Arc Consistency

Manuel Bodirsky

CNRS / LIX, Ecole Polytechnique

December 2012

Local Consistency Techniques

Central idea: 'constraint propagation'

Perform local inferences; iterate

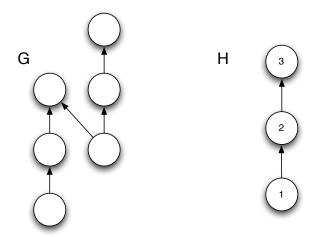
Central idea: 'constraint propagation'

Perform local inferences; iterate

- One of the earliest algorithmic approaches to the CSP Montanari'74, Mackworth'77, Freuder'82
- Very important in the AI literature
- Comes close to what humans naively try when confronted with a CSP

Example

Does *G* homomorphically map to $H := \vec{P}_2$?



The Arc-Consistency Procedure (AC)

Fix finite digraph H.

```
AC_H(G)
Input: a finite digraph G.
Data structure: a list L(x) \subseteq V(H) for each vertex x \in V(G).
Set L(x) := V(H) for all x \in V(G).
Do
    For each (x, y) \in E(G):
       Remove u from L(x) if there is no v \in L(y) with (u, v) \in E(H).
       Remove v from L(y) if there is no u \in L(x) with (u, v) \in E(H).
       If L(x) is empty for some vertex x \in V(G) then reject
Loop until no list changes
```

The Arc-Consistency Procedure (AC)

Fix finite digraph H.

```
AC_H(G)
Input: a finite digraph G.
Data structure: a list L(x) \subseteq V(H) for each vertex x \in V(G).
Set L(x) := V(H) for all x \in V(G).
Do
    For each (x, y) \in E(G):
       Remove u from L(x) if there is no v \in L(y) with (u, v) \in E(H).
       Remove v from L(v) if there is no u \in L(x) with (u, v) \in E(H).
       If L(x) is empty for some vertex x \in V(G) then reject
Loop until no list changes
```

Claim: if algorithm derives empty list, there is no homomorphism from A to B!

■ Implementations with linear running time (for fixed *H*)

- Implementations with linear running time (for fixed H)
- Linear memory space (for fixed *H*)

- Implementations with linear running time (for fixed *H*)
- Linear memory space (for fixed *H*)
- Easy to implement!

- Implementations with linear running time (for fixed *H*)
- Linear memory space (for fixed H)
- Easy to implement!
- Does not only work for digraphs, but generalizes to relational structures ('hyperarc-consistency'; see script)

- Implementations with linear running time (for fixed *H*)
- Linear memory space (for fixed *H*)
- Easy to implement!
- Does not only work for digraphs, but generalizes to relational structures ('hyperarc-consistency'; see script)
- Always a one-sided test

- Implementations with linear running time (for fixed *H*)
- Linear memory space (for fixed H)
- Easy to implement!
- Does not only work for digraphs, but generalizes to relational structures ('hyperarc-consistency'; see script)
- Always a one-sided test

Problem (Incompleteness)

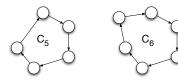
It might be that AC_H does not derive empty list on *G*, even though there is no homomorphism from *G* to *H*.

- Implementations with linear running time (for fixed *H*)
- Linear memory space (for fixed H)
- Easy to implement!
- Does not only work for digraphs, but generalizes to relational structures ('hyperarc-consistency'; see script)
- Always a one-sided test

Problem (Incompleteness)

It might be that AC_H does not derive empty list on *G*, even though there is no homomorphism from *G* to *H*.

Example:



Say that AC solves CSP(H) if for all *G*: AC_{*H*} derives empty list if and only if there is no homomorphism from *G* to *H*.

