A Characterisation of Computable Functions over
R
Using Ordinary Differential Equations

Manon BLANC

Ecole Polytechnique, LIX

1/30

2/30

State of the art

Discrete differential equations

Computable analysis: Computability and Complexity
LDL and FP

LDL and FP

Computing real numbers in polynomial time
Computing sequences in polynomial time
Computing sequences in polynomial time

Functions over the reals

Conclusion

What has been done?

3/30

Ordinary differential equations: well-understood, used in many
fields in applied science (describing dynamical systems for
example).

We also can see them as a computation model: Shannon ('42),
Moore ('96), Costa, Graga, Hainry, Pouly, Bournez...

We focus on their discrete counterparts: discrete ODEs.

= widely studied in numerical optimisation, combinatorial
analysis

Bournez & Durand ('19) established a connection with

complexity theory : characterisation of polynomial time using
discrete ODEs.

4/30

We prove:

Theorem (MCU'22)

A function f : N — R9 js computable in polynomial time if and only
if there exists f : N9T1 s RY' € LDL® such that for all x € N¢,
neN, [f(x,2") —f(x)|| < 27" with LDL® =

[0,1, 7k, £(x),+, —, X, cond(x), 3, composition, linear length ODE]
and:

Theorem

A continuous function f : RY — RY is computable in polynomial time
if and only if there exists f : RY x N2 — R9" € LDL? such that for all
xeRI XeN, xe [—2X,2X}, neN, [[f(x,2X,2" —f(x)|| < 27"

with LDL® and LDL? finite sets of functions and operators.

Discrete differential equations

We characterise polynomial time computable real numbers and

polynomial time computable sequences over the reals (functions
from N to R).

Definition
Let f : N xR+ RR. The discrete derivative of f is defined by
f'(x,y) = Af(x,y) = f(x+1y) = f(x.y).

5/30

Computable analysis: Computability and Complexity

6/30

Definition (e.g. Ker I. Ko)
Let x € R. x is computable if and only if there exists a computable
function ¢ : N+ D such that for all n€ N, |¢(n) —x| <27".

Example
e, T are computable. Y- 2-BB() where BB is the Busy Beavers
function is not.

Computable analysis: Computability and Complexity

7/30

Definition (e.g. Ker I. Ko)

We say that the time (or space) complexity of a computable real
number x is the time (or space) complexity of computing one of its
Cauchy function, where the input n to a Cauchy function is written
in unitary notation 0".

Definition (e.g. Ker I.Ko)

A function 7 : R+ R is computable if there exists a oracle Turing
machine M such that, for all x € R and ¢ a Cauchy function
associated to x (CFy), the function y computed by M with oracle ¢
(w(n)=M®(n)) is in CF(y).

Example: Primitive recursive functions

A function over the integers is primitive recursive, denoted %, if
and only if it belongs to the smallest set of functions that contains

» constant function 0,
> the projection functions nf,
» the functions successor s,

» and that is closed under composition and primitive recursion.

We have % = [0, w!, s; composition, primitive recursion]

8/30

Example: Primitive recursive functions
Let peN, g:NP - Nand h: NP2 5 N,

The function f = REC(g, h) : NPT — N is defined by primitive
recursion from g and h if:

f(0,y) =g(y)
f(x+1,y) = h(f(x,y),x,y)

We can reformulate f through differential discrete equation:

O (o) = B(F(xy) x,9)

h
h(f(x+1,y),x+1,y)—h(f(x,y),x,y)

9/30

Another example: Elementary functions and Grzegorczyk's
hierarchy

» Class &9 : contains the constant function 0, the projection
functions 7r,f’, the successor function s, and is closed under
composition and bounded recursion.

» Class &" for n > 1 : defined similarly except that functions max
and E,, are added to the list of initial functions.

Known results:

» &3 : class of elementary functions (alternative definition by
bounded sum and product)

» &2 = Linspace, &2 = FLinspace (linear space and polynomial
growth)

> &1 C &L for n>3
> PR =;&

Linear ODEs give exactly the elementary functions.

10/30

Bounded recursion

Let g:NP =N, h: NP2 5 Nand j: NPHL 5 N,

The function f = BR(g, h,i) : NP** — N is defined by bounded
recursion from g, h and i if

f(0,y) = &ly)
f(x+1y) = h(f(x,y),x.y)
under the condition that:

fix,y) < i(xy).

11/30

Algebras of functions

Summary

» Characterise complexity classes , in polynomial time, by
algebras of functions

> How?

» Take some basis functions
» Allow classical operations such as composition
» Use a recursion mechanism

12/30

Algebras of functions

12/30

Summary

| 2

Characterise complexity classes , in polynomial time, by
algebras of functions

How?
» Take some basis functions
» Allow classical operations such as composition
» Use a recursion mechanism

Full recursion is too much (primitive recursion). Need to restrict
it.

Applications/goals: programming languages with performance
guarantees

Recursion on notation (Cobham ('62))

Consider sg,s1 : N — N
so(x) =2-x and s1(x) =2-x+1.
Definition

Function f defined by bounded recursion on notations, i.e. BRN,
from functions g, hg, h1 et k when:

) hO(X)y7 f(X7Y)) for x 7é 0
) = hl(X7y7 f(Xay))
k

13/30

Cobham'’s approach

Fp smallest subset of primitive recursive functions

» Containing basis functions :
Fp = [0, 7, s0, 51, #; Composition, BRN]
with #, a "smash funtion" defined by #(x,y) = 2XIxI!

Cobham (62) : Fp is equal to FP, the class of polynomial time
computable functions

14/30

Why it works

15/30

Why it works

» f is defined from hg, h; and k.
» If |k(x,y)| is polynomial in |x|+ |y|, then so is |f(x,y)]|
» Hence, inner terms do not grow too fast!

