

LIX, Ecole Polytechnique Technische Universität Dresden

The Countable Boolean Vector Space and Bit Vector CSPs PhD Defence

September 17, 2015

François Bossière

Advisor: Manuel Bodirsky Reviewers: Florent Madelaine Csaba Szabó Jury Members Examiners: Olivier Bournez Arnaud Durand

Informal definition of CSPs

- A CSP is a computational problem.
- The input consists of a finite set of variables and a finite set of constraints imposed on those variables.
- The task is to decide whether there is an assignment of values to the variables such that all the constraints are simultaneously satisfied.

Examples

- Is a propositional formula in CNF with at most three literals per clause satisfiable on {0,1}?
- Is there a solution to a finite set of linear equations over \mathbb{F}_2 ?

Informal definition of CSPs

- A CSP is a computational problem.
- The input consists of a finite set of variables and a finite set of constraints imposed on those variables.
- The task is to decide whether there is an assignment of values to the variables such that all the constraints are simultaneously satisfied.

Examples

- Is a propositional formula in CNF with at most three literals per clause satisfiable on {0,1}?
- Is there a solution to a finite set of linear equations over \mathbb{F}_2 ?

Preliminaries

- Given a relational signature τ, an atomic formula is of the form R(x̄) with R a relation in τ.
- A primitive positive (pp) formula on τ is of the form $\exists x_1 \dots x_n(\phi_1(\overline{x}) \land \dots \land \phi_k(\overline{x}))$ where all ϕ_i are atomic formulas.

Formal definition of CSPs

Given a structure Γ on a finite relational signature τ , we define the computational problem CSP(Γ):

- \diamond **Input**: a primitive positive sentence ϕ .
- ♦ **Question**: $\Gamma \models \phi$?

Natural question: what is the complexity of $CSP(\Gamma)$ for a given Γ ? **Proposition**: it does not change when adding pp-definable relations to Γ .

Preliminaries

- Given a relational signature τ, an atomic formula is of the form R(x̄) with R a relation in τ.
- A primitive positive (pp) formula on τ is of the form $\exists x_1 \dots x_n(\phi_1(\overline{x}) \land \dots \land \phi_k(\overline{x}))$ where all ϕ_i are atomic formulas.

Formal definition of CSPs

Given a structure Γ on a finite relational signature τ , we define the computational problem CSP(Γ):

- ♦ **Input**: a primitive positive sentence ϕ .
- ♦ **Question**: $\Gamma \models \phi$?

Natural question: what is the complexity of $CSP(\Gamma)$ for a given Γ ? **Proposition**: it does not change when adding pp-definable relations to Γ .

Preliminaries

- Given a relational signature τ, an atomic formula is of the form R(x̄) with R a relation in τ.
- A primitive positive (pp) formula on τ is of the form $\exists x_1 \dots x_n(\phi_1(\overline{x}) \land \dots \land \phi_k(\overline{x}))$ where all ϕ_i are atomic formulas.

Formal definition of CSPs

Given a structure Γ on a finite relational signature τ , we define the computational problem CSP(Γ):

- ♦ **Input**: a primitive positive sentence ϕ .
- ♦ **Question**: $\Gamma \models \phi$?

Natural question: what is the complexity of $CSP(\Gamma)$ for a given Γ ?

Proposition: it does not change when adding pp-definable relations to Γ .

Preliminaries

- Given a relational signature τ, an atomic formula is of the form R(x̄) with R a relation in τ.
- A primitive positive (pp) formula on τ is of the form $\exists x_1 \dots x_n(\phi_1(\overline{x}) \land \dots \land \phi_k(\overline{x}))$ where all ϕ_i are atomic formulas.

Formal definition of CSPs

Given a structure Γ on a finite relational signature τ , we define the computational problem CSP(Γ):

- ♦ **Input**: a primitive positive sentence ϕ .
- ♦ **Question**: $\Gamma \models \phi$?

Natural question: what is the complexity of $CSP(\Gamma)$ for a given Γ ? **Proposition**: it does not change when adding pp-definable relations to Γ . Schaefer'77: for any 2-element structure Γ, CSP(Γ) is either polynomially solvable or NP-complete.

Conjecture (Feder-Vardi'93)

This dichotomy holds for every finite structure Γ .

- Bulatov'03: confirmed Feder-Vardi's conjecture for domains of size 3.
- Markovic'12: confirmed for domains of size 4 (announced but not published yet).
- The conjecture is already open for domains of size \geq 5.

What about infinite structures?

Non-Dichotomy

- Ladner'75: if P ≠ NP, there are NP-intermediate computational decision problems, i.e., problems in NP that are neither polynomial-time tractable nor NP-complete.
- Bodirsky-Grohe'08: Every computational decision problem is polynomial-time equivalent to a CSP with an infinite template.
- Consequently: no dichotomy for CSPs on infinite structures.

Question

Can we identify large natural classes of CSPs on infinite structures whose complexity can be classified?