• AC solves $CSP(\vec{P}_2)$, $CSP(\vec{P}_k)$

- AC solves $CSP(\vec{P}_2)$, $CSP(\vec{P}_k)$
- AC solves $CSP(T_3)$, $CSP(T_k)$

- AC solves $CSP(\vec{P}_2)$, $CSP(\vec{P}_k)$
- AC solves $CSP(T_3)$, $CSP(T_k)$
- AC does not solve $CSP(K_3)$ (no surprise...)

- AC solves $CSP(\vec{P}_2)$, $CSP(\vec{P}_k)$
- AC solves $CSP(T_3)$, $CSP(T_k)$
- AC does not solve $CSP(K_3)$ (no surprise...)
- AC does not solve $CSP(C_k)$ (as we have seen)

Say that AC solves CSP(H) if for all *G*: AC_{*H*} derives empty list if and only if there is no homomorphism from *G* to *H*.

- AC solves $CSP(\vec{P}_2)$, $CSP(\vec{P}_k)$
- AC solves $CSP(T_3)$, $CSP(T_k)$
- AC does not solve $CSP(K_3)$ (no surprise...)
- AC does not solve $CSP(C_k)$ (as we have seen)

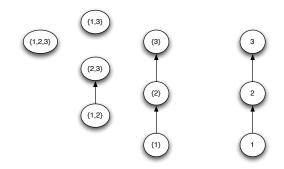
Question: for which *H* does AC solve CSP(*H*)?

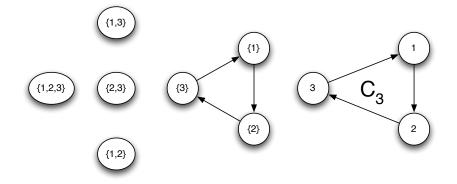
The Power Graph

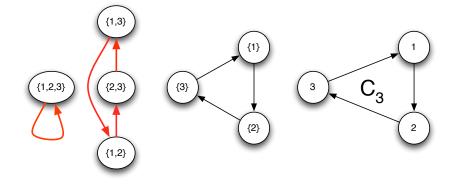
Definition (Power-Set Graph)

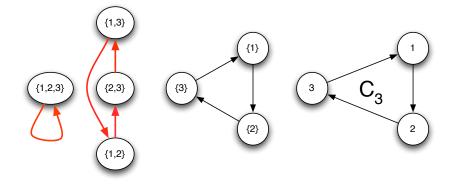
The power-set graph P(H) of a digraph H has non-empty subsets of V(H) as vertices. Put an edge between S_1 and S_2 iff

- for every $u \in S_1$ there exists a $v \in S_2$ such that $(u, v) \in E(H)$, and
- for every $v \in S_2$ there exists $u \in S_1$ such that $(u, v) \in E(H)$.

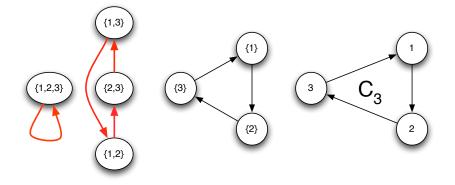








For all *H* we have $H \rightarrow P(H)$



- For all *H* we have $H \rightarrow P(H)$
- Not for all *H* we have $P(H) \rightarrow H$.

Theorem 1.

Let *H* be a finite digraph. The following are equivalent.

- 1 AC solves CSP(H)
- **2** P(H) homomorphically maps to H

Examples:

Theorem 1.

Let *H* be a finite digraph. The following are equivalent.

- 1 AC solves CSP(H)
- **2** P(H) homomorphically maps to H

Examples:

$$\blacksquare \vec{P}(P_2) \rightarrow \vec{P}_2$$

Theorem 1.

Let *H* be a finite digraph. The following are equivalent.

- 1 AC solves CSP(H)
- **2** P(H) homomorphically maps to H

Examples:

$$\blacksquare \vec{P}(P_2) \rightarrow \vec{P}_2$$

 $\blacksquare P(T_3) \to T_3$

Theorem 1.

Let *H* be a finite digraph. The following are equivalent.

