
A Characterisation of Computable Functions over
R

Using Ordinary Differential Equations

Manon BLANC

École Polytechnique, LIX

1/30

State of the art

Discrete differential equations

Computable analysis: Computability and Complexity

LDL and FP

LDL and FP

Computing real numbers in polynomial time

Computing sequences in polynomial time

Computing sequences in polynomial time

Functions over the reals

Conclusion

2/30

What has been done?

I Ordinary differential equations: well-understood, used in many
fields in applied science (describing dynamical systems for
example).

I We also can see them as a computation model: Shannon (’42),
Moore (’96), Costa, Graça, Hainry, Pouly, Bournez...

I We focus on their discrete counterparts: discrete ODEs.
⇒ widely studied in numerical optimisation, combinatorial
analysis

I Bournez & Durand (’19) established a connection with
complexity theory : characterisation of polynomial time using
discrete ODEs.

3/30

We prove:

Theorem (MCU’22)
A function f : Nd →Rd ′ is computable in polynomial time if and only
if there exists f̃ : Nd+1→ Rd ′ ∈ LDL• such that for all x ∈ Nd ,
n ∈ N, ‖f̃(x,2n)− f(x)‖ ≤ 2−n with LDL• =
[0,1,πk

i , `(x),+,−,×, ¯cond(x), x2 ;composition, linear length ODE]

and:

Theorem
A continuous function f : Rd →Rd ′ is computable in polynomial time
if and only if there exists f̃ : Rd ×N2→Rd ′ ∈ LDL� such that for all
x ∈ Rd , X ∈ N, x ∈

[
−2X ,2X

]
, n ∈ N, ‖f̃(x,2X ,2n)− f(x)‖ ≤ 2−n.

with LDL• and LDL� finite sets of functions and operators.

4/30

Discrete differential equations

We characterise polynomial time computable real numbers and
polynomial time computable sequences over the reals (functions
from N to R).

Definition
Let f : N×R 7→ R. The discrete derivative of f is defined by
f ′(x ,y) = ∆f (x ,y) = f (x +1,y)− f (x ,y).

5/30

Computable analysis: Computability and Complexity

Definition (e.g. Ker I. Ko)
Let x ∈ R. x is computable if and only if there exists a computable
function φ : N 7→ D such that for all n ∈ N, |φ(n)−x | ≤ 2−n.

Example
e, π are computable. ∑i≥1 2−BB(i), where BB is the Busy Beavers
function is not.

6/30

Computable analysis: Computability and Complexity

Definition (e.g. Ker I. Ko)
We say that the time (or space) complexity of a computable real
number x is the time (or space) complexity of computing one of its
Cauchy function, where the input n to a Cauchy function is written
in unitary notation 0n.

Definition (e.g. Ker I.Ko)
A function f : R 7→ R is computable if there exists a oracle Turing
machine M such that, for all x ∈ R and φ a Cauchy function
associated to x (CFx), the function ψ computed by M with oracle φ

(ψ(n) = Mφ (n)) is in CFf (x).

7/30

Example: Primitive recursive functions

A function over the integers is primitive recursive, denoted PR, if
and only if it belongs to the smallest set of functions that contains

I constant function 0,
I the projection functions π

p
i ,

I the functions successor s,
I and that is closed under composition and primitive recursion.

We have PR = [O,πp
i ,s;composition,primitive recursion]

8/30

Example: Primitive recursive functions

Let p ∈ N, g : Np→ N and h : Np+2→ N.

The function f = REC(g ,h) : Np+1→ N is defined by primitive
recursion from g and h if:{

f (0,y) = g(y)
f (x +1,y) = h(f (x ,y),x ,y)

We can reformulate f through differential discrete equation:

∂ f

∂x
(x ,y) = h(f (x ,y),x ,y)

= h(f (x +1,y),x +1,y)−h(f (x ,y),x ,y)

9/30

Another example: Elementary functions and Grzegorczyk’s
hierarchy

I Class E 0 : contains the constant function 0, the projection
functions π

p
i , the successor function s, and is closed under

composition and bounded recursion.
I Class E n for n ≥ 1 : defined similarly except that functions max

and En are added to the list of initial functions.
Known results:
I E 3 : class of elementary functions (alternative definition by

bounded sum and product)
I E 2

∗ = Linspace, E 2 = FLinspace (linear space and polynomial
growth)

I E n (E n+1 for n ≥ 3
I PR =

⋃
i E

i

Linear ODEs give exactly the elementary functions.

10/30

Bounded recursion

Let g : Np→ N, h : Np+2→ N and i : Np+1→ N.