Non-Dichotomy

- Ladner'75: if P ≠ NP, there are NP-intermediate computational decision problems, i.e., problems in NP that are neither polynomial-time tractable nor NP-complete.
- Bodirsky-Grohe'08: Every computational decision problem is polynomial-time equivalent to a CSP with an infinite template.
- Consequently: no dichotomy for CSPs on infinite structures.

Question

Can we identify large natural classes of CSPs on infinite structures whose complexity can be classified?

There is up to isomorphism a unique countably infinite vector space over the field \mathbb{F}_2 . We denote it by (V; +).

Characteristics:

- fundamental structure in Model Theory
- Fraïssé limit of the class of finite \mathbb{F}_2 -vector spaces
- homogeneous, i.e., any partial isomorphism between finite substructures of (V; +) can be extended to an automorphism of (V; +)

A reduct of a structure Δ is a relational structure with the same domain as Δ whose relations are definable with first-order formulas over Δ .

Examples of relations definable over (V; +): let $n \ge 3$ be an integer,

- $x = 0 :\Leftrightarrow x + x = x$
- Eq_n (x_1,\ldots,x_n) : $\Leftrightarrow \Sigma_{i\leq n}x_i=0$
- $\operatorname{Ind}_n(x_1,\ldots,x_n) :\Leftrightarrow x_1,\ldots,x_n$ are linearly independent
- leq_n(x₁,...,x_n) :⇔ Eq_n(x₁,...,x_n) and every subfamily of size n − 1 of x₁,...,x_n is linearly independent

A reduct of a structure Δ is a relational structure with the same domain as Δ whose relations are definable with first-order formulas over Δ .

Examples of relations definable over (V; +): let $n \ge 3$ be an integer,

- $x = 0 :\Leftrightarrow x + x = x$
- $\operatorname{Eq}_n(x_1,\ldots,x_n):\Leftrightarrow \Sigma_{i\leq n}x_i=0$
- $\operatorname{Ind}_n(x_1, \ldots, x_n) :\Leftrightarrow x_1, \ldots, x_n$ are linearly independent
- leq_n(x₁,...,x_n) :⇔ Eq_n(x₁,...,x_n) and every subfamily of size n − 1 of x₁,...,x_n is linearly independent

A reduct of a structure Δ is a relational structure with the same domain as Δ whose relations are definable with first-order formulas over Δ .

Examples of relations definable over (V; +): let $n \ge 3$ be an integer,

• $x = 0 :\Leftrightarrow x + x = x$

•
$$\operatorname{Eq}_n(x_1,\ldots,x_n):\Leftrightarrow \Sigma_{i\leq n}x_i=0$$

- $\operatorname{Ind}_n(x_1, \ldots, x_n) :\Leftrightarrow x_1, \ldots, x_n$ are linearly independent
- leq_n(x₁,...,x_n) :⇔ Eq_n(x₁,...,x_n) and every subfamily of size n − 1 of x₁,...,x_n is linearly independent

A reduct of a structure Δ is a relational structure with the same domain as Δ whose relations are definable with first-order formulas over Δ .

Examples of relations definable over (V; +): let $n \ge 3$ be an integer,

- $x = 0 :\Leftrightarrow x + x = x$
- $\operatorname{Eq}_n(x_1,\ldots,x_n):\Leftrightarrow \Sigma_{i\leq n}x_i=0$
- $\operatorname{Ind}_n(x_1,\ldots,x_n) :\Leftrightarrow x_1,\ldots,x_n$ are linearly independent
- leq_n(x₁,...,x_n) :⇔ Eq_n(x₁,...,x_n) and every subfamily of size n − 1 of x₁,...,x_n is linearly independent

A reduct of a structure Δ is a relational structure with the same domain as Δ whose relations are definable with first-order formulas over Δ .

Examples of relations definable over (V; +): let $n \ge 3$ be an integer,

• $x = 0 :\Leftrightarrow x + x = x$

•
$$\operatorname{Eq}_n(x_1,\ldots,x_n) :\Leftrightarrow \Sigma_{i\leq n} x_i = 0$$

- $\operatorname{Ind}_n(x_1, \ldots, x_n) :\Leftrightarrow x_1, \ldots, x_n$ are linearly independent
- leq_n(x₁,...,x_n) :⇔ Eq_n(x₁,...,x_n) and every subfamily of size n − 1 of x₁,...,x_n is linearly independent

A Bit Vector CSP is a problem CSP(Γ) where Γ is a reduct of (V; +).