- 1 AC solves CSP(H)
- **2** P(H) homomorphically maps to H

Examples:

- $\blacksquare \vec{P}(P_2) \rightarrow \vec{P}_2$
- $\blacksquare P(T_3) \rightarrow T_3$
- $\blacksquare P(\vec{C}_3) \nrightarrow \vec{C}_3$

Theorem 1.

Let *H* be a finite digraph. The following are equivalent.

- 1 AC solves CSP(H)
- **2** P(H) homomorphically maps to H

Examples:

$$\blacksquare \vec{P}(P_2) \to \vec{P}_2$$

- $\blacksquare P(T_3) \to T_3$
- $\blacksquare P(\vec{C}_3) \nrightarrow \vec{C}_3$

Lemma

 AC_H does not derive the empty list on G if and only if $G \rightarrow P(H)$.

Want to show: AC_H does not derive the empty list on G iff $G \rightarrow P(H)$.

Want to show: AC_H does not derive the empty list on G iff $G \rightarrow P(H)$.

'⇒' Let L(x) be the (non-empty) set at the final stage of AC_{*H*}. **Claim:** $x \mapsto L(x)$ is a homomorphism from *G* to *P*(*H*).

Want to show: AC_H does not derive the empty list on G iff $G \rightarrow P(H)$.

'⇒' Let L(x) be the (non-empty) set at the final stage of AC_H. **Claim:** $x \mapsto L(x)$ is a homomorphism from *G* to P(H). Suppose $(a, b) \in E(G)$.

Want to show: AC_H does not derive the empty list on G iff $G \rightarrow P(H)$.

'⇒' Let L(x) be the (non-empty) set at the final stage of AC_H. **Claim:** $x \mapsto L(x)$ is a homomorphism from *G* to P(H). Suppose $(a, b) \in E(G)$. By Definition of AC_H:

Want to show: AC_H does not derive the empty list on G iff $G \rightarrow P(H)$.

'⇒' Let L(x) be the (non-empty) set at the final stage of AC_H. **Claim:** $x \mapsto L(x)$ is a homomorphism from *G* to P(H). Suppose $(a, b) \in E(G)$. By Definition of AC_H: for each $u \in L(a)$ there is $v \in L(b)$ such that $(u, v) \in E(H)$. for each $v \in L(b)$ there is $u \in L(a)$ such that $(u, v) \in E(H)$.

Want to show: AC_H does not derive the empty list on G iff $G \rightarrow P(H)$.

'⇒' Let L(x) be the (non-empty) set at the final stage of AC_H. **Claim:** $x \mapsto L(x)$ is a homomorphism from *G* to P(H). Suppose $(a, b) \in E(G)$. By Definition of AC_H: for each $u \in L(a)$ there is $v \in L(b)$ such that $(u, v) \in E(H)$. for each $v \in L(b)$ there is $u \in L(a)$ such that $(u, v) \in E(H)$. By definition of P(H), we have $(L(a), L(b)) \in E(P(H))$.

Want to show: AC_H does not derive the empty list on G iff $G \rightarrow P(H)$.

'⇒' Let L(x) be the (non-empty) set at the final stage of AC_H. **Claim:** $x \mapsto L(x)$ is a homomorphism from *G* to P(H). Suppose $(a, b) \in E(G)$. By Definition of AC_H: for each $u \in L(a)$ there is $v \in L(b)$ such that $(u, v) \in E(H)$. for each $v \in L(b)$ there is $u \in L(a)$ such that $(u, v) \in E(H)$. By definition of P(H), we have $(L(a), L(b)) \in E(P(H))$.

' \Leftarrow ' Let $f: G \to P(H)$ a homomorphism.

Want to show: AC_H does not derive the empty list on G iff $G \rightarrow P(H)$.