The function f = BR(g ,h, i) : Np+1→ N is defined by bounded
recursion from g , h and i if

f (0,y) = g(y)

f (x +1,y) = h(f (x ,y),x ,y)

under the condition that:
f (x ,y) ≤ i(x ,y).

11/30

Algebras of functions
Summary

I Characterise complexity classes , in polynomial time, by
algebras of functions

I How?
I Take some basis functions
I Allow classical operations such as composition
I Use a recursion mechanism

I Full recursion is too much (primitive recursion). Need to restrict
it.

I Applications/goals: programming languages with performance
guarantees

12/30

Algebras of functions
Summary

I Characterise complexity classes , in polynomial time, by
algebras of functions

I How?
I Take some basis functions
I Allow classical operations such as composition
I Use a recursion mechanism

I Full recursion is too much (primitive recursion). Need to restrict
it.

I Applications/goals: programming languages with performance
guarantees

12/30

Recursion on notation (Cobham (’62))

Consider s0,s1 : N→ N

s0(x) = 2 ·x and s1(x) = 2 ·x +1.

Definition
Function f defined by bounded recursion on notations, i.e. BRN,
from functions g ,h0,h1 et k when:

f (0,y) = g(y)
f (s0(x),y) = h0(x ,y, f (x ,y)) for x 6= 0
f (s1(x),y) = h1(x ,y, f (x ,y))
f (x ,y)≤ k(x ,y)

13/30

Cobham’s approach

FP smallest subset of primitive recursive functions
I Containing basis functions :

FP = [0,πk
i ,s0,s1,];Composition,BRN]

with], a "smash funtion" defined by](x ,y) = 2|x |×|y |

Cobham (62) : FP is equal to FP, the class of polynomial time
computable functions

14/30

Why it works


f (0,y) = g(y)
f (s0(x),y) = h0(x ,y, f (x ,y)) for x 6= 0
f (s1(x),y) = h1(x ,y, f (x ,y))
f (x ,y)≤ k(x ,y)

15/30

Why it works


f (0,y) = g(y)
f (s0(x),y) = h0(x ,y, f (x ,y)) for x 6= 0
f (s1(x),y) = h1(x ,y, f (x ,y))
f (x ,y)≤ k(x ,y)

I f is defined from h0,h1 and k .
I If |k(x ,y)| is polynomial in |x |+ |y |, then so is |f (x ,y)|
I Hence, inner terms do not grow too fast!

15/30

Why it works


f (0,y) = g(y)
f (s0(x),y) = h0(x ,y, f (x ,y)) for x 6= 0
f (s1(x),y) = h1(x ,y, f (x ,y))
f (x ,y)≤ k(x ,y)

I |s1(x)|= |s0(x)|= |x |+1
I Then the number of induction steps is in O(|x |).

15/30

Why it works

I Definition of useful functions (addition, concatenation,
conditionals, etc) "easy"

I](x ,y) = 2|x |×|y |, Hence |](x ,y)|= |x |+ |y |+1.
I Help to obtain "counters" of polynomial size.

16/30

LDL and FP

Definition
I FP is the class of functions computed by deterministic Turing

machines in polynomial time
I FPSPACE is the class of functions computed by deterministic

Turing machines in polynomial space
I We have FP ⊆#P ⊆ FPSPACE

Theorem (Bournez & Durand, ’19)
For discrete functions, we have LDL = FP
where LDL =
[0,1,πk

i , `(x),+,−,×,cond(x);composition, linear length ODE].

17/30

LDL and FP

Definition
I FP is the class of functions computed by deterministic Turing

machines in polynomial time
I FPSPACE is the class of functions computed by deterministic

Turing machines in polynomial space
I We have FP ⊆#P ⊆ FPSPACE

Theorem (Bournez & Durand, ’19)
For discrete functions, we have LDL = FP
where LDL =
[0,1,πk

i , `(x),+,−,×,cond(x);composition, linear length ODE].

17/30

Definition (f Linear length ODE)

f (0,y) = g(y) and
∂ f(x ,y)

∂`
= u(f(x ,y),h(x ,y),x ,y) (1)

where u is essentially linear in f(x ,y).
⇒ introduced in (Bournez & Durand ’19) (1) is similar to classical
formula for classical continuous ODEs:

δ f (x ,y)

δx
=

δ`(x)

δx
· δ f (x ,y)

δ`(x)
,

and hence this is similar to a change of variable: t = `(x)

18/30

ODE for complexity classes

I Elementary functions are of high complexity, but linear systems
are the simplest kind of system

I Expressive and believed to help better understand computation
for both discrete and continuous settings

19/30

LDL= FPTIME : Why it works

Proof of (⊆): (main ideas)
I The derivation along `(x) (or any L with polylog "jumps")

permits to control the number of steps
I Linearity of the system permits to control the size of the output

Proof of (⊇): By a direct expression of a polynomial computation
of a register machine.