Examples:

• CSP(V; Eq₃, \neq)

- **Output** CSP(V; leq₄, leq₈, $Z_1 \cup Z_2 \cup Ind_4$) where:
 - $Z_1(x, y, z, t) :\Leftrightarrow x = 0 \land \mathsf{leq}_3(y, z, t)$, and
 - $Z_2(x, y, z, t) :\Leftrightarrow x \notin \{0, y, z, t\} \land \mathsf{leq}_3(y, z, t)\}$
- \bigcirc CSP(*V*; leq₅, *Q*) where:
 - $Q(x, y, z, t_1, t_2, t_3) :\Leftrightarrow \mathsf{leq}_4(x, y, z, t_1) \lor \mathsf{leq}_5(x, y, z, t_2, t_3)$

A Bit Vector CSP is a problem $CSP(\Gamma)$ where Γ is a reduct of (V; +).

Examples:

• CSP(V; Eq₃, \neq)

- **Output** CSP(V; leq₄, leq₈, $Z_1 \cup Z_2 \cup Ind_4$) where:
 - $Z_1(x, y, z, t) :\Leftrightarrow x = 0 \land \mathsf{leq}_3(y, z, t)$, and
 - $Z_2(x, y, z, t) :\Leftrightarrow x \notin \{0, y, z, t\} \land \mathsf{leq}_3(y, z, t)\}$
- \bigcirc CSP(V; leq₅, Q) where:
 - $Q(x, y, z, t_1, t_2, t_3) :\Leftrightarrow \mathsf{leq}_4(x, y, z, t_1) \lor \mathsf{leq}_5(x, y, z, t_2, t_3)$

A Bit Vector CSP is a problem $CSP(\Gamma)$ where Γ is a reduct of (V; +).

Examples:

- Osp(V; Eq₃, ≠)
- Scale CSP(V; leq₄, leq₈, $Z_1 \cup Z_2 \cup Ind_4$) where:
 - $Z_1(x, y, z, t)$: $\Leftrightarrow x = 0 \land \mathsf{leq}_3(y, z, t)$, and
 - $Z_2(x, y, z, t) :\Leftrightarrow x \notin \{0, y, z, t\} \land \mathsf{leq}_3(y, z, t)\}$
- \bigcirc CSP(V; leq₅, Q) where:
 - $Q(x, y, z, t_1, t_2, t_3) :\Leftrightarrow \mathsf{leq}_4(x, y, z, t_1) \lor \mathsf{leq}_5(x, y, z, t_2, t_3)$

A Bit Vector CSP is a problem $CSP(\Gamma)$ where Γ is a reduct of (V; +).

Examples:

- Osp(V; Eq₃, ≠)
- Scale CSP(V; leq₄, leq₈, $Z_1 \cup Z_2 \cup Ind_4$) where:
 - $Z_1(x, y, z, t) :\Leftrightarrow x = 0 \land \mathsf{leq}_3(y, z, t)$, and
 - $Z_2(x, y, z, t) :\Leftrightarrow x \notin \{0, y, z, t\} \land \mathsf{leq}_3(y, z, t)\}$
- **3** $CSP(V; leq_5, Q)$ where:
 - $Q(x, y, z, t_1, t_2, t_3) :\Leftrightarrow \mathsf{leq}_4(x, y, z, t_1) \lor \mathsf{leq}_5(x, y, z, t_2, t_3)$

A Bit Vector CSP is a problem $CSP(\Gamma)$ where Γ is a reduct of (V; +).

Examples:

CSP(V; Eq₃, ≠)
CSP(V; leq₄, leq₈, Z₁ ∪ Z₂ ∪ Ind₄) where:

Z₁(x, y, z, t) :⇔ x = 0 ∧ leq₃(y, z, t), and
Z₂(x, y, z, t) :⇔ x ∉ {0, y, z, t} ∧ leq₃(y, z, t)}

CSP(V; leq₅, Q) where:

• $Q(x, y, z, t_1, t_2, t_3) :\Leftrightarrow \mathsf{leq}_4(x, y, z, t_1) \lor \mathsf{leq}_5(x, y, z, t_2, t_3)$

Conjecture

A Bit Vector CSP is either in P, or NP-complete.

How can we classify the complexity of $CSP(\Gamma)$?

- For finite structures, we can use a universal algebraic approach.
- To adapt it for an infinite Γ, we need a strong property on Γ: ω-categoricity.

Definition (Ryll-Nardzewski's form)

A countable structure of domain D is ω -categorical iff it has finitely many orbits w.r.t. the natural action of its automorphism group on D^n , for all n.

- A reduct of an ω -categorical structure is ω -categorical.
- (V; +) is ω -categorical.

Conjecture

A Bit Vector CSP is either in P, or NP-complete.

How can we classify the complexity of $CSP(\Gamma)$?

- For finite structures, we can use a universal algebraic approach.
- To adapt it for an infinite Γ, we need a strong property on Γ: ω-categoricity.

Definition (Ryll-Nardzewski's form)

A countable structure of domain D is ω -categorical iff it has finitely many orbits w.r.t. the natural action of its automorphism group on D^n , for all n.

- A reduct of an ω -categorical structure is ω -categorical.
- (V; +) is ω -categorical.

Conjecture

A Bit Vector CSP is either in P, or NP-complete.

How can we classify the complexity of $CSP(\Gamma)$?