'⇒' Let L(x) be the (non-empty) set at the final stage of AC_H. **Claim:** $x \mapsto L(x)$ is a homomorphism from *G* to P(H). Suppose $(a, b) \in E(G)$. By Definition of AC_H: for each $u \in L(a)$ there is $v \in L(b)$ such that $(u, v) \in E(H)$. for each $v \in L(b)$ there is $u \in L(a)$ such that $(u, v) \in E(H)$. By definition of P(H), we have $(L(a), L(b)) \in E(P(H))$.

'⇐' Let $f: G \to P(H)$ a homomorphism. Then AC_H doesn't remove values from f(x) from L(x):

Want to show: AC_H does not derive the empty list on G iff $G \rightarrow P(H)$.

'⇒' Let L(x) be the (non-empty) set at the final stage of AC_H. **Claim:** $x \mapsto L(x)$ is a homomorphism from *G* to P(H). Suppose $(a, b) \in E(G)$. By Definition of AC_H: for each $u \in L(a)$ there is $v \in L(b)$ such that $(u, v) \in E(H)$. for each $v \in L(b)$ there is $u \in L(a)$ such that $(u, v) \in E(H)$. By definition of P(H), we have $(L(a), L(b)) \in E(P(H))$.

'⇐' Let $f: G \to P(H)$ a homomorphism. Then AC_H doesn't remove values from f(x) from L(x): Suppose $(a, b) \in E(G)$.

Want to show: AC_H does not derive the empty list on G iff $G \rightarrow P(H)$.

'⇒' Let L(x) be the (non-empty) set at the final stage of AC_H. **Claim:** $x \mapsto L(x)$ is a homomorphism from *G* to P(H). Suppose $(a, b) \in E(G)$. By Definition of AC_H: for each $u \in L(a)$ there is $v \in L(b)$ such that $(u, v) \in E(H)$. for each $v \in L(b)$ there is $u \in L(a)$ such that $(u, v) \in E(H)$. By definition of P(H), we have $(L(a), L(b)) \in E(P(H))$.

'⇐' Let $f: G \to P(H)$ a homomorphism. Then AC_H doesn't remove values from f(x) from L(x): Suppose $(a, b) \in E(G)$. For each $u \in f(a)$ there is $v \in f(b) \subseteq L(b)$ such that $(u, v) \in E(H)$.

Want to show: AC_H does not derive the empty list on G iff $G \rightarrow P(H)$.

'⇒' Let L(x) be the (non-empty) set at the final stage of AC_H. **Claim:** $x \mapsto L(x)$ is a homomorphism from *G* to P(H). Suppose $(a, b) \in E(G)$. By Definition of AC_H: for each $u \in L(a)$ there is $v \in L(b)$ such that $(u, v) \in E(H)$. for each $v \in L(b)$ there is $u \in L(a)$ such that $(u, v) \in E(H)$. By definition of P(H), we have $(L(a), L(b)) \in E(P(H))$.

'⇐'

Let $f: G \rightarrow P(H)$ a homomorphism.

Then AC_{*H*} doesn't remove values from f(x) from L(x): Suppose $(a, b) \in E(G)$. For each $u \in f(a)$ there is $v \in f(b) \subseteq L(b)$ such that $(u, v) \in E(H)$. Hence, *u* is not removed from L(a).

Want to show: AC solves CSP(H) iff $P(H) \rightarrow H$.

'⇒'

Suppose AC solves CSP(H).

```
'⇒'
Suppose AC solves CSP(H).
Apply AC_H to P(H).
```

```
'⇒'
Suppose AC solves CSP(H).
Apply AC<sub>H</sub> to P(H).
Since H \rightarrow P(H), previous lemma shows: AC does not derive empty list.
```

```
'⇒'

Suppose AC solves CSP(H).

Apply AC<sub>H</sub> to P(H).

Since H \rightarrow P(H), previous lemma shows: AC does not derive empty list.

Hence P(H) \rightarrow H.
```

