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Constraint Satisfaction Problems

Informal definition of CSPs

A CSP is a computational problem.

The input consists of a finite set of variables and a finite set of
constraints imposed on those variables.

The task is to decide whether there is an assignment of values to the
variables such that all the constraints are simultaneously satisfied.

Examples

Is a propositional formula in CNF with at most three literals per
clause satisfiable on {0, 1}?
Is there a solution to a finite set of linear equations over F2?
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Formalisation of CSPs

Preliminaries

Given a relational signature τ , an atomic formula is of the form R(x)
with R a relation in τ .

A primitive positive (pp) formula on τ is of the form
∃x1 . . . xn(φ1(x) ∧ · · · ∧ φk(x)) where all φi are atomic formulas.

Formal definition of CSPs

Given a structure Γ on a finite relational signature τ , we define the
computational problem CSP(Γ):

� Input: a primitive positive sentence φ.

� Question: Γ |= φ ?

Natural question: what is the complexity of CSP(Γ) for a given Γ?
Proposition: it does not change when adding pp-definable relations to Γ.
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Dichotomy for finite Structures

Schaefer’77: for any 2-element structure Γ, CSP(Γ) is either
polynomially solvable or NP-complete.

Conjecture (Feder-Vardi’93)

This dichotomy holds for every finite structure Γ.

Bulatov’03: confirmed Feder-Vardi’s conjecture for domains of size 3.

Markovic’12: confirmed for domains of size 4 (announced but not
published yet).

The conjecture is already open for domains of size ≥ 5.
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What about infinite structures?
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Infinite Structures

Non-Dichotomy

Ladner’75: if P 6= NP, there are NP-intermediate computational
decision problems, i.e., problems in NP that are neither
polynomial-time tractable nor NP-complete.

Bodirsky-Grohe’08: Every computational decision problem is
polynomial-time equivalent to a CSP with an infinite template.

Consequently: no dichotomy for CSPs on infinite structures.

Question

Can we identify large natural classes of CSPs on infinite structures whose
complexity can be classified?
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The Countable Boolean Vector Space

Definition

There is up to isomorphism a unique countably infinite vector space over
the field F2. We denote it by (V ; +).

Characteristics:

fundamental structure in Model Theory

Fräıssé limit of the class of finite F2-vector spaces

homogeneous, i.e., any partial isomorphism between finite
substructures of (V ; +) can be extended to an automorphism of
(V ; +)
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Reducts of (V ; +)

Definition

A reduct of a structure ∆ is a relational structure with the same domain
as ∆ whose relations are definable with first-order formulas over ∆.

Examples of relations definable over (V ; +): let n ≥ 3 be an integer,

x = 0 :⇔ x + x = x

Eqn(x1, . . . , xn) :⇔ Σi≤nxi = 0

Indn(x1, . . . , xn) :⇔ x1, . . . , xn are linearly independent

Ieqn(x1, . . . , xn) :⇔ Eqn(x1, . . . , xn) and every subfamily of size n − 1
of x1, . . . , xn is linearly independent
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Bit Vector CSPs

Definition

A Bit Vector CSP is a problem CSP(Γ) where Γ is a reduct of (V ; +).

Examples:

1 CSP(V ; Eq3, 6=)
2 CSP(V ; Ieq4, Ieq8,Z1 ∪ Z2 ∪ Ind4) where:

Z1(x , y , z , t) :⇔ x = 0 ∧ Ieq3(y , z , t), and
Z2(x , y , z , t) :⇔ x /∈ {0, y , z , t} ∧ Ieq3(y , z , t)}

3 CSP(V ; Ieq5,Q) where:

Q(x , y , z , t1, t2, t3) :⇔ Ieq4(x , y , z , t1) ∨ Ieq5(x , y , z , t2, t3)

Remark: 1. is in P by Gaussian elimination, but classifying the complexity
of Examples 2. and 3. is not that easy.
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ω-categoricity

Conjecture

A Bit Vector CSP is either in P, or NP-complete.

