MMSNP and MMSNP2

Alexey Barsukov

UR
UNIVERSITÉ Clermont Auvergne
Livo's

Paris, 6 October 2022

Table of Contents

1 Introduction

2 MMSNP

3 MMSNP2

Introduction

Overview

Definition

A set of problems has a dichotomy
if any of its problems is either
P-time or NP-complete.

$$
N P=E S O \quad \text { no dichotomy }
$$

$M M S N P_{2}$
unknown

Theorem (Ladner, 1975)

If $\mathrm{P} \neq \mathrm{NP}$, then NP has no dichotomy.

Overview

Theorem (Fagin, 1974)

NP equals ESO.

$$
N P=E S O \quad \text { no dichotomy }
$$

$M M S N P_{2}$
unknown
MMSNP has a dichotomy iff CSP has.

Theorem (Bulatov, Zhuk, 2017) $C S P={ }_{p} M M S N P$
CSP has a dichotomy.

MMSNP

Definition

No Monochromatic Triangle

Given a graph G, colour its vertices with 2 colours so that the result omits the two following subgraphs.

Definition

No Monochromatic Triangle

Given a graph G, colour its vertices with 2 colours so that the result omits the two following subgraphs.

Reduction to CSP

Reduction

- Replace every triangle of the input graph G with a relational triple.
- Check if the resulting structure maps to T, where T is as follows.

T

The other direction

Naive approach

- Replace every relational triple of S with a triangle.
- Check if the resulting graph G satisfies the MMSNP sentence.

Obstacle

What to do when S contains
 implicit triangles?

Solution

Lemma (Erdős)

For given structures S, T, and $l>0$ there exists S^{\prime} such that

- $S \rightarrow T$ iff $S^{\prime} \rightarrow T$;
- S^{\prime} does not contain cycles of length less than l, i.e., the girth of S^{\prime} is at least l.

Solution

Proof

■ By construction, $S^{\prime} \rightarrow S$.

- The number of cycles of length $<l$ is small, so we need to remove a few tuples to get rid of them.
- If $S^{\prime} \rightarrow T$, then each "bag" of size N contains at least $\frac{N}{|T|}$ vertices that are mapped to the same vertex in T.

Solution

Proof

■ By construction, $S^{\prime} \rightarrow S$.

- The number of cycles of length $<l$ is small, so we need to remove a few tuples to get rid of them.
■ If $S^{\prime} \rightarrow T$, then each "bag" of size N contains at least $\frac{N}{|T|}$ vertices that are mapped to the same vertex in T.
- Tuples are distributed uniformly, so every triple of "bags" has at least one tuple induced on them.

MMSNP2

Definition

No Monochromatic Edge Triangle

Given a graph G, colour its edges with 2 colours so that the result omits the two following subgraphs.

Definition

No Monochromatic Edge Triangle

Given a graph G, colour its edges with 2 colours so that the result omits the two following subgraphs.

Reduction to MMSNP

Reduction

Replace every edge with a triple, where the new vertex represents the edge.

Reduction to MMSNP

Reduction

Replace every edge with a triple, where the new vertex represents the edge.

Reduction to CSP

Reduction

- Replace every triangle of the input graph G with a relational 6-tuple.
- Check if the resulting structure maps to T, where T is as follows.

Obstacles for the other direction

- Within S^{\prime}, it is not allowed to join two 6-tuples only by a vertex representing an original edge.

Obstacles for the other direction

■ Within S^{\prime}, it is not allowed to join two 6-tuples only by a vertex representing an original edge.
■ Joining 6-tuples only by vertices that represent original vertices is not sufficient.

Obstacles for the other direction

■ Within S^{\prime}, it is not allowed to join two 6-tuples only by a vertex representing an original edge.
■ Joining 6-tuples only by vertices that represent original vertices is not sufficient.

How can we help ourselves?

■ We can provide that, if two tuples in S share an edge-vertex, then they share the whole implicit edge.

How can we help ourselves?

■ We can provide that, if two tuples in S share an edge-vertex, then they share the whole implicit edge.

- Within S^{\prime}, we are allowed to join two tuples by an implicit edge, and it will not reduce the girth down to 2 .

How to construct S^{\prime} right?

We can apply the same Erdős' method as for MMSNP. But then we need to identify vertices within S^{\prime} in order to replace it later with a graph. This procedure reduces the girth of S^{\prime}.

How to construct $S^{\prime \prime}$ right?

- Change the measure function for vertices of S^{\prime} from the Lemma of Erdős, e.g., consider the degrees of vertices.

How to construct $S^{\prime \prime}$ right?

- Change the measure function for vertices of S^{\prime} from the Lemma of Erdős, e.g., consider the degrees of vertices.
- Consider the layer configuration of T and its cycles and to construct S^{\prime} depending on them.

How to construct S^{\prime} right?

- Change the measure function for vertices of S^{\prime} from the Lemma of Erdős, e.g., consider the degrees of vertices.
■ Consider the layer configuration of T and its cycles and to construct S^{\prime} depending on them.
■ To solve a weaker problem: bounded-degree input, S^{\prime} having exponential size with respect to S, etc.

How to construct S^{\prime} right?

- Change the measure function for vertices of S^{\prime} from the Lemma of Erdős, e.g., consider the degrees of vertices.
- Consider the layer configuration of T and its cycles and to construct S^{\prime} depending on them.
■ To solve a weaker problem: bounded-degree input, S^{\prime} having exponential size with respect to S, etc.

Thank You!

