Recursion schemes, discrete differential equations and characterization of polynomial time computation

Olivier Bournez, Arnaud Durand

Novembre 2020, ANR Difference

Introduction

- Ordinary Differential Equations (ODE) is a natural way to express properties of many systems in applied science
- Very active field of maths, abundant litterature
- We are interested here in its discrete counterpart : discrete ODE
- Built on a notion of derivative, finite differences, widely studied in numerical optimization and combinatorial analysis

Introduction

- Study the expressive and computational power of discrete ODE
- Appears
- to be a convenient tool for algorithm design
- to elegantly capture complexity notions
- Believe it help to better understand computation for both the discrete and the continuous settings

Plan

- Introduction to discrete ODE
- A short survey on recursion scheme for complexity
- ODE and complexity classes : characterizing polynomial time computation

Plan

- Introduction to discrete ODE
- A short survey on recursion scheme for complexity
- ODE and complexity classes : characterizing polynomial time computation

Discrete derivative

Definition

Let $f: \mathbb{N} \rightarrow \mathbb{Z}$, the discrete derivative (a.k.a finite difference) is defined as:

$$
\Delta \mathbf{f}(x)=\mathbf{f}(x+1)-\mathbf{f}(x)
$$

When $f: \mathbb{N}^{p} \rightarrow Z^{q}$, set:

$$
\frac{\partial \mathbf{f}(x, \mathbf{y})}{\partial x}=\mathbf{f}(x+1, \mathbf{y})-\mathbf{f}(x, \mathbf{y})
$$

Sometimes use $\mathbf{f}^{\prime}(x)$ instead of $\Delta(\mathbf{f}(x))$

Discrete integral

Definition (Discrete Integral)

we write $\int_{a}^{b} \mathbf{f}(x) \delta x$ as a synonym for

$$
\int_{a}^{b} \mathbf{f}(x) \delta x=\sum_{x=a}^{x=b-1} \mathbf{f}(x)
$$

with the conventions: $\int_{a}^{a} \mathbf{f}(x) \delta x=0$ and $\int_{a}^{b} \mathbf{f}(x) \delta x=-\int_{b}^{a} \mathbf{f}(x) \delta x$ when $a>b$.

It follows easily by the telescope formula that:
Theorem (Fundamental Theorem of Finite Calculus)
Let $\mathbf{F}(x)$ be some function. Then, $\int_{a}^{b} \mathbf{F}^{\prime}(x) \delta x=\mathbf{F}(b)-\mathbf{F}(a)$.

Discrete integral and basics of integration

Not surprisingly, basic notions from the continous setting adapts easily:

- derivation of a composition, integration by parts, etc
- Example of the Product rule: $(\mathbf{f}(x) \cdot \mathbf{g}(x))^{\prime}=\mathbf{f}(x+1) \cdot \mathbf{g}^{\prime}(x)+\mathbf{f}(x)^{\prime} \cdot \mathbf{g}(x)$
- Let \mathbf{f} be some function, \mathbf{C} some constant. Then the function

$$
\mathbf{F}(x)=\mathbf{C}+\sum_{x=0}^{x-1} \mathbf{f}(x)
$$

is such that $\mathbf{F}^{\prime}(x)=\mathbf{f}(x)$ and $\mathbf{F}(0)=\mathbf{C}$. As expected, \mathbf{F} is called a primitive of $\mathbf{f}(x)$.

Discrete Ordinary Differential Equation (ODE)

Discrete ODE: System of equations of the form, where h is some function:

$$
\begin{equation*}
\frac{\partial \mathbf{f}(x, \mathbf{y})}{\partial x}=\mathbf{h}(\mathbf{f}(x, \mathbf{y}), x, \mathbf{y}) \tag{1}
\end{equation*}
$$

With initial value $\mathbf{f}(0, \mathbf{y})=\mathbf{g}(\mathbf{y})$: Initial Value Problem (IVP) or a Cauchy Problem.

Integral form:

$$
\mathbf{f}(x, \mathbf{y})=\mathbf{f}(0, \mathbf{y})+\int_{0}^{x} \mathbf{h}(\mathbf{f}(x, \mathbf{y}), x, \mathbf{y}) \delta x
$$

- Hence, a discrete ODE always have a solution $f: \mathbb{N}^{p} \rightarrow \mathbb{Z}^{q}$
- Not always true if one wants $f: \mathbb{Z}^{p} \rightarrow \mathbb{Z}^{q}$

Linear system of discrete ODE

Linear ODE: system of the form

$$
\left\{\begin{array}{l}
\mathbf{f}^{\prime}(x, \mathbf{y})=\mathbf{A}(x, \mathbf{y}) \cdot \mathbf{f}(x, \mathbf{y})+\mathbf{B}(x, \mathbf{y}) \\
\mathbf{f}(0, \mathbf{y})=\mathbf{G}(\mathbf{y}) \text { (initial conditions) }
\end{array}\right.
$$

For matrices \mathbf{A} and vectors \mathbf{B} and \mathbf{G}.

