Cobham's approach

 F_P smallest subset of primitive recursive functions

Containing basis functions : F_P = [0, π^k_i, s₀, s₁, ♯; Composition, BRN] with ♯, a "smash function" defined by ♯(x, y) = 2^{|x|×|y|}

Cobham (62) : F_P is equal to FP, the class of polynomial time computable functions

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

$$\begin{cases} f(0,y) = g(y) \\ f(s_0(x),y) = h_0(x,y,f(x,y)) \text{ for } x \neq 0 \\ f(s_1(x),y) = h_1(x,y,f(x,y)) \\ f(x,y) \le k(x,y) \end{cases}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

$$\begin{cases} f(0,y) = g(y) \\ f(s_0(x),y) = h_0(x,y,f(x,y)) \text{ for } x \neq 0 \\ f(s_1(x),y) = h_1(x,y,f(x,y)) \\ f(x,y) \le k(x,y) \end{cases}$$

▲ロト ▲御ト ▲ヨト ▲ヨト 三ヨー のへで

- f is defined from h_0, h_1 and k.
- If |k(x,y)| is polynomial in |x| + |y|, then so is |f(x,y)|
- Hence, inner terms do not grow too fast!

$$\begin{cases} f(0,y) = g(y) \\ f(s_0(x),y) = h_0(x,y,f(x,y)) \text{ for } x \neq 0 \\ f(s_1(x),y) = h_1(x,y,f(x,y)) \\ f(x,y) \le k(x,y) \end{cases}$$

►
$$|s_1(x)| = |s_0(x)| = |x| + 1$$

• Then the number of induction steps is in O(|x|).

 Definition of useful functions (addition, concatenation, conditionals, etc) "easy"

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- $\sharp(x,y) = 2^{|x| \times |y|}$, Hence $|\sharp(x,y)| = |x| + |y| + 1$.
- Help to obtain "counters" of polynomial size.

$\mathsf{LDL} \text{ and } \mathsf{FP}$

Definition

- FP is the class of functions computed by deterministic Turing machines in polynomial time
- FPSPACE is the class of functions computed by deterministic Turing machines in polynomial space

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

• We have $FP \subseteq \#P \subseteq FPSPACE$

$\mathsf{LDL} \text{ and } \mathsf{FP}$

Definition

- FP is the class of functions computed by deterministic Turing machines in polynomial time
- FPSPACE is the class of functions computed by deterministic Turing machines in polynomial space
- We have $FP \subseteq \#P \subseteq FPSPACE$

Theorem (Bournez & Durand, '19) For discrete functions, we have $\mathbb{LDL} = FP$ where $\mathbb{LDL} =$ $[0,1,\pi_i^k,\ell(x),+,-,\times,cond(x); composition, linear length ODE].$

Definition (f Linear length ODE)

$$f(0,y) = g(y)$$
 and $\frac{\partial f(x,y)}{\partial \ell} = u(f(x,y),h(x,y),x,y)$ (1)

where u is essentially linear in f(x,y).

 \Rightarrow introduced in (Bournez & Durand '19) (1) is similar to classical formula for classical continuous ODEs:

$$\frac{\delta f(x,y)}{\delta x} = \frac{\delta \ell(x)}{\delta x} \cdot \frac{\delta f(x,y)}{\delta \ell(x)},$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

and hence this is similar to a change of variable: $t = \ell(x)$

ODE for complexity classes

- Elementary functions are of high complexity, but linear systems are the simplest kind of system
- Expressive and believed to help better understand computation for both discrete and continuous settings

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

$\mathbb{LDL} = FPTIME$: Why it works

Proof of (\subseteq **)**: (main ideas)

- The derivation along l(x) (or any L with polylog "jumps") permits to control the number of steps
- Linearity of the system permits to control the size of the output

Proof of (\supseteq **):** By a direct expression of a polynomial computation of a register machine.

▲日 ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ●

Computing reals in polynomial time

 $\mathbb{LDL}^{\bullet} = [0, 1, \pi_i^k, \ell(x), +, -, \times, \text{cond}(x), \frac{x}{2}; \text{ composition, linear length ODE}]$

with $\overline{cond}(x)$ some piecewise linear continuous function that takes value 1 for $x > \frac{3}{4}$ and 0 for $x < \frac{1}{4}$.

Proposition

All functions of \mathbb{LDL}^{\bullet} are computable in the sense of computable analysis in polynomial time.

▲日 ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ●

$\mathbb{LDL}^{\bullet} \subseteq FP$

Proof. By structural induction.