How can we classify the complexity of CSP(Γ)?

For finite structures, we can use a universal algebraic approach.

To adapt it for an infinite Γ, we need a strong property on Γ:
ω-categoricity.

Definition (Ryll-Nardzewski’s form)

A countable structure of domain D is ω-categorical iff it has finitely many
orbits w.r.t. the natural action of its automorphism group on Dn, for all n.

Facts:

A reduct of an ω-categorical structure is ω-categorical.

(V ; +) is ω-categorical.
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Polymorphisms

A m-ary operation f preserves a n-ary relation R if for all n-tuples
x1, . . . , xm in R, the n-tuple (f (x1,i , . . . , xm,i ))1≤i≤n is again in R.

f is called a polymorphism of a relational structure Γ if it preserves
every relation of Γ.

A unary polymorphism of Γ is called an endomorphism of Γ.
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Universal Algebraic Approach and ω-categoricity

- Pol(Γ) (resp. End(Γ)): the set of all polymorphisms (resp.
endomorphisms) of Γ.

- Inv(F ): the set of all relations preserved by a set F of operations.

- 〈Γ〉pp: the set of all relations which are definable with a primitive
positive formula over Γ.

Theorem (Geiger’68 & Bodirsky,Nesetril’03)

For every countably infinite ω-categorical or finite structure Γ:

Inv(Pol(Γ)) = 〈Γ〉pp

Consequently, the complexity of CSP(Γ) is determined by Pol(Γ).
We first focus on understanding End(Γ).
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Classification of Endomorphism monoids of Reducts

Theorem

Let Γ be a reduct of (V ; +) which is not homomorphically equivalent to a
reduct of (V ; 0). Then End(Γ) belongs to a list of 27 monoids.

Remarks:

Homomorphic equivalence preserves the complexity of the CSP.

CSPs of reducts of (V ; 0) are fully classified in the thesis.

What method do we use?
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Bodirsky and Pinsker’s Method using Ramsey Theory

Goal: classify End(Γ) for reducts Γ of structures with a strong
combinatorial property called Ramsey Property.

Notation: Let A,B,C be structures with same signature, and r ∈ N.(
B
A

)
denotes the set of substructures of B isomorphic to A.

we write C→ (B)Ar if for all colouring χ :
(
C
A

)
→ {1, . . . , r} there

exists B′ ∈
(
C
B

)
such that χ is monochromatic on

(
B′

A

)
.

Ramsey Property

A structure Γ has the Ramsey property if for all finite substructures A,B
of Γ and all k ∈ N, we have: Γ→ (B)Ar .

Graham-Leeb-Rothschild’71: (V ; +) is Ramsey.
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Generating Canonical Functions

The Ramsey property allows us to prove the existence of canonical
functions. They play a crucial role in the classification of End(Γ).

f : ∆1 → ∆2 is canonical if the orbit of the image of a tuple a only
depends on the orbit of a.

f : ∆→ ∆ generates g if g belongs to the closure of {f } ∪ Aut(∆)
under composition and pointwise convergence.

if an endomorphism of a reduct Γ of ∆ generates g , then g ∈ End(Γ).

Theorem (Bodirsky,Pinsker,Tsankov’11)

Let ∆ be a homogeneous Ramsey structure with finite relational
signature. For all f : ∆→ ∆ and all C := {c1, . . . , cn}, f generates a
canonical function g from (∆, c1, . . . , cn) to ∆ such that f �C = g�C .

Fact: finitely many canonical functions from ∆1 to ∆2 for finite
relational signatures.
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f : ∆→ ∆ generates g if g belongs to the closure of {f } ∪ Aut(∆)
under composition and pointwise convergence.

if an endomorphism of a reduct Γ of ∆ generates g , then g ∈ End(Γ).

Theorem (Bodirsky,Pinsker,Tsankov’11)

Let ∆ be a homogeneous Ramsey structure with finite relational
signature. For all f : ∆→ ∆ and all C := {c1, . . . , cn}, f generates a
canonical function g from (∆, c1, . . . , cn) to ∆ such that f �C = g�C .