- Well known and simple kind of system
- Easy to solve in the continous setting

Linear system of discrete ODE

Easy to see that solution is of the form:
$\mathbf{f}(x, \mathbf{y})=\left(\overline{2}^{\int_{0}^{x} \mathbf{A}(t, \mathbf{y}) \delta t}\right) \cdot \mathbf{G}(\mathbf{y})+\int_{0}^{x}\left(\overline{2}^{\int_{u+1}^{x} \mathbf{A}(t, \mathbf{y}) \delta t}\right) \cdot \mathbf{B}(u, \mathbf{y}) \delta u$.
Or, alternatively:

$$
\mathbf{f}(x, \mathbf{y})=\sum_{u=-1}^{x-1}\left(\prod_{t=u+1}^{x-1}(1+\mathbf{A}(t, \mathbf{y}))\right) \cdot \mathbf{B}(u, \mathbf{y})
$$

with the conventions that $\prod_{x}^{x-1} \kappa(x)=1$ and $\mathbf{B}(-1, \mathbf{y})=\mathbf{G}(\mathbf{y})$
Computational content is clear: the solution can be computed

Bounded sum and product

Arithmetic is used freely below.
Let $g: \mathbb{N}^{p+1} \rightarrow \mathbb{N}$,

- Let $f(x, \mathbf{y})=\sum_{z<x} g(z, \mathbf{y})$ for $x \neq 0$, and 0 for $x=0$. Function f is the unique solution of :

$$
\left\{\begin{array}{l}
\frac{\partial f(x, \mathbf{y})}{\partial x}=g(x, \mathbf{y}) \\
f(0, \mathbf{y})=0
\end{array}\right.
$$

- Let $f(x, \mathbf{y})=\prod_{z<x} g(z, \mathbf{y})$ for $x \neq 0$, and 1 for $x=0$. Function f is the unique solution of :

$$
\left\{\begin{array}{l}
\frac{\partial f(x, \mathbf{y})}{\partial x}=f(x, \mathbf{y}) \cdot(g(x, \mathbf{y})-1) \\
f(0, \mathbf{y})=1
\end{array}\right.
$$

Plan

- Introduction to discrete ODE
- A short survey on recursion scheme for complexity
- ODE and complexity classes : characterizing polynomial time computation

Plan

- Introduction to discrete ODE
- A short survey on recursion scheme for complexity
- ODE and complexity classes : characterizing polynomial time computation

Primitive recursive functions

Let $p \in \mathbb{N}, g: \mathbb{N}^{p} \rightarrow \mathbb{N}$ and $h: \mathbb{N}^{p+2} \rightarrow \mathbb{N}$.
The function $f=\operatorname{REC}(g, h): \mathbb{N}^{p+1} \rightarrow \mathbb{N}$ is defined by primitive recursion from g and h if:

$$
\left\{\begin{array}{l}
f(0, \mathbf{y})=g(\mathbf{y}) \\
f(x+1, \mathbf{y})=h(f(x, \mathbf{y}), x, \mathbf{y})
\end{array}\right.
$$

- High complexity functions
- How to restrict the recursion scheme to lower complexity?

Bounded recursion

Let $g: \mathbb{N}^{p} \rightarrow \mathbb{N}, h: \mathbb{N}^{p+2} \rightarrow \mathbb{N}$ and $i: \mathbb{N}^{p+1} \rightarrow \mathbb{N}$.
The function $f=\operatorname{BR}(g, h): \mathbb{N}^{p+1} \rightarrow \mathbb{N}$ is defined by bounded recursion from g, h and i if

$$
\begin{aligned}
f(0, \mathbf{y}) & =g(\mathbf{y}) \\
f(x+1, \mathbf{y}) & =h(f(x, \mathbf{y}), x, \mathbf{y})
\end{aligned}
$$

under the condition that:

$$
f(x, \mathbf{y}) \leq i(x, \mathbf{y})
$$

Key ingredient to capture elementary function and Grzegorczyk's hierarchy

Recursion on notation (Cobham)

Consider $\mathbf{s}_{0}, \mathbf{s}_{1}: \mathbb{N} \rightarrow \mathbb{N}$

$$
\mathbf{s}_{0}(x)=2 \cdot x \text { and } \mathbf{s}_{1}(x)=2 \cdot x+1
$$

Definition

Function f defined by bounded recursion on notations, i.e. BRN, from functions g, h_{0}, h_{1} et k when:

$$
\left\{\begin{array}{l}
f(0, \mathbf{y})=g(\mathbf{y}) \\
f\left(\mathbf{s}_{0}(x), \mathbf{y}\right)=h_{0}(x, \mathbf{y}, f(x, \mathbf{y})) \text { for } x \neq 0 \\
f\left(\mathbf{s}_{1}(x), \mathbf{y}\right)=h_{1}(x, \mathbf{y}, f(x, \mathbf{y})) \\
f(x, \mathbf{y}) \leq k(x, \mathbf{y})
\end{array}\right.
$$