- For finite structures, we can use a universal algebraic approach.
- To adapt it for an infinite Γ, we need a strong property on Γ: ω-categoricity.

Definition (Ryll-Nardzewski's form)

A countable structure of domain D is ω -categorical iff it has finitely many orbits w.r.t. the natural action of its automorphism group on D^n , for all n.

- A reduct of an ω -categorical structure is ω -categorical.
- (V; +) is ω -categorical.

Conjecture

A Bit Vector CSP is either in P, or NP-complete.

How can we classify the complexity of $CSP(\Gamma)$?

- For finite structures, we can use a universal algebraic approach.
- To adapt it for an infinite Γ, we need a strong property on Γ: ω-categoricity.

Definition (Ryll-Nardzewski's form)

A countable structure of domain D is ω -categorical iff it has finitely many orbits w.r.t. the natural action of its automorphism group on D^n , for all n.

- A reduct of an ω -categorical structure is ω -categorical.
- (V; +) is ω -categorical.

Polymorphisms

- A *m*-ary operation *f* preserves a *n*-ary relation *R* if for all *n*-tuples $\overline{x_1}, \ldots, \overline{x_m}$ in *R*, the *n*-tuple $(f(x_{1,i}, \ldots, x_{m,i}))_{1 \le i \le n}$ is again in *R*.
- *f* is called a polymorphism of a relational structure Γ if it preserves every relation of Γ.
- A unary polymorphism of Γ is called an endomorphism of Γ .

Universal Algebraic Approach and ω -categoricity

- $Pol(\Gamma)$ (resp. $End(\Gamma)$): the set of all polymorphisms (resp. endomorphisms) of Γ .
- Inv(F): the set of all relations preserved by a set F of operations.
- $\langle \Gamma \rangle_{pp}$: the set of all relations which are **definable with a primitive positive formula** over Γ .

Theorem (Geiger'68 & Bodirsky, Nesetril'03)

For every countably infinite ω -categorical or finite structure Γ :

 $\mathsf{Inv}(\mathsf{Pol}(\Gamma)) = \langle \Gamma \rangle_{\mathsf{pp}}$

Consequently, the complexity of $CSP(\Gamma)$ is determined by $Pol(\Gamma)$. We first focus on understanding $End(\Gamma)$.

Universal Algebraic Approach and ω -categoricity

- $Pol(\Gamma)$ (resp. $End(\Gamma)$): the set of all polymorphisms (resp. endomorphisms) of Γ .
- Inv(F): the set of all relations preserved by a set F of operations.
- $\langle \Gamma \rangle_{pp}$: the set of all relations which are **definable with a primitive positive formula** over Γ .

Theorem (Geiger'68 & Bodirsky, Nesetril'03)

For every countably infinite ω -categorical or finite structure Γ :

 $\mathsf{Inv}(\mathsf{Pol}(\Gamma)) = \langle \Gamma \rangle_{\mathsf{pp}}$

Consequently, the complexity of $CSP(\Gamma)$ is determined by $Pol(\Gamma)$. We first focus on understanding $End(\Gamma)$.

Theorem

Let Γ be a reduct of (V; +) which is not homomorphically equivalent to a reduct of (V; 0). Then End (Γ) belongs to a list of **27 monoids**.

Remarks:

- Homomorphic equivalence preserves the complexity of the CSP.
- CSPs of reducts of (V; 0) are fully classified in the thesis.

What method do we use?

Theorem

Let Γ be a reduct of (V; +) which is not homomorphically equivalent to a reduct of (V; 0). Then End (Γ) belongs to a list of **27 monoids**.

Remarks:

- Homomorphic equivalence preserves the complexity of the CSP.
- CSPs of reducts of (V; 0) are fully classified in the thesis.

What method do we use?

Notation: Let $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ be structures with same signature, and $r \in \mathbb{N}$.

• $\binom{\mathfrak{B}}{\mathfrak{A}}$ denotes the set of substructures of \mathfrak{B} isomorphic to \mathfrak{A} .

• we write $\mathfrak{C} \to (\mathfrak{B})^{\mathfrak{A}}_{r}$ if for all colouring $\chi \colon \binom{\mathfrak{C}}{\mathfrak{A}} \to \{1, \ldots, r\}$ there exists $\mathfrak{B}' \in \binom{\mathfrak{C}}{\mathfrak{B}}$ such that χ is monochromatic on $\binom{\mathfrak{B}'}{\mathfrak{A}}$.

Ramsey Property

A structure Γ has the Ramsey property if for all finite substructures $\mathfrak{A}, \mathfrak{B}$ of Γ and all $k \in \mathbb{N}$, we have: $\Gamma \to (\mathfrak{B})_r^{\mathfrak{A}}$.

Notation: Let $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ be structures with same signature, and $r \in \mathbb{N}$.

• $\binom{\mathfrak{B}}{\mathfrak{A}}$ denotes the set of substructures of \mathfrak{B} isomorphic to \mathfrak{A} .