Fact: finitely many canonical functions from ∆1 to ∆2 for finite
relational signatures.
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Dealing with a Functional Signature

Proposition

(V ; +) is not first-order interdefinable with any homogeneous structure
with finite relational signature.

Difficulties:

we have to adapt Bodirsky-Pinsker’s theorem to use it on (V ; +)

potentially infinitely many canonical functions from (V ; +) to (V ; +)

Fact

Bodirsky-Pinsker’s theorem can be adapted for ω-categorical homogeneous
structures with functional signatures which have the Ramsey property.

We first study canonical functions from (V ; +) to (V ; +).
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Canonical functions of (V ; +) without Constants

Theorem

Let f be a unary canonical function from (V ; +) to (V ; +). There exists
h ∈ End(V ; +, 6=) and a /∈ h(V ) s.t. one of the following applies:

(id-function) f (x) = h(x) for all x 6= 0;

(af-function) f (x) = h(x) + a for all x 6= 0;

(gen-function) f sends any family of pairwise distinct elements of
V \ {0} to a linearly independent family;

Degenerated case: f has an image of size at most 2.
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Towards a Description of Injective Endomorphism Monoids

Translation of vector d 6= 0: td(x) := x + d for all x .
Fact: Translations preserve Eq4 and are not canonical.

Useful properties

id-functions and af-functions preserve Ieq4 but gen-functions and
translations do not.

Let f be an injection violating Ieq4. Then f generates a gen-function
or a translation.

End(V ; Eq4, 6=) is generated by td .

td together with any injection violating Eq4 generates a gen-function.
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Classification of Injective Endomorphism Monoids of
Reducts

Theorem

Let Γ be a reduct of (V ; +) with only injective endomorphisms. Then one
of the following holds:

End(Γ) = End(V ; Eq4, 6=);

End(Γ) is contained in End(V ; Ieq4, 6=);

End(Γ) contains a gen-function.

Why stopping when End(Γ) contains a gen-function?

If a gen-function belongs to End(Γ), then Γ is homomorphically equivalent
to a reduct of (V ; 0).

François Bossière (LIX) The Countable Bit Vector Space and CSPs September 17, 2015 19 / 27



Classification of Injective Endomorphism Monoids of
Reducts

Theorem

Let Γ be a reduct of (V ; +) with only injective endomorphisms. Then one
of the following holds:

End(Γ) = End(V ; Eq4, 6=);

End(Γ) is contained in End(V ; Ieq4, 6=);

End(Γ) contains a gen-function.

Why stopping when End(Γ) contains a gen-function?

If a gen-function belongs to End(Γ), then Γ is homomorphically equivalent
to a reduct of (V ; 0).

François Bossière (LIX) The Countable Bit Vector Space and CSPs September 17, 2015 19 / 27



End(V ; +, 6=)

End(V ; Ieq3, 6=)
End(V ; Ieq4, 0)

End(V ; Ieq4,Z1 ∪ Ind4, 6=)

End(V ; Eq4, Ind1, 6=)

End(V ; Ieq4,T2, 6=) End(V ; Ieq4,T5, 6=) End(V ; Ieq4,T6, 6=)

End(V ; Ieq4,T3, 6=) End(V ; Ieq4,T1, 6=) End(V ; Ieq4,T4, 6=)

End(V ; Eq4, 6=)
End(V ; Ieq4, 6=)
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To further simplify the study, we need a new idea!
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Model-complete Cores

Aut(∆): topological closure of Aut(∆) under pointwise convergence.

Definition

A model-complete core of a reduct Γ is a structure ∆ homomorphically
equivalent to Γ, and such that:

End(∆) = Aut(∆)

Note that CSP(∆) and CSP(Γ) are equal by homomorphic equivalence.