Cobham's approach

\mathscr{F}_{P} smallest subset of primitive recursive functions

- Containing basis functions : Function0, projections p_{i}^{k}, successor functions $\mathbf{s}_{0}(x)=2 \cdot x$ and $\mathbf{s}_{1}(x)=2 \cdot x+1$, "smash" function $x \sharp y=2^{|x| \times|y|}$
- Closed by composition
- Closed by bounded recursion on notations

Cobham (62) : \mathscr{F}_{P} is equal to FP, the class of polynomial time computable functions

Why it works

$$
\left\{\begin{array}{l}
f(0, \mathbf{y})=g(\mathbf{y}) \\
f\left(\mathbf{s}_{0}(x), \mathbf{y}\right)=h_{0}(x, \mathbf{y}, f(x, \mathbf{y})) \text { for } x \neq 0 \\
f\left(\mathbf{s}_{1}(x), \mathbf{y}\right)=h_{1}(x, \mathbf{y}, f(x, \mathbf{y})) \\
f(x, \mathbf{y}) \leq k(x, \mathbf{y})
\end{array}\right.
$$

Why it works

$$
\left\{\begin{array}{l}
f(0, \mathbf{y})=g(\mathbf{y}) \\
f\left(\mathbf{s}_{0}(x), \mathbf{y}\right)=h_{0}(x, \mathbf{y}, f(x, \mathbf{y})) \text { for } x \neq 0 \\
f\left(\mathbf{s}_{1}(x), \mathbf{y}\right)=h_{1}(x, \mathbf{y}, f(x, \mathbf{y})) \\
f(x, \mathbf{y}) \leq k(x, \mathbf{y})
\end{array}\right.
$$

- f is defined from h_{0}, h_{1} and k.
- If $|k(x, \mathbf{y})|$ is polynomial in $|x|+|y|$, then so is $|f(x, \mathbf{y})|$
- Hence, inner terms do not grow too fast!

Why it works

$$
\left\{\begin{array}{l}
f(0, \mathbf{y})=g(\mathbf{y}) \\
f\left(\mathbf{s}_{0}(x), \mathbf{y}\right)=h_{0}(x, \mathbf{y}, f(x, \mathbf{y})) \text { for } x \neq 0 \\
f\left(\mathbf{s}_{1}(x), \mathbf{y}\right)=h_{1}(x, \mathbf{y}, f(x, \mathbf{y})) \\
f(x, \mathbf{y}) \leq k(x, \mathbf{y})
\end{array}\right.
$$

- $\left|\mathbf{s}_{1}(x)\right|=\left|\mathbf{s}_{0}(x)\right|=|x|+1$
- Then the number of induction steps is in $O(|x|)$.

Going further: syntactic restriction, ramified recursion

- Cobham's work was the starting point of numerous attempts to capture complexity classes by recursion algebras
- Generalize to $\mathbf{L}, \mathrm{NC}^{i}, \mathrm{AC}^{i}$ classes
- Alternative approaches that do not require to bound the function a priori.
- Predicative recursion (Bellantoni, Cook)
- Ramified recurrence (Leivant, Leivant-Marion)
-

Plan

- Introduction to discrete ODE
- A short survey on recursion scheme for complexity
- ODE and complexity classes : characterizing polynomial time computation

Plan

- Introduction to discrete ODE
- A short survey on recursion scheme for complexity
- ODE and complexity classes : characterizing polynomial time computation

Discrete ODE for elementary functions

Definition (Discrete ODE schemata)

Let $g: \mathbb{N}^{p} \rightarrow \mathbb{N}$ and $h: \mathbb{Z} \times \mathbb{N}^{p+1} \rightarrow \mathbb{Z}$.
Function f is defined by discrete ODE solving from g and h, denoted by $f=\operatorname{ODE}(g, h)$, if $f: \mathbb{N}^{p+1} \rightarrow \mathbb{Z}$ if f solution of:

$$
\left\{\begin{array}{l}
\frac{\partial f(x, \mathbf{y})}{\partial x}=h(f(x, \mathbf{y}), x, \mathbf{y}) \\
f(0, \mathbf{y})=g(\mathbf{y})
\end{array}\right.
$$

When h is linear: LI schemata.

Discrete ODE for elementary functions

What about the smallest classes of functions

- that contains $\mathbf{0}$, the projections π_{i}^{p}, the successor \mathbf{s}, addition + , subtraction -
- that is closed under composition and discrete linear ODE schemata LI.