15/30

Why it works

> [s1(x)] = [so(x)[= |x[+1
» Then the number of induction steps is in O(|x]|).

15/30

Why it works

» Definition of useful functions (addition, concatenation,
conditionals, etc) "easy"
> 4(x,y) = 2%Vl Hence [#(x,y)| = [x| +[y|+1.

» Help to obtain "counters" of polynomial size.

16/30

LDL and FP

Definition
» [P is the class of functions computed by deterministic Turing
machines in polynomial time
» FPSPACE is the class of functions computed by deterministic
Turing machines in polynomial space
» We have FP C #P C FPSPACE

17/30

LDL and FP

Definition
» [P is the class of functions computed by deterministic Turing
machines in polynomial time

» FPSPACE is the class of functions computed by deterministic
Turing machines in polynomial space

» We have FP C #P C FPSPACE

Theorem (Bournez & Durand, '19)

For discrete functions, we have LDL = FP
where LDL =
[0,1, 7r,-k,€(x), +,—, X, cond(x); composition, linear length ODE].

17/30

18/30

Definition (f Linear length ODE)

0y =g) and T ii(y) hiey)xy) (1)

where u is essentially linear in f(x,y).

= introduced in (Bournez & Durand '19) (1) is similar to classical
formula for classical continuous ODEs:
6f(x,y) _ 64(x) Of(x.y)
Sx Ox 8(x)’

and hence this is similar to a change of variable: ¢ = /(x)

ODE for complexity classes

» Elementary functions are of high complexity, but linear systems
are the simplest kind of system

» Expressive and believed to help better understand computation
for both discrete and continuous settings

19/30

LDIL = FPTIME: Why it works

Proof of (C): (main ideas)

» The derivation along ¢(x) (or any .Z with polylog "jumps")
permits to control the number of steps

» Linearity of the system permits to control the size of the output

Proof of (2): By a direct expression of a polynomial computation
of a register machine.

20/30

Computing reals in polynomial time

21/30

LDL® =
[0,1, 75, ¢(x),+,—, x,cond(x), ¥; composition, linear length ODE]

with cond(x) some piecewise linear continuous function that takes
value 1 for x > 2 and 0 for x < 3.
Proposition

All functions of LDIL® are computable in the sense of computable
analysis in polynomial time.

LDL®* C FP

22/30

Proof.

By structural induction.

The
>
>

case of the closure under composition:
Take COMP(f,g)

By induction hypothesis, f and g are in FP, so there exists two
Turing machines My and M, that respectively compute f and g

Deterministic polynomial times Turing machines are closed
under composition, so COMP(f,g) is computable in
deterministic polynomial time.

Computing reals in polynomial time : FP C LDIL*®

23/30

For any polynomial time computable function f : N9 — RY | we can
construct some function f € LDL® that simulates the computation

of f :

This basically requires to be able to simulate the computation of a
Turing machine using the functions from LDIL®.

Computing reals in polynomial time : FP C LDIL*®

Main ideas of the proof:

> We take a Turing machine M, with bi-infinite tapes computing
f, we assume the reals are in base 4:

l.

o ‘ro‘r

—_—N——
| r

» We encode each transition of M with functions of LIDIL®.

» We characterise the complete execution of M on some input as
a composition of the transitions: we know M is polynomial, so
we can bound the number of steps.

24/30

Computing sequences in polynomial time

We are now able to compute sequences in polynomial time
f:N—R.
Main ideas of the proof:

» Encode the binary extension using only 1 and 3: computable in
LDL*®

Why? — Functions in LIDIL® are all continuous. Here, we use
discontinuous functions, but on disjoint intervals

25/30

Computing sequences in polynomial time

We are now able to compute sequences in polynomial time
f:N—R.
Main ideas of the proof:

» Encode the binary extension using only 1 and 3: computable in
LDL®

» We use the same trick as for computing reals.

» We decode the result: computable in LDL®.

N Encode (1,3}
f ™
1,3}
R Decode {13}

26/30

Function over the reals

We still need to characterise fuctions over the reals in polynomial
time:

R —EngQde (1,3}
f ™

1,3}

Decode {13}

27/30

We introduce:
LDL® =
[0,1, 75, ¢(x),+,—,cond(x), 5; composition, linear length ODE],

and we prove:
Theorem

A continuous function f : Bd — RY is computable in polynomial time
if and only if there exists f : RY x N2 — RY e LDL? such that for all

xR XN, xe [—2X,2X}, neN, [f(x,2X,2") —f(x)|| < 27"

28/30

20/30

Main ideas of the proof:

» We construct approximations of the fractional part, the integer
part, the division by 2, the modulo 2 in LDL?:

f

Integer Part Division by 2 Modulo 2

» We construct two functions fi, > € LDL? such that either f; or
f» is equal to f on some intervals, and that overlap well.

> We use those functions to define another function A, which is
an adaptative barycenter such that :

f=AA+(1-2)h

» We use again the trick simulating the execution of the Turing
machine with function in LDL?.

Conclusion

30/30

We were able to characterise computable real numbers and
sequences over the reals in polynomial time:

Theorem
A function f: N9 - R is computable in polynomial time if and
only if all its components belong to ILDILL®.

And functions over the reals:

Theorem
A continuous function f Rd — R is computable in polynomial time
if and only if there exists f : RY x N2 — RY e LDL? such that for all

xR, XN, xe [—2X,2X}, neN, [f(x,2%,2" —f(x)|| < 27"

	State of the art
	Discrete differential equations
	Computable analysis: Computability and Complexity
	LDL and FP
	LDL and FP
	Computing real numbers in polynomial time
	Computing sequences in polynomial time
	Computing sequences in polynomial time
	Functions over the reals
	Conclusion