The case of the closure under composition:

- ► Take COMP(f,g)
- By induction hypothesis, f and g are in FP, so there exists two Turing machines M_f and M_g that respectively compute f and g

▲日 ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ●

Deterministic polynomial times Turing machines are closed under composition, so COMP(f,g) is computable in deterministic polynomial time.

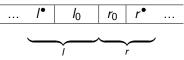
Computing reals in polynomial time : $FP \subseteq \mathbb{LDL}^{\bullet}$

- For any polynomial time computable function $f: \mathbb{N}^d \mapsto \mathbb{R}^d$, we can construct some function $\tilde{f} \in \mathbb{LDL}^{\bullet}$ that simulates the computation of f:
- This basically requires to be able to simulate the computation of a Turing machine using the functions from \mathbb{LDL}^{\bullet} .

Computing reals in polynomial time : $FP \subseteq \mathbb{LDL}^{\bullet}$

Main ideas of the proof:

We take a Turing machine *M*, with bi-infinite tapes computing *f*, we assume the reals are in base 4:



▶ We encode each transition of M with functions of \mathbb{LDL}^{\bullet} .

We characterise the complete execution of *M* on some input as a composition of the transitions: we know *M* is polynomial, so we can bound the number of steps.

Computing sequences in polynomial time

We are now able to compute sequences in polynomial time $f : \mathbb{N} \mapsto \mathbb{R}$.

Main ideas of the proof:

Encode the binary extension using only 1 and 3: computable in LDL[•]

▲日 ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ●

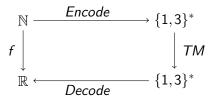
Why? \to Functions in \mathbb{LDL}^\bullet are all continuous. Here, we use discontinuous functions, but on disjoint intervals

Computing sequences in polynomial time

We are now able to compute sequences in polynomial time $f : \mathbb{N} \mapsto \mathbb{R}$.

Main ideas of the proof:

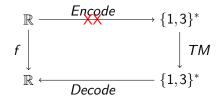
- Encode the binary extension using only 1 and 3: computable in LDL[•]
- We use the same trick as for computing reals.
- We decode the result: computable in \mathbb{LDL}^{\bullet} .



イロト 不得 トイヨト イヨト 三日

Function over the reals

We still need to characterise fuctions over the reals in polynomial time:



◆□▶ ◆舂▶ ◆注▶ ◆注▶

э

We introduce: $\mathbb{LDL}^{\oslash} = [0, 1, \pi_i^k, \ell(x), +, -, cond(x), \frac{x}{2}; composition, linear length ODE],$

and we prove:

Theorem

A continuous function $f : \mathbb{R}^d \to \mathbb{R}^{d'}$ is computable in polynomial time if and only if there exists $\tilde{f} : \mathbb{R}^d \times \mathbb{N}^2 \to \mathbb{R}^{d'} \in \mathbb{LDL}^{\oslash}$ such that for all $x \in \mathbb{R}^d$, $X \in \mathbb{N}$, $x \in \left[-2^X, 2^X\right]$, $n \in \mathbb{N}$, $\|\tilde{f}(x, 2^X, 2^n) - f(x)\| \leq 2^{-n}$

・ロト ・ 一下・ ・ コト ・ コト ・ ヨー

Main ideas of the proof:

We construct approximations of the fractional part, the integer part, the division by 2, the modulo 2 in LDL[⊘]:

Integer Part Division by 2 Modulo 2

- We construct two functions f₁, f₂ ∈ LDL[⊘] such that either f₁ or f₂ is equal to f on some intervals, and that overlap well.
- We use those functions to define another function λ, which is an adaptative barycenter such that :

$$f = \lambda f_1 + (1 - \lambda) f_2$$

We use again the trick simulating the execution of the Turing machine with function in LDL[∅].

Conclusion

We were able to characterise computable real numbers and sequences over the reals in polynomial time:

Theorem

A function $f : \mathbb{N}^d \to \mathbb{R}^{d'}$. is computable in polynomial time if and only if all its components belong to $\mathbb{L}\overline{\mathbb{D}}\mathbb{L}^{\bullet}$.

And functions over the reals:

Theorem

A continuous function $f : \mathbb{R}^d \to \mathbb{R}^{d'}$ is computable in polynomial time if and only if there exists $\tilde{f} : \mathbb{R}^d \times \mathbb{N}^2 \to \mathbb{R}^{d'} \in \mathbb{LDL}^{\oslash}$ such that for all $x \in \mathbb{R}^d$, $X \in \mathbb{N}$, $x \in \left[-2^X, 2^X\right]$, $n \in \mathbb{N}$, $\|\tilde{f}(x, 2^X, 2^n) - f(x)\| \leq 2^{-n}$.