• we write $\mathfrak{C} \to (\mathfrak{B})^{\mathfrak{A}}_{r}$ if for all colouring $\chi \colon \binom{\mathfrak{C}}{\mathfrak{A}} \to \{1, \ldots, r\}$ there exists $\mathfrak{B}' \in \binom{\mathfrak{C}}{\mathfrak{B}}$ such that χ is monochromatic on $\binom{\mathfrak{B}'}{\mathfrak{A}}$.

Ramsey Property

A structure Γ has the Ramsey property if for all finite substructures $\mathfrak{A}, \mathfrak{B}$ of Γ and all $k \in \mathbb{N}$, we have: $\Gamma \to (\mathfrak{B})_r^{\mathfrak{A}}$.

Notation: Let $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ be structures with same signature, and $r \in \mathbb{N}$.

• $\binom{\mathfrak{B}}{\mathfrak{A}}$ denotes the set of substructures of \mathfrak{B} isomorphic to \mathfrak{A} .

• we write $\mathfrak{C} \to (\mathfrak{B})^{\mathfrak{A}}_{r}$ if for all colouring $\chi \colon \binom{\mathfrak{C}}{\mathfrak{A}} \to \{1, \ldots, r\}$ there exists $\mathfrak{B}' \in \binom{\mathfrak{C}}{\mathfrak{B}}$ such that χ is monochromatic on $\binom{\mathfrak{B}'}{\mathfrak{A}}$.

Ramsey Property

A structure Γ has the Ramsey property if for all finite substructures $\mathfrak{A}, \mathfrak{B}$ of Γ and all $k \in \mathbb{N}$, we have: $\Gamma \to (\mathfrak{B})^{\mathfrak{A}}_{r}$.

Notation: Let $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ be structures with same signature, and $r \in \mathbb{N}$.

• $\binom{\mathfrak{B}}{\mathfrak{A}}$ denotes the set of substructures of \mathfrak{B} isomorphic to \mathfrak{A} .

• we write $\mathfrak{C} \to (\mathfrak{B})^{\mathfrak{A}}_{r}$ if for all colouring $\chi \colon \binom{\mathfrak{C}}{\mathfrak{A}} \to \{1, \ldots, r\}$ there exists $\mathfrak{B}' \in \binom{\mathfrak{C}}{\mathfrak{B}}$ such that χ is monochromatic on $\binom{\mathfrak{B}'}{\mathfrak{A}}$.

Ramsey Property

A structure Γ has the Ramsey property if for all finite substructures $\mathfrak{A}, \mathfrak{B}$ of Γ and all $k \in \mathbb{N}$, we have: $\Gamma \to (\mathfrak{B})^{\mathfrak{A}}_{r}$.

Generating Canonical Functions

The Ramsey property allows us to prove the existence of *canonical* functions. They play a crucial role in the classification of $End(\Gamma)$.

- f: Δ₁ → Δ₂ is canonical if the orbit of the image of a tuple ā only depends on the orbit of ā.
- *f* : Δ → Δ generates *g* if *g* belongs to the closure of {*f*} ∪ Aut(Δ) under composition and pointwise convergence.
- if an endomorphism of a reduct Γ of Δ generates g, then $g \in \text{End}(\Gamma)$.

Theorem (Bodirsky,Pinsker,Tsankov'11)

Let Δ be a homogeneous Ramsey structure with finite relational signature. For all $f: \Delta \to \Delta$ and all $C := \{c_1, \ldots, c_n\}$, f generates a canonical function g from $(\Delta, c_1, \ldots, c_n)$ to Δ such that $f \upharpoonright C = g \upharpoonright C$.

Generating Canonical Functions

The Ramsey property allows us to prove the existence of *canonical* functions. They play a crucial role in the classification of $End(\Gamma)$.

- $f: \Delta_1 \to \Delta_2$ is canonical if the orbit of the image of a tuple \overline{a} only depends on the orbit of \overline{a} .
- *f*: Δ → Δ generates *g* if *g* belongs to the closure of {*f*} ∪ Aut(Δ) under composition and pointwise convergence.
- if an endomorphism of a reduct Γ of Δ generates g, then $g \in \text{End}(\Gamma)$.

Theorem (Bodirsky,Pinsker,Tsankov'11)

Let Δ be a homogeneous Ramsey structure with finite relational signature. For all $f: \Delta \to \Delta$ and all $C := \{c_1, \ldots, c_n\}$, f generates a canonical function g from $(\Delta, c_1, \ldots, c_n)$ to Δ such that $f \upharpoonright C = g \upharpoonright C$.

The Ramsey property allows us to prove the existence of *canonical* functions. They play a crucial role in the classification of $End(\Gamma)$.