Want to show: AC solves CSP(H) iff $P(H) \rightarrow H$.

```
'⇒'

Suppose AC solves CSP(H).

Apply AC<sub>H</sub> to P(H).

Since H \rightarrow P(H), previous lemma shows: AC does not derive empty list.

Hence P(H) → H.
```

'⇐'

```
'⇒'
Suppose AC solves CSP(H).
Apply AC<sub>H</sub> to P(H).
Since H → P(H), previous lemma shows: AC does not derive empty list.
Hence P(H) → H.
```

```
'⇐' Suppose P(H) \rightarrow H.
```

Want to show: AC solves CSP(H) iff $P(H) \rightarrow H$.

```
'⇒'
Suppose AC solves CSP(H).
Apply AC<sub>H</sub> to P(H).
Since H → P(H), previous lemma shows: AC does not derive empty list.
Hence P(H) → H.
```

```
'⇐' Suppose P(H) \rightarrow H.
```

If AC derives empty list on *G*, by Lemma $G \not\rightarrow P(H)$.

Want to show: AC solves CSP(H) iff $P(H) \rightarrow H$.

```
'⇒'
Suppose AC solves CSP(H).
Apply AC<sub>H</sub> to P(H).
Since H → P(H), previous lemma shows: AC does not derive empty list.
Hence P(H) → H.
```

```
'⇐' Suppose P(H) \rightarrow H.
```

■ If AC derives empty list on *G*, by Lemma $G \not\rightarrow P(H)$. Since $H \rightarrow P(H)$, we conclude that $G \not\rightarrow H$.

```
'⇒'
Suppose AC solves CSP(H).
Apply AC<sub>H</sub> to P(H).
Since H → P(H), previous lemma shows: AC does not derive empty list.
Hence P(H) → H.
```

```
'⇐' Suppose P(H) \rightarrow H.
```

- If AC derives empty list on *G*, by Lemma $G \not\rightarrow P(H)$. Since $H \rightarrow P(H)$, we conclude that $G \not\rightarrow H$.
- If AC does not derive the empty list on G, by Lemma $G \rightarrow P(H)$.

Want to show: AC solves CSP(H) iff $P(H) \rightarrow H$.

```
'⇒'
Suppose AC solves CSP(H).
Apply AC<sub>H</sub> to P(H).
Since H → P(H), previous lemma shows: AC does not derive empty list.
Hence P(H) → H.
```

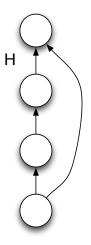
```
'⇐' Suppose P(H) \rightarrow H.
```

- If AC derives empty list on *G*, by Lemma $G \not\rightarrow P(H)$. Since $H \rightarrow P(H)$, we conclude that $G \not\rightarrow H$.
- If AC does not derive the empty list on *G*, by Lemma $G \rightarrow P(H)$. Composing homomorphisms, we obtain $G \rightarrow H$.

QED.

Exercise

Does Arc Consistency solve CSP(H) for the following graph H:



Tree Duality

Facts.

For all digraphs G,

$$G
ightarrow ec{P}_2 \quad \Leftrightarrow \quad Z_1, Z_2, \cdots
e G$$

 $\text{CSP}(\vec{P}_2)$ can be solved by AC.

Tree Duality

Facts.

For all digraphs G,

$$G
ightarrow ec{P}_2 \quad \Leftrightarrow \quad Z_1, Z_2, \cdots
ightarrow G$$

 $CSP(\vec{P}_2)$ can be solved by AC.

For all digraphs G,

$$G o T_3 \quad \Leftrightarrow \quad \vec{P}_3
eq G$$

 $CSP(T_3)$ can be solved by AC.

Tree Duality

Facts.

For all digraphs G,

$$G
ightarrow ec{P}_2 \quad \Leftrightarrow \quad Z_1, Z_2, \cdots
ightarrow G$$

 $CSP(\vec{P}_2)$ can be solved by AC.

