
Recursion schemes, discrete differential equations
and characterization of polynomial time

computation

Olivier Bournez, Arnaud Durand

Novembre 2020, ANR Difference

Introduction

I Ordinary Differential Equations (ODE) is a natural way to
express properties of many systems in applied science

I Very active field of maths, abundant litterature
I We are interested here in its discrete counterpart : discrete

ODE
I Built on a notion of derivative, finite differences, widely

studied in numerical optimization and combinatorial analysis

Introduction

I Study the expressive and computational power of discrete
ODE

I Appears
I to be a convenient tool for algorithm design
I to elegantly capture complexity notions

I Believe it help to better understand computation for both the
discrete and the continuous settings

Plan

I Introduction to discrete ODE
I A short survey on recursion scheme for complexity
I ODE and complexity classes : characterizing polynomial time

computation

Plan

I Introduction to discrete ODE
I A short survey on recursion scheme for complexity
I ODE and complexity classes : characterizing polynomial time

computation

Discrete derivative

Definition
Let f : N→ Z, the discrete derivative (a.k.a finite difference) is
defined as:

∆f(x) = f(x+ 1)− f(x).

When f : Np → Zq, set:

∂f(x,y)
∂x

= f(x+ 1,y)− f(x,y)

.
Sometimes use f ′(x) instead of ∆(f(x))

Discrete integral

Definition (Discrete Integral)
we write

∫ b
a f(x)δx as a synonym for

∫ b

a
f(x)δx =

x=b−1∑
x=a

f(x)

with the conventions:
∫ a
a f(x)δx = 0 and

∫ b
a f(x)δx = −

∫ a
b f(x)δx

when a > b.

It follows easily by the telescope formula that:

Theorem (Fundamental Theorem of Finite Calculus)
Let F(x) be some function. Then,

∫ b
a F′(x)δx = F(b)− F(a).

Discrete integral and basics of integration

Not surprisingly, basic notions from the continous setting adapts
easily:

I derivation of a composition , integration by parts, etc
I Example of the Product rule:

(f(x) · g(x))′ = f(x+ 1) · g′(x) + f(x)′ · g(x)
I Let f be some function, C some constant. Then the function

F(x) = C +
x−1∑
x=0

f(x)

is such that F′(x) = f(x) and F(0) = C. As expected, F is
called a primitive of f(x).

Discrete Ordinary Differential Equation (ODE)

Discrete ODE: System of equations of the form, where h is some
function:

∂f(x,y)
∂x

= h(f(x,y), x,y), (1)

With initial value f(0,y) = g(y): Initial Value Problem (IVP) or a
Cauchy Problem.

Integral form:

f(x,y) = f(0,y) +
∫ x

0
h(f(x,y), x,y)δx.

I Hence, a discrete ODE always have a solution f : Np → Zq

I Not always true if one wants f : Zp → Zq

Linear system of discrete ODE

Linear ODE: system of the form{
f ′(x,y) = A(x,y) · f(x,y) + B(x,y)
f(0,y) = G(y) (initial conditions)

For matrices A and vectors B and G.
I Well known and simple kind of system
I Easy to solve in the continous setting

Linear system of discrete ODE

Easy to see that solution is of the form:

f(x,y) =
(

2
∫ x

0 A(t,y)δt
)
·G(y) +

∫ x

0

(
2
∫ x

u+1 A(t,y)δt
)
·B(u,y)δu.

Or, alternatively:

f(x,y) =
x−1∑
u=−1

(
x−1∏
t=u+1

(1 + A(t,y))
)
·B(u,y)

with the conventions that
∏x−1
x κ(x) = 1 and B(−1,y) = G(y)

Computational content is clear: the solution can be computed

Bounded sum and product

Arithmetic is used freely below.
Let g : Np+1 → N,

I Let f(x,y) =
∑
z<x g(z,y) for x 6= 0, and 0 for x = 0.

Function f is the unique solution of :{
∂f(x,y)
∂x = g(x,y)

f(0,y) = 0

I Let f(x,y) =
∏
z<x g(z,y) for x 6= 0, and 1 for x = 0.

Function f is the unique solution of :{
∂f(x,y)
∂x = f(x,y) · (g(x,y)− 1)

f(0,y) = 1

Plan

I Introduction to discrete ODE
I A short survey on recursion scheme for complexity
I ODE and complexity classes : characterizing polynomial time

computation

Plan

I Introduction to discrete ODE
I A short survey on recursion scheme for complexity
I ODE and complexity classes : characterizing polynomial time

computation

Primitive recursive functions

Let p ∈ N, g : Np → N and h : Np+2 → N.
The function f = REC(g, h) : Np+1 → N is defined by primitive
recursion from g and h if:{

f(0,y) = g(y)
f(x+ 1,y) = h(f(x,y), x,y)

I High complexity functions
I How to restrict the recursion scheme to lower complexity?

Bounded recursion

Let g : Np → N, h : Np+2 → N and i : Np+1 → N.
The function f = BR(g, h) : Np+1 → N is defined by bounded
recursion from g, h and i if

f(0,y) = g(y)
f(x+ 1,y) = h(f(x,y), x,y)

under the condition that:
f(x,y) ≤ i(x,y).

Key ingredient to capture elementary function and Grzegorczyk’s
hierarchy

Recursion on notation (Cobham)

Consider s0, s1 : N→ N

s0(x) = 2 · x and s1(x) = 2 · x+ 1.