- $f: \Delta_1 \to \Delta_2$ is canonical if the orbit of the image of a tuple \overline{a} only depends on the orbit of \overline{a} .
- *f*: Δ → Δ generates *g* if *g* belongs to the closure of {*f*} ∪ Aut(Δ) under composition and pointwise convergence.
- if an endomorphism of a reduct Γ of Δ generates g, then $g \in \text{End}(\Gamma)$.

Theorem (Bodirsky, Pinsker, Tsankov'11)

Let Δ be a homogeneous Ramsey structure with finite relational signature. For all $f: \Delta \to \Delta$ and all $C := \{c_1, \ldots, c_n\}$, f generates a canonical function g from $(\Delta, c_1, \ldots, c_n)$ to Δ such that $f \upharpoonright C = g \upharpoonright C$.

The Ramsey property allows us to prove the existence of *canonical* functions. They play a crucial role in the classification of $End(\Gamma)$.

- $f: \Delta_1 \to \Delta_2$ is canonical if the orbit of the image of a tuple \overline{a} only depends on the orbit of \overline{a} .
- *f*: Δ → Δ generates *g* if *g* belongs to the closure of {*f*} ∪ Aut(Δ) under composition and pointwise convergence.
- if an endomorphism of a reduct Γ of Δ generates g, then $g \in \text{End}(\Gamma)$.

Theorem (Bodirsky, Pinsker, Tsankov'11)

Let Δ be a homogeneous Ramsey structure with finite relational signature. For all $f: \Delta \to \Delta$ and all $C := \{c_1, \ldots, c_n\}$, f generates a canonical function g from $(\Delta, c_1, \ldots, c_n)$ to Δ such that $f \upharpoonright C = g \upharpoonright C$.

Proposition

(V; +) is not first-order interdefinable with any homogeneous structure with finite relational signature.

Difficulties:

- we have to adapt Bodirsky-Pinsker's theorem to use it on (V; +)
- potentially infinitely many canonical functions from (V; +) to (V; +)

Fact

Bodirsky-Pinsker's theorem can be adapted for ω -categorical homogeneous structures with functional signatures which have the Ramsey property.

We first study canonical functions from (V; +) to (V; +).

Proposition

(V; +) is not first-order interdefinable with any homogeneous structure with finite relational signature.

Difficulties:

- we have to adapt Bodirsky-Pinsker's theorem to use it on (V; +)
- potentially infinitely many canonical functions from (V; +) to (V; +)

Fact

Bodirsky-Pinsker's theorem can be adapted for ω -categorical homogeneous structures with functional signatures which have the Ramsey property.

We first study canonical functions from (V; +) to (V; +).

Proposition

(V; +) is not first-order interdefinable with any homogeneous structure with finite relational signature.

Difficulties:

- we have to adapt Bodirsky-Pinsker's theorem to use it on (V; +)
- potentially infinitely many canonical functions from (V; +) to (V; +)

Fact

Bodirsky-Pinsker's theorem can be adapted for ω -categorical homogeneous structures with functional signatures which have the Ramsey property.

We first study canonical functions from (V; +) to (V; +).

Theorem

Let f be a unary canonical function from (V; +) to (V; +). There exists $h \in \text{End}(V; +, \neq)$ and $a \notin h(V)$ s.t. one of the following applies:

- (id-function) f(x) = h(x) for all $x \neq 0$;
- (af-function) f(x) = h(x) + a for all $x \neq 0$;
- (gen-function) f sends any family of pairwise distinct elements of V \ {0} to a linearly independent family;
- Degenerated case: f has an image of size at most 2.

Translation of vector $d \neq 0$: $t_d(x) := x + d$ for all x. Fact: Translations preserve Eq₄ and are not canonical.

Useful properties

- id-functions and af-functions preserve leq₄ but gen-functions and translations do not.
- Let *f* be an injection violating leq₄. Then *f* generates a gen-function or a translation.
- End(V; Eq₄, \neq) is generated by t_d .
- t_d together with any injection violating Eq₄ generates a gen-function.

Translation of vector $d \neq 0$: $t_d(x) := x + d$ for all x. Fact: Translations preserve Eq₄ and are not canonical.

Useful properties

- id-functions and af-functions preserve leq₄ but gen-functions and translations do not.
- Let f be an injection violating leq₄. Then f generates a gen-function or a translation.
- End(V; Eq₄, \neq) is generated by t_d .
- t_d together with any injection violating Eq₄ generates a gen-function.

Classification of Injective Endomorphism Monoids of Reducts

Theorem

Let Γ be a reduct of (V; +) with only injective endomorphisms. Then one of the following holds:

- End(Γ) = End(V; Eq₄, ≠);
- End(Γ) is contained in End(V; leq₄, \neq);
- End(Γ) contains a gen-function.

Why stopping when End(Γ) contains a gen-function?

If a gen-function belongs to End(Γ), then Γ is homomorphically equivalent to a reduct of (V; 0).

Classification of Injective Endomorphism Monoids of Reducts

Theorem

Let Γ be a reduct of (V; +) with only injective endomorphisms. Then one of the following holds:

- End(Γ) = End(V; Eq₄, ≠);
- End(Γ) is contained in End(V; leq₄, \neq);
- End(Γ) contains a gen-function.

