Constructing continuous systems from cellular automata

Julien Cervelle

CiE 2013

Background: CA and chaos

Discrete dynamical systems: X, configuration space and f: $X \rightarrow X$, evolutionary rule

 \hookrightarrow study long term behavior of f (fⁿ for large n)

- Cellular automata have many different behaviors
 - \sim Kůrka classification (equicontinuous, sensitive, expansive)
 - \sim Simulation relation and intrinsic universality

 \sim Turing universality

Cellular automata

 \sim Configurations are members of $A^{\mathbb{Z}}$, $|A| < \infty$

- \smile Local rule $\mu : A^{2r+1} \rightarrow A$
- \sim Global behavior applying the local rule synchronously at each site:

 $f(x)_{i} = \mu(x_{i-r}, ..., x_{i+r})$

No environment action Same rule everywhere, anytime

Continuous systems

Disjunction of: \smile Continuous time \sim Continuous space \smile Continuous state If conjunction: \hookrightarrow ruled by PDE

$$\frac{\partial \mathbf{u}}{\partial t} = \mathbf{F}(\mathbf{u}, \mathbf{u'}, \mathbf{u''}, \ldots)$$

Continuous systems and chaos

Usual PDE in physics

 \sim Diffusion equation

$$\frac{\partial u}{\partial t} = \Delta u + F(u,x,t)$$

 \rightarrow without environment, energy level of a single point tends to 0

 \sim Wave equation

 \implies simple and predictable wave propagation

 $\mathbf{2}$

1

3

4

Expansivity for continuous systems

Any change in the initial configuration is eventually impactful home

 $\exists \epsilon, \forall c, \forall d, \exists n, c \neq d \Rightarrow d(f^{n}(c), f^{n}(d)) > \epsilon$ Cantor distance for CA (equivalent definition):

$$d(x,y) = \sum_{i \in \mathbb{Z}} (1-\delta_{x_i,y_i}) 2^{-|i|} \qquad \delta = \text{Kronecker delta}$$

Natural extension to continuous systems:

$$\mathbf{x},\mathbf{y}\in[0,1]^{\mathbb{R}},\mathbf{d}(\mathbf{x},\mathbf{y})=\int_{-\infty}^{\infty}|\mathbf{x}(\mathbf{i})-\mathbf{y}(\mathbf{i})|2^{-|\mathbf{i}|}\mathbf{d}\mathbf{i}$$

Continuous CA, previous works

 \sim Larger than life

 \sim Interacting particle systems

 \smile Probabilistic/Stochastic CA

 \sim Interacting stochastic particle systems

Interacting stochastic particle systems

Space is discrete, time and state are continuous \smile Finite alphabet A

 \sim Configurations are from $(\mathbf{P}_{\mathbf{A}})^{\mathbb{Z}}$

 $\rightarrow P_A$ is the set of probability distributions over A

 \sim Evolution is given by an ODE:

$$\frac{dP[c_j = s]}{dt} = i - o \qquad \begin{array}{l} i = rate \text{ for entering state s} \\ o = rate \text{ for leaving state s} \end{array}$$

- Rates i and o depends on the values in the neighboring cells
- \hookrightarrow defined from a local rule $\lambda : A \times A^{2r+1} \to [0,\infty)$
- The rate $\lambda(s, n)$ tells at what speed the cell changes its letter to s when the neighboring letters are n
 - \rightarrow the higher the rate, the faster the change, proportionally

From A to P_A

As the local rule is defined over A, dealing with P_A requires an independency hypothesis

 \hookrightarrow the hypothesis is not true in PCA or IPS

We do this since the model is

- \sim Sound with continuous states in P_A (stochastic particles) \rightarrow e.g. the proportions of predators and preys
- Successfully used for modeling biological and physical behavior
- \sim Only used for time o(1) and dependency radius increases with time
- Only intermediary, the goal is to find good candidate PDE

6

7

8

Limit system

Observe what happens when space is made continuous

 \hookrightarrow cells get closer and closer

We prove that for some ISPS, the limit exists and is ruled by a PDE

Idea: converse of the simulation of a PDE by the finite difference method

$$f(u, u', u'') \longleftrightarrow \mathbb{R}[u(0), u(\varepsilon), u(2\varepsilon)]$$

We consider $A = \{0, 1\}$. Then $P_A = \{(x, y) | y = 1 - x\}$. Configurations are members of $[0, 1]^{\mathbb{Z}}$.