Definition
Function f defined by bounded recursion on notations, i.e. BRN,
from functions g, h0, h1 et k when:

f(0,y) = g(y)
f(s0(x),y) = h0(x,y, f(x,y)) for x 6= 0
f(s1(x),y) = h1(x,y, f(x,y))
f(x,y) ≤ k(x,y)

Cobham’s approach

FP smallest subset of primitive recursive functions
I Containing basis functions :

Function0, projections pki , successor functions s0(x) = 2 · x
and s1(x) = 2 · x+ 1, "smash" function x]y = 2|x|×|y|

I Closed by composition
I Closed by bounded recursion on notations

Cobham (62) : FP is equal to FP, the class of polynomial time
computable functions

Why it works

f(0,y) = g(y)
f(s0(x),y) = h0(x,y, f(x,y)) for x 6= 0
f(s1(x),y) = h1(x,y, f(x,y))
f(x,y) ≤ k(x,y)

Why it works

f(0,y) = g(y)
f(s0(x),y) = h0(x,y, f(x,y)) for x 6= 0
f(s1(x),y) = h1(x,y, f(x,y))
f(x,y) ≤ k(x,y)

I f is defined from h0, h1 and k.
I If |k(x,y)| is polynomial in |x|+ |y|, then so is |f(x,y)|
I Hence, inner terms do not grow too fast!

Why it works

f(0,y) = g(y)
f(s0(x),y) = h0(x,y, f(x,y)) for x 6= 0
f(s1(x),y) = h1(x,y, f(x,y))
f(x,y) ≤ k(x,y)

I |s1(x)| = |s0(x)| = |x|+ 1
I Then the number of induction steps is in O(|x|).

Going further: syntactic restriction, ramified
recursion

I Cobham’s work was the starting point of numerous attempts
to capture complexity classes by recursion algebras

I Generalize to L,NCi,ACi classes
I Alternative approaches that do not require to bound the

function a priori.
I Predicative recursion (Bellantoni, Cook)
I Ramified recurrence (Leivant, Leivant-Marion)
I

Plan

I Introduction to discrete ODE
I A short survey on recursion scheme for complexity
I ODE and complexity classes : characterizing polynomial time

computation

Plan

I Introduction to discrete ODE
I A short survey on recursion scheme for complexity
I ODE and complexity classes : characterizing polynomial time

computation

Discrete ODE for elementary functions

Definition (Discrete ODE schemata)
Let g : Np → N and h : Z× Np+1 → Z.
Function f is defined by discrete ODE solving from g and h,
denoted by f = ODE(g, h), if f : Np+1 → Z if f solution of:{

∂f(x,y)
∂x = h(f(x,y), x,y)

f(0,y) = g(y)

When h is linear : LI schemata.

Discrete ODE for elementary functions

What about the smallest classes of functions
I that contains 0, the projections πpi , the successor s, addition

+, subtraction −
I that is closed under composition and discrete linear ODE

schemata LI.
Result: Corresponds to elementary functions

Remark: recall the definition of bounded sum and bounded
product.

ODE for complexity classes ?

I Elementary functions are of high complexity
I But linear systems is the simplest kind of system
I What can we do (i.e. what can we restrict more) to capture

smaller complexity classes and in particular the class of
polynomial time computable functions FP?

Derivation along a function

Definition (L-ODE)
Let L : Np+1 → Z. We write

∂f(x,y)
∂L

= ∂f(x,y)
∂L(x,y) = h(f(x,y), x,y), (2)

as a formal synonym for
f(x+ 1,y) = f(x,y) + (L(x+ 1,y)− L(x,y)) · h(f(x,y), x,y).

Inspired by the classical formula:

δf(x,y)
δx

= δL(x,y)
δx

· δf(x,y)
δL(x,y) .

L-ODE

The equality

δf(x,y)
δx

= (L(x+ 1,y)− L(x,y)) · h(f(x,y), x,y)

implies that the value of the derivative i.e. the variation of the
function has to be considered only when

L(x+ 1,y)− L(x,y) 6= 0

Consequence: only as many values to consider to compute
f(x,y) as the number of times L(t,y) changes between t = 0 and
t = x...
Application: if L(x,y) = `(x) then only a logarithmic in x
number of values

Towards capturing FP

Deriving along the logarithm function is not sufficient to capture
FP

I It is easily seen that the solution of

∂f(x)
∂`(x) = f(x) · (f(x)− 1) (3)

is a fast growing function (output is exponential in size)
I Idea: combine linearity and derivation along some particular

function L i.e. systems :

∂f(x,y)
∂L

= h(f(x,y), x,y), (4)

where
I h is "linear"
I L has a polylogarithmic number of values

DL

Definition (DL)
Let DL be the smallest subset of functions,

I that contains 0, 1, projections πpi , the length `(x), functions
x+y, x−y, x× y, the sign function sg(x)

I closed under composition (when defined) and linear
length-ODE scheme:

∂f(x,y)
∂`

= u(f(x,y), x,y) and f(0,y) = g(y)

where u is essentially linear in f(x,y).

A characterization of FP

Theorem: DL = FP
Proof of (⊆): Roughly speaking

I The derivation along `(x) (or any L with polylog "jumps")
permits to control the number of steps

I Linearity of the system permits to control the size of the
output

Proof of (⊇): By a direct expression of a polynomial
computation of a register machine.

Conclusion, questions and work in progress

I Study the expressive and computational power of discrete
ODE

I Appears
I to be a convenient tool for algorithm design
I to elegantly capture complexity notions

I Extend the work to other classes (FPSPACE, NP, circuit
classes)

I smaller derivation steps and allowing errors
I Generalize to the continuous setting

	Introduction
	Discrete ODE
	Algebra of functions
	Expressive power of discrete ODE