Why stopping when $End(\Gamma)$ contains a gen-function?

If a gen-function belongs to $End(\Gamma)$, then Γ is homomorphically equivalent to a reduct of (V; 0).

To further simplify the study, we need a new idea!

 $\overline{\operatorname{Aut}(\Delta)}$: topological closure of $\operatorname{Aut}(\Delta)$ under pointwise convergence.

Definition

A model-complete core of a reduct Γ is a structure Δ homomorphically equivalent to Γ , and such that:

 $\mathsf{End}(\Delta) = \overline{\mathsf{Aut}(\Delta)}$

Note that $\mathsf{CSP}(\Delta)$ and $\mathsf{CSP}(\Gamma)$ are equal by homomorphic equivalence.

Theorem (Bodirsky'06)

Every reduct Γ of an ω -categorical structure has a model-complete core Δ . All model-complete cores of Γ are isomorphic to Δ . $\overline{\operatorname{Aut}(\Delta)}$: topological closure of $\operatorname{Aut}(\Delta)$ under pointwise convergence.

Definition

A model-complete core of a reduct Γ is a structure Δ homomorphically equivalent to Γ , and such that:

 $\mathsf{End}(\Delta) = \overline{\mathsf{Aut}(\Delta)}$

Note that $\text{CSP}(\Delta)$ and $\text{CSP}(\Gamma)$ are equal by homomorphic equivalence.

Theorem (Bodirsky'06)

Every reduct Γ of an ω -categorical structure has a model-complete core Δ . All model-complete cores of Γ are isomorphic to Δ .

Theorem

- Let Γ be a reduct of (V; +). Exactly one of the following holds:
 - End(Γ) = End(V; +, \neq),
 - 2 End(Γ) = End(V; leq₄, 0), or
 - **③** the model-complete core of Γ is isomorphic to a structure Γ' s.t.:

a)
$$End(\Gamma') = End(V \setminus \{0\}; Ieq_3)$$
,

b)
$$End(\Gamma') = End(V; Eq_4, \neq)$$
,

- c) Γ' is a reduct of (V; 0), or
- d) Γ' is a 2-element structure.

Corollary

Let Γ be a reduct of (V; +). There exists a structure Γ' with same CSP as Γ and s.t. one of the following holds:

- End(Γ') = End(V; +, \neq);
- 2 $End(\Gamma') = End(V \setminus \{0\}; Ieq_3);$
- End(Γ') = End(V; Eq₄, \neq);
- End(Γ') = End(V; leq₄, 0);
- Γ' is a reduct of (V; 0);
- Γ' is a 2-element structure.

The study of the polymorphisms is now strongly simplified.

Corollary

Let Γ be a reduct of (V; +). There exists a structure Γ' with same CSP as Γ and s.t. one of the following holds:

- End(Γ') = End(V; +, \neq);
- 2 $End(\Gamma') = End(V \setminus \{0\}; leq_3);$
- End(Γ') = End(V; Eq₄, \neq);
- End(Γ') = End(V; leq₄, 0);
- Γ' is a reduct of (V; 0);
- Γ' is a 2-element structure.

The study of the polymorphisms is now strongly simplified.

- Γ' is a 2-element structure: P/NPc dichotomy (Schaefer'77)
- Γ' is a reduct of (V; 0): P/NPc dichotomy Poly. algos: Schaefer + ad-hoc routines
- Send(Γ') = End(V; Eq₄, ≠): P/NPc dichotomy Poly. algos: Schaefer + Gauss Pivot + ad-hoc routines.
- End(Γ') = End(V \ {0}; leq₃): P/NPc dichotomy Poly. algos: Schaefer + Gauss Pivot + ad-hoc routines.
- Send(Γ') = End(V; +, ≠): partial proof for P/NPc dichotomy Poly. algos: Schaefer + Gauss Pivot + ???
- End(Γ') = End(V; leq₄, 0): P/NPc dichotomy can be proved accordingly to Case 5.

- Γ' is a 2-element structure: P/NPc dichotomy (Schaefer'77)
- Γ' is a reduct of (V; 0): P/NPc dichotomy
 Poly. algos: Schaefer + ad-hoc routines
- End(Γ') = End(V; Eq₄, ≠): P/NPc dichotomy
 Poly. algos: Schaefer + Gauss Pivot + ad-hoc routines.
- End(Γ') = End(V \ {0}; leq₃): P/NPc dichotomy
 Poly. algos: Schaefer + Gauss Pivot + ad-hoc routines.
- Send(Γ') = End(V; +, ≠): partial proof for P/NPc dichotomy Poly. algos: Schaefer + Gauss Pivot + ???
- End(Γ') = End(V; leq₄, 0): P/NPc dichotomy can be proved accordingly to Case 5.

