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Overview

Definition

A set of problems has a dichotomy
if any of its problems is either
P-time or NP-complete.

Theorem (Ladner, 1975)

If P 6=NP, then NP has no
dichotomy.

NP = ESO

CSP =p MMSNP

MMSNP2

no dichotomy

dichotomy

unknown
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Overview

Theorem (Fagin, 1974)

NP equals ESO.

Theorem (Feder, Vardi, 1998)

MMSNP has a dichotomy iff CSP
has.

Theorem (Bulatov, Zhuk, 2017)

CSP has a dichotomy.

NP = ESO

CSP =p MMSNP

MMSNP2

no dichotomy

dichotomy

unknown
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MMSNP 6/ 26



Definition

No Monochromatic Triangle

Given a graph G, colour its
vertices with 2 colours so that
the result omits the two following
subgraphs.

G
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Reduction to CSP

Reduction

Replace every triangle of the
input graph G with a
relational triple.

Check if the resulting
structure maps to T , where
T is as follows.

T

S
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The other direction

Naive approach

Replace every relational
triple of S with a triangle.

Check if the resulting graph
G satisfies the MMSNP
sentence.

Obstacle

What to do when S contains
implicit triangles?

S
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Solution

Lemma (Erdős)

For given structures S, T , and
l > 0 there exists S′ such that

S → T iff S′ → T ;

S′ does not contain cycles of
length less than l, i.e., the
girth of S′ is at least l.

S ′
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Solution

Proof

By construction, S′ → S.

The number of cycles of
length < l is small, so we
need to remove a few tuples
to get rid of them.

If S′ → T , then each “bag”
of size N contains at least
N
|T | vertices that are mapped
to the same vertex in T .

S ′
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Solution

Proof

By construction, S′ → S.

The number of cycles of
length < l is small, so we
need to remove a few tuples
to get rid of them.

If S′ → T , then each “bag”
of size N contains at least
N
|T | vertices that are mapped
to the same vertex in T .

Tuples are distributed
uniformly, so every triple of
“bags” has at least one
tuple induced on them.

S ′
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Definition

No Monochromatic Edge
Triangle

Given a graph G, colour its edges
with 2 colours so that the result
omits the two following
subgraphs.

G
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Definition

No Monochromatic Edge
Triangle

Given a graph G, colour its edges
with 2 colours so that the result
omits the two following
subgraphs.

G
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Reduction to MMSNP

Reduction

Replace every edge with a triple,
where the new vertex represents
the edge.

G̃
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Reduction to MMSNP

Reduction

Replace every edge with a triple,
where the new vertex represents
the edge.

G̃
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Reduction to CSP

Reduction

Replace every triangle of the
input graph G with a
relational 6-tuple.

Check if the resulting
structure maps to T , where
T is as follows.

T

S
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Obstacles for the other direction

Within S′, it is not allowed to join two 6-tuples only by a
vertex representing an original edge.
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Obstacles for the other direction

Within S′, it is not allowed to join two 6-tuples only by a
vertex representing an original edge.

Joining 6-tuples only by vertices that represent original
vertices is not sufficient.

S T
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Obstacles for the other direction

Within S′, it is not allowed to join two 6-tuples only by a
vertex representing an original edge.

Joining 6-tuples only by vertices that represent original
vertices is not sufficient.

S ′ T
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How can we help ourselves?

We can provide that, if two tuples in S share an edge-vertex,
then they share the whole implicit edge.
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How can we help ourselves?

We can provide that, if two tuples in S share an edge-vertex,
then they share the whole implicit edge.

Within S′, we are allowed to join two tuples by an implicit
edge, and it will not reduce the girth down to 2.
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How to construct S ′ right?

We can apply the same Erdős’ method as for MMSNP. But then
we need to identify vertices within S′ in order to replace it later
with a graph. This procedure reduces the girth of S′.

MMSNP2 25/ 26



How to construct S ′ right?

Change the measure function for vertices of S′ from the
Lemma of Erdős, e.g., consider the degrees of vertices.

Consider the layer configuration of T and its cycles and to
construct S′ depending on them.

To solve a weaker problem: bounded-degree input, S′ having
exponential size with respect to S, etc.

Thank You!
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