Result: Corresponds to elementary functions
Remark: recall the definition of bounded sum and bounded product.

ODE for complexity classes ?

- Elementary functions are of high complexity
- But linear systems is the simplest kind of system
- What can we do (i.e. what can we restrict more) to capture smaller complexity classes and in particular the class of polynomial time computable functions FP?

Derivation along a function

Definition (\mathcal{L}-ODE)

Let $\mathcal{L}: \mathbb{N}^{p+1} \rightarrow \mathbb{Z}$. We write

$$
\begin{equation*}
\frac{\partial \mathbf{f}(x, \mathbf{y})}{\partial \mathcal{L}}=\frac{\partial \mathbf{f}(x, \mathbf{y})}{\partial \mathcal{L}(x, \mathbf{y})}=\mathbf{h}(\mathbf{f}(x, \mathbf{y}), x, \mathbf{y}) \tag{2}
\end{equation*}
$$

as a formal synonym for
$\mathbf{f}(x+1, \mathbf{y})=\mathbf{f}(x, \mathbf{y})+(\mathcal{L}(x+1, \mathbf{y})-\mathcal{L}(x, \mathbf{y})) \cdot \mathbf{h}(\mathbf{f}(x, \mathbf{y}), x, \mathbf{y})$.
Inspired by the classical formula:

$$
\frac{\delta f(x, \mathbf{y})}{\delta x}=\frac{\delta \mathcal{L}(x, \mathbf{y})}{\delta x} \cdot \frac{\delta f(x, \mathbf{y})}{\delta \mathcal{L}(x, \mathbf{y})}
$$

\mathcal{L}-ODE

The equality

$$
\frac{\delta f(x, \mathbf{y})}{\delta x}=(\mathcal{L}(x+1, \mathbf{y})-\mathcal{L}(x, \mathbf{y})) \cdot \mathbf{h}(\mathbf{f}(x, \mathbf{y}), x, \mathbf{y})
$$

implies that the value of the derivative i.e. the variation of the function has to be considered only when

$$
\mathcal{L}(x+1, \mathbf{y})-\mathcal{L}(x, \mathbf{y}) \neq 0
$$

Consequence: only as many values to consider to compute $f(x, \mathbf{y})$ as the number of times $\mathcal{L}(t, \mathbf{y})$ changes between $t=0$ and $t=x \ldots$
Application: if $\mathcal{L}(x, y)=\ell(x)$ then only a logarithmic in x number of values

Towards capturing FP

Deriving along the logarithm function is not sufficient to capture FP

- It is easily seen that the solution of

$$
\begin{equation*}
\frac{\partial f(x)}{\partial \ell(x)}=f(x) \cdot(f(x)-1) \tag{3}
\end{equation*}
$$

is a fast growing function (output is exponential in size)

- Idea: combine linearity and derivation along some particular function \mathcal{L} i.e. systems:

$$
\begin{equation*}
\frac{\partial \mathbf{f}(x, \mathbf{y})}{\partial \mathcal{L}}=\mathbf{h}(\mathbf{f}(x, \mathbf{y}), x, \mathbf{y}) \tag{4}
\end{equation*}
$$

where

- h is "linear"
- \mathcal{L} has a polylogarithmic number of values

$\mathbb{D L}$

Definition ($\mathbb{D L}$)

Let $\mathbb{D L}$ be the smallest subset of functions,

- that contains $\mathbf{0}, \mathbf{1}$, projections π_{i}^{p}, the length $\ell(x)$, functions $x+y, x-y, x \times y$, the sign function $\operatorname{sg}(x)$
- closed under composition (when defined) and linear length-ODE scheme:

$$
\frac{\partial \mathbf{f}(x, \mathbf{y})}{\partial \ell}=\mathbf{u}(\mathbf{f}(x, \mathbf{y}), x, \mathbf{y}) \quad \text { and } \mathbf{f}(0, \mathbf{y})=\mathbf{g}(\mathbf{y})
$$

where \mathbf{u} is essentially linear in $\mathbf{f}(x, \mathbf{y})$.

A characterization of FP

Theorem: $\mathbb{D L}=\mathbf{F P}$
Proof of (\subseteq): Roughly speaking

- The derivation along $\ell(x)$ (or any \mathcal{L} with polylog "jumps") permits to control the number of steps
- Linearity of the system permits to control the size of the output

Proof of (\supseteq) : By a direct expression of a polynomial computation of a register machine.

Conclusion, questions and work in progress

- Study the expressive and computational power of discrete ODE
- Appears
- to be a convenient tool for algorithm design
- to elegantly capture complexity notions
- Extend the work to other classes (FPSPACE, NP, circuit classes)
- smaller derivation steps and allowing errors
- Generalize to the continuous setting