- Γ' is a 2-element structure: P/NPc dichotomy (Schaefer'77)
- Γ' is a reduct of (V; 0): P/NPc dichotomy
 Poly. algos: Schaefer + ad-hoc routines
- End(Γ') = End(V; Eq₄, ≠): P/NPc dichotomy
 Poly. algos: Schaefer + Gauss Pivot + ad-hoc routines.
- End(Γ') = End(V \ {0}; leq₃): P/NPc dichotomy
 Poly. algos: Schaefer + Gauss Pivot + ad-hoc routines.
- Send(Γ') = End(V; +, ≠): partial proof for P/NPc dichotomy Poly. algos: Schaefer + Gauss Pivot + ???
- End(Γ') = End(V; leq₄, 0): P/NPc dichotomy can be proved accordingly to Case 5.

- **(**) Γ' is a 2-element structure: P/NPc dichotomy (Schaefer'77)
- Γ' is a reduct of (V; 0): P/NPc dichotomy
 Poly. algos: Schaefer + ad-hoc routines
- Send(Γ') = End(V; Eq₄, ≠): P/NPc dichotomy Poly. algos: Schaefer + Gauss Pivot + ad-hoc routines.
- End(Γ') = End(V \ {0}; leq₃): P/NPc dichotomy
 Poly. algos: Schaefer + Gauss Pivot + ad-hoc routines.
- Send(Γ') = End(V; +, ≠): partial proof for P/NPc dichotomy Poly. algos: Schaefer + Gauss Pivot + ???
- End(Γ') = End(V; leq₄, 0): P/NPc dichotomy can be proved accordingly to Case 5.

- **(**) Γ' is a 2-element structure: P/NPc dichotomy (Schaefer'77)
- Γ' is a reduct of (V; 0): P/NPc dichotomy
 Poly. algos: Schaefer + ad-hoc routines
- Send(Γ') = End(V; Eq₄, ≠): P/NPc dichotomy Poly. algos: Schaefer + Gauss Pivot + ad-hoc routines.
- End(Γ') = End(V \ {0}; leq₃): P/NPc dichotomy
 Poly. algos: Schaefer + Gauss Pivot + ad-hoc routines.
- End(Γ') = End(V; +, ≠): partial proof for P/NPc dichotomy Poly. algos: Schaefer + Gauss Pivot + ???
- End(Γ') = End(V; leq₄, 0): P/NPc dichotomy can be proved accordingly to Case 5.

- Γ' is a 2-element structure: P/NPc dichotomy (Schaefer'77)
- Γ' is a reduct of (V; 0): P/NPc dichotomy
 Poly. algos: Schaefer + ad-hoc routines
- Send(Γ') = End(V; Eq₄, ≠): P/NPc dichotomy Poly. algos: Schaefer + Gauss Pivot + ad-hoc routines.
- End(Γ') = End(V \ {0}; leq₃): P/NPc dichotomy Poly. algos: Schaefer + Gauss Pivot + ad-hoc routines.
- Send(Γ') = End(V; +, ≠): partial proof for P/NPc dichotomy Poly. algos: Schaefer + Gauss Pivot + ???
- End(Γ') = End(V; leq₄, 0): P/NPc dichotomy can be proved accordingly to Case 5.

What we have achieved:

- adapt Bodirsky-Pinsker's method for functional signatures;
- classification of canonical functions from (V; +) to (V; +);
- classification of endomorphism monoids of reducts of (V; +) which are not homorphically equivalent to reducts of (V; 0);
- classification of **model-complete cores of reducts** of (*V*; +) up to existential positive interdefinability. There are **finitely many**;
- P/NPc dichotomy for Bit Vector CSPs in 4 out of 6 listed cases.

What remains to be done:

- prove dichotomy when $End(\Gamma) = End(V; +, \neq)$;
- generalize the dichotomy for any vector space over a finite field; the automorphism groups classification is already established in this setting (Bodor-Kalina-Szabó'15)
- study reducts of the atomless Boolean Algebra;
 NB: (V; +) is one of its reducts, as x + y := (x ∪ y) \ (x ∩ y).

What we have achieved:

- adapt Bodirsky-Pinsker's method for functional signatures;
- classification of canonical functions from (V; +) to (V; +);
- classification of endomorphism monoids of reducts of (V; +) which are not homorphically equivalent to reducts of (V; 0);
- classification of **model-complete cores of reducts** of (*V*; +) up to existential positive interdefinability. There are **finitely many**;
- P/NPc dichotomy for Bit Vector CSPs in 4 out of 6 listed cases. What remains to be done:
 - prove dichotomy when $End(\Gamma) = End(V; +, \neq);$
 - generalize the dichotomy for any vector space over a finite field; the automorphism groups classification is already established in this setting (Bodor-Kalina-Szabó'15)
 - study reducts of the atomless Boolean Algebra;
 NB: (V; +) is one of its reducts, as x + y := (x ∪ y) \ (x ∩ y).

Thank you!