Differential normal form

The terms i and o are polynomials, say of $\mathbb{R}[X_0, ..., X_n]$ They can be expressed in term of $X_0, X'_0, ..., X_0^{(n)}$ where $\mathbf{X}_{\mathbf{k}}^{(i)} = \mathbf{X}_{\mathbf{k}+1}^{(i-1)} - \mathbf{X}_{\mathbf{k}+1}^{(i-1)}$

 $\smile X_1 = X_0 + X'_0$ $\sim X_2 = X_0 + 2X'_0 + X''_0$ $\sim X_3 = X_0 + 3X'_0 + 3X''_0 + X_0^{(3)}$ *—* …

ISPS to PDE

Let $\mathbf{c} \in [0, 1]^{\mathbb{Z}}$ be a configuration

- \smile The terms i and o are polynomials in c_k for $k \in \{-r, ..., r\}$ \sim The value i – o can be put in differential normal form
- We only keep monomials which are $O(\epsilon^k)$ for the smallest k when ε is the discretization step
 - - $\ \ \, \stackrel{}{\frown} \ \ \, X_0^2 X_0^{(2)} = O(\epsilon^2) \\ \ \ \, \stackrel{}{\frown} \ \ \, X_0^{(1)^2} X_0^{(2)} = O(\epsilon^4)$
- \sim We call rank this smallest k
- \smile We divide the polynomial by $\epsilon^{\bf k}$ and make ϵ tend to 0
- \sim The limit system is the PDE obtained keeping $O(\epsilon^k)$ monomials in which we replace $X_0^{(k)}$ by $\frac{\partial^k u}{\partial x^k}$

Example

 $P = 2X_1^3 - 4X_1^2X_2 + 2X_1X_2^2 + X_0^2 - X_0X_1 - 2X_1^2 + X_0X_2 + X_1X_2$

 $P = \underline{2XX^{(1)}}^2 + 2X^{(1)}^3 + 4XX^{(1)}X^{(2)} + 4X^{(1)}^2X^{(2)}$ + $2XX^{(2)^2} + 2X^{(1)}X^{(2)^2} + 2XX^{(2)} + X^{(1)}X^{(2)}$

$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = 2\mathbf{u} \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right)^2 + 2\mathbf{u}\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$$

Positively ranked systems

- \sim The limit PDE has spatial derivatives when the rank is positive
- This occurs when the DNF of \mathbf{P} becomes $\mathbf{0}$ when one replaces all variables by a single one
- \sim Given r, putting this into sagemath, one can get equations that λ must verify to be positively ranked

9

12

11

13

We make the conjecture that positively ranked λ verifies:

 $\begin{cases} \forall v \in \{0, 2r\}, \sum_{\substack{n \in \{0, 1\}^{2r+1} \\ n_0 = 0, |n| = v}} \lambda(1, n) = \sum_{\substack{n \in \{0, 1\}^{2r+1} \\ n_0 = 1, |n| = v}} \lambda(0, n) \\ \lambda(1, 0...0) = \lambda(0, 1...1) = 0 \end{cases}$

CA case

 \sim A CA rule can be transformed into a ISPS \rightarrow let the state tend to be what the CA rule requires \sim No clear relation between the CA and the ISPS Allow to get a PDE from a CA rule \rightarrow need to do a rule by rule study to find which PDE are related to the CA

The conjecture becomes:

$$\forall v \in \{0, 2r+1\}, \sum_{\substack{n \in \{0,1\}^{2r+1} \\ |n| = v}} \mu(n) = \binom{v-1}{2r} \quad \text{with } \left(\frac{-1}{2r}\right) = 0$$

radius 1

Positively ranked elementary CA \smile Shift: $\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$ \smile Traffic: $\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = (2\mathbf{u}+1)\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$ $\sim 172: \frac{\partial u}{\partial t} = u \frac{\partial u}{\partial x}$

No "complex" behaviors

radius 2 example

Bi-permutative rules

Sufficient condition on the local rule to get an expansive CA: $\forall n \in A^{2r}, x \mapsto \mu(x, n_0, ..., n_{2r}) \text{ and } x \mapsto \mu(n_0, ..., n_{2r}, x) \text{ are }$ bijections.

A Prolog program proved that no bi-permutative rule verifies the conjecture for r < 6.

Futur work

- \sim CA corresponding to a PDE
- \sim Links between PDE, ISPS and CA
- \sim Test more rules for higher radius
- Remove independence hypothesis (derivative of probability measure)

15

16

17

19