Recursion schemes, discrete differential equations
and characterization of polynomial time
computation

Olivier Bournez, Arnaud Durand

Novembre 2020, ANR Difference

Introduction

Ordinary Differential Equations (ODE) is a natural way to
express properties of many systems in applied science

Very active field of maths, abundant litterature

We are interested here in its discrete counterpart : discrete
ODE

Built on a notion of derivative, finite differences, widely
studied in numerical optimization and combinatorial analysis

Introduction

» Study the expressive and computational power of discrete
ODE

» Appears

> to be a convenient tool for algorithm design
> to elegantly capture complexity notions

> Believe it help to better understand computation for both the
discrete and the continuous settings

Plan

» Introduction to discrete ODE
» A short survey on recursion scheme for complexity

» ODE and complexity classes : characterizing polynomial time
computation

Plan

» Introduction to discrete ODE
» A short survey on recursion scheme for complexity

» ODE and complexity classes : characterizing polynomial time
computation

Discrete derivative

Definition
Let f : N — Z, the discrete derivative (a.k.a finite difference) is

defined as:
Af(z) =f(z + 1) — f(z).

When f: NP — 79, set:

of(z,y)

e flz+1,y) —f(z,y)

Sometimes use f’(z) instead of A(f(z))

Discrete integral

Definition (Discrete Integral)

we write f;’ f(z)dz as a synonym for

with the conventions: [f(x)dz = 0 and f; f(z)dx = — [, f(z)dx
when a > b.

It follows easily by the telescope formula that:
Theorem (Fundamental Theorem of Finite Calculus)

Let F(x) be some function. Then, f; F'(z)éx = F(b) — F(a).

Discrete integral and basics of integration

Not surprisingly, basic notions from the continous setting adapts
easily:
» derivation of a composition , integration by parts, etc

» Example of the Product rule:
(f(z) - g(x)) =f(z+1) -g'(z) +£(2) - g(x)
» Let f be some function, C some constant. Then the function

r—1
F(z)=C+ > f()
x=0

is such that F'(z) = f(x) and F(0) = C. As expected, F is
called a primitive of f(x).

Discrete Ordinary Differential Equation (ODE)

Discrete ODE: System of equations of the form, where h is some
function: oF

9Y) _ hit(a,y),0.) (1)
With initial value £(0,y) = g(y): Initial Value Problem (IVP) or a
Cauchy Problem.

Integral form:
f(a.y) = £0.y)+ [h(E(@.y),2.5)00.

> Hence, a discrete ODE always have a solution f : NP — Z4

» Not always true if one wants f : ZP — 74

Linear system of discrete ODE

Linear ODE: system of the form
£(0,y) = G(y) (initial conditions)
For matrices A and vectors B and G.

» Well known and simple kind of system

» Easy to solve in the continous setting

Linear system of discrete ODE

Easy to see that solution is of the form:

f(z,y) = <2f0”” A(t,y)6t> -G(y) + /x (2]:—&-1 A(t,y)5t> “B(u,y)du.
0
Or, alternatively:

Fey)= 3 (ﬁ <1+A<t,y>>> B(u,y)

u=—1 \t=u+1

with the conventions that [[* ! k(z) = 1 and B(—1,y) = G(y)
Computational content is clear: the solution can be computed

Bounded sum and product

Arithmetic is used freely below.
Let g : NPT1 5 N,

> Let f(z,y) =3 .., 9(2,y) for z # 0, and O for z = 0.
Function f is the unique solution of :

{ L) — g(a,y)
f0,y) =0

> Let f(z,y) =1l.c,9(2,y) for x #0, and 1 for z = 0.
Function f is the unique solution of :

{ UEY) — f(x,y) - (g(x,y) — 1)
f0,y)=1

Plan

» Introduction to discrete ODE
» A short survey on recursion scheme for complexity

» ODE and complexity classes : characterizing polynomial time
computation

Plan

» Introduction to discrete ODE
» A short survey on recursion scheme for complexity

» ODE and complexity classes : characterizing polynomial time
computation

Primitive recursive functions

letpe N, g: NP - Nand h:NPH2 5 N,
The function f = REC(g, h) : N°*!1 — N is defined by primitive
recursion from g and h if:

f(0,y) =9(y)
flz+1y) =h(f(z,y),2,y)

» High complexity functions

» How to restrict the recursion scheme to lower complexity?

Bounded recursion

Let g: N? - N, h: N**2 5 N and i : NP*1 & N.
The function f = BR(g, h) : N°*1 — N is defined by bounded
recursion from g, h and ¢ if

fOy) = g9(¥)
flx+1ly) = h(f(z,y),zy)
under the condition that:

flzy) < i(z,y).