For all digraphs G,

$$G
ightarrow T_3 \quad \Leftrightarrow \quad \vec{P}_3 \not
ightarrow G$$

 $CSP(T_3)$ can be solved by AC.

Definition

A digraph *H* has *tree duality* if there is a (not necessarily finite) set N of orientations of trees such that

$$\forall G: \quad G \to H \quad \Leftrightarrow \quad \mathcal{N} \not\to G$$

Theorem 2.

Let *H* be a finite digraph. The following are equivalent.

- 1 AC solves CSP(H)
- **2** P(H) homomorphically maps to H
- 3 H has tree duality.

Theorem 2.

Let *H* be a finite digraph. The following are equivalent.

- 1 AC solves CSP(H)
- **2** P(H) homomorphically maps to H
- 3 H has tree duality.

Already saw 1 \Leftrightarrow 2.

Theorem 2.

Let *H* be a finite digraph. The following are equivalent.

- AC solves CSP(H)
- **2** P(H) homomorphically maps to H
- 3 H has tree duality.

Already saw 1 \Leftrightarrow 2. **Proof ideas** for 3 \Rightarrow 2 and 1 \Rightarrow 3 (details in script)

Theorem 2.

Let *H* be a finite digraph. The following are equivalent.

- 1 AC solves CSP(H)
- **2** P(H) homomorphically maps to H
- 3 H has tree duality.

Already saw 1 \Leftrightarrow 2. **Proof ideas** for 3 \Rightarrow 2 and 1 \Rightarrow 3 (details in script) 3 \Rightarrow 2:

Theorem 2.

Let *H* be a finite digraph. The following are equivalent.

- AC solves CSP(H)
- **2** P(H) homomorphically maps to H
- 3 H has tree duality.

Already saw 1 \Leftrightarrow 2.

Proof ideas for $3 \Rightarrow 2$ and $1 \Rightarrow 3$ (details in script)

 $3 \Rightarrow 2$: suffices to show that for all trees T,

$$T \to P(H) \quad \Rightarrow \quad T \to H$$

Theorem 2.

Let *H* be a finite digraph. The following are equivalent.

- AC solves CSP(H)
- **2** P(H) homomorphically maps to H
- 3 H has tree duality.

Already saw $1 \Leftrightarrow 2$.

Proof ideas for $3 \Rightarrow 2$ and $1 \Rightarrow 3$ (details in script)

 $3 \Rightarrow 2$: suffices to show that for all trees T,

$$T \to P(H) \quad \Rightarrow \quad T \to H$$

 $1 \Rightarrow 3$:

Theorem 2.

Let *H* be a finite digraph. The following are equivalent.

- AC solves CSP(H)
- **2** P(H) homomorphically maps to H
- 3 H has tree duality.

Already saw 1 \Leftrightarrow 2. **Proof ideas** for 3 \Rightarrow 2 and 1 \Rightarrow 3 (details in script) 3 \Rightarrow 2: suffices to show that for all trees *T*,

$$T \to P(H) \quad \Rightarrow \quad T \to H$$

1 \Rightarrow 3: If AC derives the empty list on *G*, then the derivation has a tree-like structure.

Concluding Remarks

Arc Consistency can be generalized to general relational structures (relations of arbitrary arity, arbitrarily many relations).

- Arc Consistency can be generalized to general relational structures (relations of arbitrary arity, arbitrarily many relations).
- Power-set graph can be generalized to general relational structures.

- Arc Consistency can be generalized to general relational structures (relations of arbitrary arity, arbitrarily many relations).
- Power-set graph can be generalized to general relational structures.
- Today's proofs still work.

- Arc Consistency can be generalized to general relational structures (relations of arbitrary arity, arbitrarily many relations).
- Power-set graph can be generalized to general relational structures.
- Today's proofs still work.
- In this more general setting, Boolean structures preserved by min or by max can be solved by Arc-Consistency.