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Datalog

Datalog can be seen as

Prolog without function symbols

conjunctive queries + recursion

Introduced in the context of constraint satisfaction by Feder, Vardi, and Kolaitis

Can be used to formulate local consistency methods studied in Artificial
Intelligence (AI) since the late 70s

Main algorithmic technique studied in more applied AI literature
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(l , k)-Datalog

Example of a Datalog program

tc(x , y) :− x < y

tc(x , y) :− tc(x , z), z < y

false() :− tc(x , x)

Relation symbols that appear in rule heads (tc, false): IDBs

All other relation symbols (<): EDBs
Is a (2,3)-Datalog program (maximal IDB arity is 2, number of variables is 3)
false is special 0-ary IDB
Program Π solves CSP(Γ):

Π derives false on an instance A if and only if A is unsatisfiable.

Example: CSP(Q;<) can be solved by (2,3)-Datalog program
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Arc-Consistency as Datalog Program

The Arc-Consistency procedure for CSP(H) can be formulated in Datalog:

EDB: Single binary relation symbol E

IDBs: one symbol for each unary relation with a primitive positive
definition in H

false corresponds to the empty unary relation

Have rule R(x) :− E(x , y) ∧ S(y)

iff H |= ∀x , y (E(x , y) ∧ S(y)) ⇒ R(x).

Have rule R(y) :− S(x) ∧ E(x , y)

iff H |= ∀x , y (S(x) ∧ E(x , y)) ⇒ R(y).

Advantage of this perspective: can also be applied to infinite Γ
However, need: Γ has only finitely many binary primitive positive definable
unary relations.
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Completeness

Every Datalog program can be evaluated on an input structure A in
polynomial time in the size of A.

Definition

Say that Datalog solves CSP(Γ) if there exists a Datalog program Π such that
for all finite A:
Π derives false list if and only if there is no homomorphism from A to Γ .

Facts:

Datalog solves CSP(Pk ), CSP(~Pk ), CSP(Tk )

Datalog solves CSP(~Ck ), CSP(Q;<)

Datalog does not solve CSP(K3)

Question: Which CSPs can be solved by Datalog?
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Exercise

Write a Datalog program that solves graph 2-colorability, CSP(K2).
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The existential pebble game

Let A,B be relational structures.

C5 C6

The existential (l , k)-pebble game

Two players: Spoiler and Duplicator

Each has k pebbles p1, . . . ,pk and q1, . . . ,qk , respectively
Spoiler places his pebbles on A, Duplicator replies on B
Spoiler removes all but at most l pebbles
Duplicator removes corresponding pebbles
Repeat

Spoiler wins if eventually pi 7→ qi is not a partial homomorphism from A to B,
otherwise Duplicator wins.
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The existential pebble game: observations

Let Γ be an arbitrary relational structure.

Let A be a satisfiable instance of CSP(Γ). Then Duplicator wins the
existential k -pebble game on A, Γ .

Suppose that Duplicator has a winning strategy: that is, no matter how
Spoiler plays, Duplicator can always play such that she wins.
Then Duplicator also has a memoryless winning strategy: she can win in
such a way that her moves only depend on the current positions of the
pebbles, and not on the history of the game.
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The Existential Pebble Game and Datalog

Let Γ be a relational structure with finitely many inequivalent primitive positive
definable relations of arity k , for all k ≥ 1.

Theorem 1 (Feder,Vardi’93).

CSP(Γ) cannot be solved by (l , k)-Datalog if and only if there exists an
unsatisfiable instance A of CSP(Γ) such that Duplicator wins the existential
(l , k)-pebble game on A, Γ .

Theorem fails for general infinite Γ :

Let T∞ be
.
∪

∞
n≥1 Tn.

(CSP(T∞) is the same as CSP(Q;<))

Thus: CSP(T∞) cannot be solved by (1,2)-Datalog program
But: Duplicator looses the (1,2)-pebble game on (G,T∞) for all graphs G with
a directed cycle.
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Application: Datalog Inexpressibility

Theorem 2.

CSP(Q; x > y ∨ x > z) cannot be solved by Datalog.

Remarks

problem can be solved in linear time (later during lecture)

relation x > y ∨ x > z (≡ x > min(y , z)) is preserved by min

Suppose every variable x in an instance Φ of this CSP appears in a
constraint x > y ∨ x > z, for some variables y , z. Then Φ is unsatisfiable.

Claim (proof comes later): (Q;<) and (Q; {(x , y , z) | x > y ∨ x > z}) have only
finitely many inequivalent primitive positive definable relations, for all n.
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finitely many inequivalent primitive positive definable relations, for all n.
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Unsatisfiable Instances of High-Girth

Let k , l be arbitrary.

Take a 4-regular graph G of girth ≥ 2k
Orient along an Euler tour
Transform into an instance of the CSP
Facts:

the resulting instance A of CSP(Q; x > y ∨ x > z) is unsatisfiable

Duplicator wins the existential pebble game on A, (Q; x > y ∨ x > z)
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How Duplicator should play

A connected subgraph G ′ of G is called dominated if

all vertices have either indegree 2, or indegree 0 (leaves);

all vertices have outdegree 1, or outdegree 0 (root);

all leaves must be pebbled.

Observe: G ′ has size at most 2k .

Goal of Duplicator: if the root r in a dominated tree is pebbled, it’s value is
strictly larger than the minimum of the values assigned to the leaves.

Clearly, this is satisfied at the beginning of the game.
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