Key ingredient to capture elementary function and Grzegorczyk's
hierarchy

Recursion on notation (Cobham)

Consider sp,s1 : N = N
sop(x) =2-x and s1(z) =2 -2+ 1.
Definition

Function f defined by bounded recursion on notations, i.e. BRN,
from functions g, hg, h1 et k when:

Cobham'’s approach

Zp smallest subset of primitive recursive functions

» Containing basis functions :
FunctionO, projections pf, successor functions so(z) =2z
and s;(x) = 2-x + 1, "smash" function zfy = 2/#/x1v|

» Closed by composition

» Closed by bounded recursion on notations

Cobham (62) : .Zp is equal to FP, the class of polynomial time
computable functions

Why it works

z,y, f(x,y))

— — —
201 E

Why it works

> f is defined from hg, hy and k.
» If |k(x,y)| is polynomial in |z| + |y|, then so is | f(z,y)]|
» Hence, inner terms do not grow too fast!

Why it works

f(0,y) = 9(y)

f(SO(:I;%y) = ho(:c,y,f(x,y)) for x 7é 0
f(Sl(!E),y) = hl(7y7f(x7Y))

f(z,y) < k(z,y)

> [s1(@)] = Iso(2)] = |2 +1
» Then the number of induction steps is in O(|x|).

Going further: syntactic restriction, ramified
recursion

» Cobham’s work was the starting point of numerous attempts
to capture complexity classes by recursion algebras

» Generalize to L, NC?, AC? classes

» Alternative approaches that do not require to bound the
function a priori.

» Predicative recursion (Bellantoni, Cook)
» Ramified recurrence (Leivant, Leivant-Marion)
-

Plan

» Introduction to discrete ODE
» A short survey on recursion scheme for complexity

» ODE and complexity classes : characterizing polynomial time
computation

Plan

» Introduction to discrete ODE
» A short survey on recursion scheme for complexity

» ODE and complexity classes : characterizing polynomial time
computation

Discrete ODE for elementary functions

Definition (Discrete ODE schemata)

Let g: N? 5 Nand h:Z x NP+l 5 7.
Function f is defined by discrete ODE solving from ¢ and h,
denoted by f = ODE(g, h), if f : NPt — 7 if f solution of:

{ 5t = h(f(z,y),,y)
f0,y)=9(y)

When h is linear : LI schemata.

Discrete ODE for elementary functions

What about the smallest classes of functions

» that contains 0, the projections Wf, the successor s, addition
+, subtraction —

> that is closed under composition and discrete linear ODE
schemata LI.

Result: Corresponds to elementary functions

Remark: recall the definition of bounded sum and bounded
product.

ODE for complexity classes ?

» Elementary functions are of high complexity
» But linear systems is the simplest kind of system

» What can we do (i.e. what can we restrict more) to capture
smaller complexity classes and in particular the class of
polynomial time computable functions FP?

Derivation along a function

Definition (£-ODE)
Let £ : NPTL — 7. We write

of(x,y) 0f(z,y)

oF = 3C(o.y) =h(f(z,y),z,y), (2)

as a formal synonym for
flz +1,y) = f(z,y) + (L(z + 1,y) — L(z,y)) - h(f(z,¥),2,¥).

Inspired by the classical formula:

0f(z,y) _0L(zy) 0f(z,y)

L-ODE

The equality

6f(;;’ Y _ (L(x+1,y) — L(z,y))-h(f(z,y),z,y)

implies that the value of the derivative i.e. the variation of the
function has to be considered only when

Consequence: only as many values to consider to compute
f(z,y) as the number of times L(t,y) changes between ¢t = 0 and
t=ux..

Application: if L(x,y) = £(z) then only a logarithmic in x
number of values

Towards capturing FP

Deriving along the logarithm function is not sufficient to capture
FP

> It is easily seen that the solution of

0f(x) _
i) = /@) @) =) (3)

is a fast growing function (output is exponential in size)

> ldea: combine linearity and derivation along some particular
function L i.e. systems :

afgvéy) = h(f(x,y),w,}’% (4)
where

> his "linear"
» L has a polylogarithmic number of values

DL

Definition (DL)
Let DL be the smallest subset of functions,

» that contains 0, 1, projections Wf, the length ¢(z), functions
x4y, T—y, x X y, the sign function sg(x)

» closed under composition (when defined) and linear
length-ODE scheme:

of(z,y)
ol

=u(f(z,y),z,y) and f(0,y)=g(y)

where u is essentially linear in f(z,y).

A characterization of FP

Theorem: DL = FP
Proof of (C): Roughly speaking
» The derivation along ¢(z) (or any £ with polylog "jumps")
permits to control the number of steps
> Linearity of the system permits to control the size of the
output

Proof of (2): By a direct expression of a polynomial
computation of a register machine.

Conclusion, questions and work in progress

Study the expressive and computational power of discrete
ODE
Appears

» to be a convenient tool for algorithm design
> to elegantly capture complexity notions

v

v

v

Extend the work to other classes (FPSPACE, NP, circuit
classes)
smaller derivation steps and allowing errors

v

Generalize to the continuous setting

v

	Introduction
	Discrete ODE
	Algebra of functions
	Expressive power of discrete ODE