20/30

Computing reals in polynomial time

LDL• =
[0,1,πk

i , `(x),+,−,×, ¯cond(x), x2 ;composition, linear length ODE]

with ¯cond(x) some piecewise linear continuous function that takes
value 1 for x > 3

4 and 0 for x < 1
4 .

Proposition
All functions of LDL• are computable in the sense of computable
analysis in polynomial time.

21/30

LDL• ⊆ FP

Proof.
By structural induction.

The case of the closure under composition:
I Take COMP(f ,g)

I By induction hypothesis, f and g are in FP, so there exists two
Turing machines Mf and Mg that respectively compute f and g

I Deterministic polynomial times Turing machines are closed
under composition, so COMP(f ,g) is computable in
deterministic polynomial time.

22/30

Computing reals in polynomial time : FP ⊆ LDL•

For any polynomial time computable function f : Nd 7→ Rd , we can
construct some function f̃ ∈ LDL• that simulates the computation
of f :

This basically requires to be able to simulate the computation of a
Turing machine using the functions from LDL•.

23/30

Computing reals in polynomial time : FP ⊆ LDL•

Main ideas of the proof:
I We take a Turing machine M, with bi-infinite tapes computing

f , we assume the reals are in base 4:

... l• l0 r0 r• ...︸ ︷︷ ︸
l

︸ ︷︷ ︸
r

I We encode each transition of M with functions of LDL•.
I We characterise the complete execution of M on some input as

a composition of the transitions: we know M is polynomial, so
we can bound the number of steps.

24/30

Computing sequences in polynomial time

We are now able to compute sequences in polynomial time
f : N 7→ R.
Main ideas of the proof:
I Encode the binary extension using only 1 and 3: computable in

LDL•

Why? → Functions in LDL• are all continuous. Here, we use
discontinuous functions, but on disjoint intervals

25/30

Computing sequences in polynomial time

We are now able to compute sequences in polynomial time
f : N 7→ R.
Main ideas of the proof:
I Encode the binary extension using only 1 and 3: computable in

LDL•

I We use the same trick as for computing reals.
I We decode the result: computable in LDL•.

N

R {1,3}∗

{1,3}∗Encode

TM

Decode

f

26/30

Function over the reals
We still need to characterise fuctions over the reals in polynomial
time:

R

R {1,3}∗

{1,3}∗Encode

TM

Decode

f

XX

27/30

We introduce:
LDL� =
[0,1,πk

i , `(x),+,−, ¯cond(x), x2 ;composition, linear length ODE],

and we prove:

Theorem
A continuous function f : Rd →Rd ′ is computable in polynomial time
if and only if there exists f̃ : Rd ×N2→Rd ′ ∈ LDL� such that for all
x ∈ Rd , X ∈ N, x ∈

[
−2X ,2X

]
, n ∈ N, ‖f̃(x,2X ,2n)− f(x)‖ ≤ 2−n

28/30

Main ideas of the proof:
I We construct approximations of the fractional part, the integer

part, the division by 2, the modulo 2 in LDL�:

Integer Part Division by 2 Modulo 2

I We construct two functions f1, f2 ∈ LDL� such that either f1 or
f2 is equal to f on some intervals, and that overlap well.

I We use those functions to define another function λ , which is
an adaptative barycenter such that :

f = λ f1 + (1−λ)f2

I We use again the trick simulating the execution of the Turing
machine with function in LDL�.

29/30

Conclusion
We were able to characterise computable real numbers and
sequences over the reals in polynomial time:

Theorem
A function f : Nd → Rd ′ . is computable in polynomial time if and
only if all its components belong to ¯LDL•.

And functions over the reals:

Theorem
A continuous function f : Rd →Rd ′ is computable in polynomial time
if and only if there exists f̃ : Rd ×N2→Rd ′ ∈ LDL� such that for all
x ∈ Rd , X ∈ N, x ∈

[
−2X ,2X

]
, n ∈ N, ‖f̃(x,2X ,2n)− f(x)‖ ≤ 2−n.

30/30

	State of the art
	Discrete differential equations
	Computable analysis: Computability and Complexity
	LDL and FP
	LDL and FP
	Computing real numbers in polynomial time
	Computing sequences in polynomial time
	Computing sequences in polynomial time
	Functions over the reals
	Conclusion