Theorem (Bodirsky’06)

Every reduct Γ of an ω-categorical structure has a model-complete core ∆.
All model-complete cores of Γ are isomorphic to ∆.
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Classification of Model-Complete Cores

Theorem

Let Γ be a reduct of (V ; +). Exactly one of the following holds:

1 End(Γ) = End(V ; +, 6=),

2 End(Γ) = End(V ; Ieq4, 0), or
3 the model-complete core of Γ is isomorphic to a structure Γ′ s.t.:

a) End(Γ′) = End(V \ {0}; Ieq3),
b) End(Γ′) = End(V ; Eq4, 6=),
c) Γ′ is a reduct of (V ; 0), or
d) Γ′ is a 2-element structure.
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Pathway to Bit Vector CSPs

Corollary

Let Γ be a reduct of (V ; +). There exists a structure Γ′ with same CSP as
Γ and s.t. one of the following holds:

1 End(Γ′) = End(V ; +, 6=);

2 End(Γ′) = End(V \ {0}; Ieq3);

3 End(Γ′) = End(V ; Eq4, 6=);

4 End(Γ′) = End(V ; Ieq4, 0);

5 Γ′ is a reduct of (V ; 0);

6 Γ′ is a 2-element structure.

The study of the polymorphisms is now strongly simplified.

François Bossière (LIX) The Countable Bit Vector Space and CSPs September 17, 2015 24 / 27



Pathway to Bit Vector CSPs

Corollary

Let Γ be a reduct of (V ; +). There exists a structure Γ′ with same CSP as
Γ and s.t. one of the following holds:

1 End(Γ′) = End(V ; +, 6=);

2 End(Γ′) = End(V \ {0}; Ieq3);

3 End(Γ′) = End(V ; Eq4, 6=);

4 End(Γ′) = End(V ; Ieq4, 0);

5 Γ′ is a reduct of (V ; 0);

6 Γ′ is a 2-element structure.

The study of the polymorphisms is now strongly simplified.

François Bossière (LIX) The Countable Bit Vector Space and CSPs September 17, 2015 24 / 27



Case distinction of the previous corollary:

1 Γ′ is a 2-element structure: P/NPc dichotomy (Schaefer’77)

2 Γ′ is a reduct of (V ; 0): P/NPc dichotomy
Poly. algos: Schaefer + ad-hoc routines

3 End(Γ′) = End(V ; Eq4, 6=): P/NPc dichotomy
Poly. algos: Schaefer + Gauss Pivot + ad-hoc routines.

4 End(Γ′) = End(V \ {0}; Ieq3): P/NPc dichotomy
Poly. algos: Schaefer + Gauss Pivot + ad-hoc routines.

5 End(Γ′) = End(V ; +, 6=): partial proof for P/NPc dichotomy
Poly. algos: Schaefer + Gauss Pivot + ???

6 End(Γ′) = End(V ; Ieq4, 0): P/NPc dichotomy can be proved
accordingly to Case 5.

NB: Case 1 is a joint work with Antoine Mottet and contains Bodirsky and
Kara’s classification of CSPs for reducts of (N; =) as a subcase.
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Conclusion and Perspectives

What we have achieved:

adapt Bodirsky-Pinsker’s method for functional signatures;

classification of canonical functions from (V ; +) to (V ; +);

classification of endomorphism monoids of reducts of (V ; +)
which are not homorphically equivalent to reducts of (V ; 0);

classification of model-complete cores of reducts of (V ; +) up to
existential positive interdefinability. There are finitely many;

P/NPc dichotomy for Bit Vector CSPs in 4 out of 6 listed cases.

What remains to be done:

prove dichotomy when End(Γ) = End(V ; +, 6=);

generalize the dichotomy for any vector space over a finite field; the
automorphism groups classification is already established in this
setting (Bodor-Kalina-Szabó’15)

study reducts of the atomless Boolean Algebra;
NB: (V ; +) is one of its reducts, as x + y := (x ∪ y) \ (x ∩ y).
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Thank you!
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