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Background: CA and chaos 1

Discrete dynamical systems: X, configuration space and f ∶
X → X, evolutionary rule

study long term behavior of f (fn for large n)
Cellular automata have many different behaviors
⌣ Kůrka classification (equicontinuous, sensitive, expansive)
⌣ Simulation relation and intrinsic universality
⌣ Turing universality

Cellular automata 2

⌣ Configurations are members of Aℤ, |A| < ∞
⌣ Local rule μ ∶ A2r+1 → A
⌣ Global behavior applying the local rule synchronously at

each site:
f(x)i = μ(xi−r, …, xi+r)

No environment action
Same rule everywhere, anytime

Continuous systems 3

Disjunction of:
⌣ Continuous time
⌣ Continuous space
⌣ Continuous state

If conjunction:
ruled by PDE

∂u
∂t = F(u, u′, u″, …)

Continuous systems and chaos 4

Usual PDE in physics
⌣ Diffusion equation

∂u
∂t = Δu + F(u, x, t)

without environment, energy level of a single point
tends to 0

⌣ Wave equation
simple and predictable wave propagation

Goal and research path 5

Looking for a PDE which is
⌣ Somehow natural
⌣ Has a chaotic behavior

expansive for 1D systems, universal for 2D systems
Try to derive a PDE from a cellular automaton rule

Expansivity for continuous systems 6

Any change in the initial configuration is eventually impactful
home

∃ε, ∀c, ∀d, ∃n, c ≠ d ⇒ d(fn(c), fn(d)) > ε
Cantor distance for CA (equivalent definition):

d(x, y) = ∑
i∈ℤ

(1 − δxi,yi
)2−|i| δ=Kronecker delta

Natural extension to continuous systems:

x, y ∈ [0, 1]ℝ, d(x, y) = ∫
∞

−∞
|x(i) − y(i)|2−|i|di

Continuous CA, previous works 7

⌣ Larger than life
⌣ Interacting particle systems
⌣ Probabilistic/Stochastic CA
⌣ Interacting stochastic particle systems

Interacting stochastic particle systems 8

Space is discrete, time and state are continuous
⌣ Finite alphabet A
⌣ Configurations are from (PA)ℤ

PA is the set of probability distributions over A
⌣ Evolution is given by an ODE:

dP[cj = s]
dt = i − o i=rate for entering state s

o=rate for leaving state s

⌣ Rates i and o depends on the values in the neighboring
cells

defined from a local rule λ ∶ A × A2r+1 → [0, ∞)
⌣ The rate λ(s, n) tells at what speed the cell changes its

letter to s when the neighboring letters are n
the higher the rate, the faster the change, proportionally

From A to PA 9

As the local rule is defined over A, dealing with PA requires
an independency hypothesis

the hypothesis is not true in PCA or IPS
We do this since the model is
⌣ Sound with continuous states in PA (stochastic particles)

e.g. the proportions of predators and preys
⌣ Successfully used for modeling biological and physical be-

havior
⌣ Only used for time o(1) and dependency radius increases

with time
⌣ Only intermediary, the goal is to find good candidate PDE

Limit system 10

Observe what happens when space is made continuous
cells get closer and closer

We prove that for some ISPS, the limit exists and is ruled by
a PDE
Idea: converse of the simulation of a PDE by the finite differ-
ence method

f(u, u′, u″) ⟷ ℝ[u(0), u(ε), u(2ε)]

We consider A = {0, 1}. Then PA = {(x, y)|y = 1 − x}. Con-
figurations are members of [0, 1]ℤ.

Differential normal form 11

The terms i and o are polynomials, say of ℝ[X0, …, Xn]
They can be expressed in term of X0, X′

0, …, X(n)
0 where

X(i)
k = X(i−1)

k+1 − X(i−1)
k+1

⌣ X1 = X0 + X′
0

⌣ X2 = X0 + 2X′
0 + X″

0
⌣ X3 = X0 + 3X′

0 + 3X″
0 + X(3)

0
⌣ …

ISPS to PDE 12

Let c ∈ [0, 1]ℤ be a configuration
⌣ The terms i and o are polynomials in ck for k ∈ {−r, …, r}
⌣ The value i − o can be put in differential normal form
⌣ We only keep monomials which are O(εk) for the smallest

k when ε is the discretization step
⌢ X2

0X(2)
0 = O(ε2)

⌢ X(1)
0

2X(2)
0 = O(ε4)

⌣ We call rank this smallest k
⌣ We divide the polynomial by εk and make ε tend to 0
⌣ The limit system is the PDE obtained keeping O(εk)

monomials in which we replace X(k)
0 by ∂ku

∂xk

Example 13

P = 2X3
1 −4X2

1X2 +2X1X2
2 +X2

0 −X0X1 −2X2
1 +X0X2 +X1X2

P = 2XX(1)2 + 2X(1)3 + 4XX(1)X(2) + 4X(1)2X(2)

+ 2XX(2)2 + 2X(1)X(2)2 + 2XX(2) + X(1)X(2)

∂u
∂t = 2u (∂u

∂x)
2

+ 2u∂2u
∂x2

Positively ranked systems 14

⌣ The limit PDE has spatial derivatives when the rank is
positive

⌣ This occurs when the DNF of P becomes 0 when one re-
places all variables by a single one

⌣ Given r, putting this into sagemath, one can get equations
that λ must verify to be positively ranked

We make the conjecture that positively ranked λ verifies:
⎧{
⎨{⎩

∀v ∈ {0, 2r}, ∑n∈{0,1}2r+1

n0=0,|n|=v
λ(1, n) = ∑n∈{0,1}2r+1

n0=1,|n|=v
λ(0, n)

λ(1, 0…0) = λ(0, 1…1) = 0

CA case 15

⌣ A CA rule can be transformed into a ISPS
let the state tend to be what the CA rule requires

⌣ No clear relation between the CA and the ISPS
⌣ Allow to get a PDE from a CA rule

need to do a rule by rule study to find which PDE are
related to the CA

The conjecture becomes:

∀v ∈ {0, 2r + 1}, ∑
n∈{0,1}2r+1

|n|=v

μ(n) = (v − 1
2r ) with (−12r ) = 0

radius 1 16

Positively ranked elementary CA
⌣ Shift: ∂u

∂t = ∂u
∂x

⌣ Traffic: ∂u
∂t = (2u + 1)∂u

∂x
⌣ 172: ∂u

∂t = u∂u
∂x

No “complex” behaviors

radius 2 example 17

∂u
∂t = 18u (∂u

∂x)
2

− 5u2∂2u
∂x2 − 9 (∂u

∂x)
2

+ 5u∂2u
∂x2

Bi-permutative rules 18

Sufficient condition on the local rule to get an expansive CA:
∀n ∈ A2r, x ↦ μ(x, n0, …, n2r) and x ↦ μ(n0, …, n2r, x) are
bijections.
A Prolog program proved that no bi-permutative rule verifies
the conjecture for r < 6.

Futur work 19

⌣ CA corresponding to a PDE
⌣ Links between PDE, ISPS and CA
⌣ Test more rules for higher radius
⌣ Remove independence hypothesis (derivative of probabil-

ity measure)


