Enumeration: logical and algebraic approach

Yann Strozecki

Université Paris Sud - Paris 11

Novembre 2011, séminaire ALGO/LIX
Introduction to Enumeration

Enumeration and logic

Enumeration and polynomials
Enumeration problems

Polynomially balanced predicate $A(x, y)$, decidable in polynomial time.

- $\exists? y A(x, y)$: decision problem (class NP)
- $\#\{ y \mid A(x, y) \}$: counting problem (class $\#P$)
- $\{ y \mid A(x, y) \}$: enumeration problem (class EnumP)

Example

Perfect matching:
- The decision problem is to decide if there is a perfect matching.
- The counting problem is to count the number of perfect matchings.
- The enumeration problem is to list every perfect matching.
Enumeration problems

Polynomially balanced predicate $A(x, y)$, decidable in polynomial time.

- $\exists?y A(x, y)$: decision problem (class NP)
- $\#\{y \mid A(x, y)\}$: counting problem (class $\#P$)
- $\{y \mid A(x, y)\}$: enumeration problem (class EnumP)

Example

Perfect matching:
- The decision problem is to decide if there is a perfect matching.
- The counting problem is to count the number of perfect matchings.
- The enumeration problem is to list every perfect matching.
Time complexity measures for enumeration

1. the total time related to the number of solutions
 - polynomial total time: \(\text{TotalP} \)

2. the delay
 - incremental polynomial time: \(\text{IncP} \) (Circuits of a matroid)
 - polynomial delay: \(\text{DelayP} \) (Perfect Matching [Uno])
 - Constant or linear delay
 - A two steps algorithm: preprocessing + generation
 - An ad-hoc RAM model.
Time complexity measures for enumeration

1. the total time related to the number of solutions
 ▶ polynomial total time: TotalP

2. the delay
 ▶ incremental polynomial time: IncP (Circuits of a matroid)
 ▶ polynomial delay: DelayP (Perfect Matching [Uno])
 ▶ Constant or linear delay
 ▶ A two steps algorithm: preprocessing + generation
 ▶ An ad-hoc RAM model.
Enumeration problems

\(R \): polynomially balanced binary predicate

Definition

The problem **Enum**\cdot\(R \) belongs to the class **Delay**\((g, f)\) if there exists an enumeration algorithm that computes **Enum**\cdot\(R \) such that, for all input \(x \):

- Preprocessing in time \(O(g(|x|)) \),
- Solutions \(y \in R(x) \) are computed successively without repetition with a delay \(O(f(|x|)) \)

\(\text{Constant-Delay} = \bigcup_k \text{Delay}(n^k, 1) \).
Enumeration complexity classes

Separation:

\[\text{QueryP} \subsetneq \text{SDelayP} \subseteq \text{DelayP} \subseteq \text{IncP} \subsetneq \text{TotalP} \subsetneq \text{EnumP}. \]
Separation:

\[\text{QueryP} \subsetneq \text{SDelayP} \subseteq \text{DelayP} \subseteq \text{IncP} \subsetneq \text{TotalP} \subsetneq \text{EnumP}. \]
Enumeration complexity classes

Separation:

\[\text{QueryP} \subsetneq \text{SDelayP} \subseteq \text{DelayP} \subseteq \text{IncP} \subsetneq \text{TotalP} \subsetneq \text{EnumP}. \]

Complete problem:

No good notion of reduction out of parsimonious reduction.
Enumeration complexity classes

Separation:

QueryP \subsetneq SDelayP \subseteq DelayP \subseteq IncP \subsetneq TotalP \subsetneq EnumP.

Complete problem:

No good notion of reduction out of parsimonious reduction.
Proposition

If P \neq NP then the classes DelayP, IncP and TotalP are not stable by subtraction.

Proposition

If P \neq NP then the classes DelayP, IncP and TotalP are not stable by intersection.
Boolean combination of solutions

Proposition

If $P \neq NP$ *then the classes* DelayP, IncP *and TotalP *are not stable by subtraction.*

Proposition

If $P \neq NP$ *then the classes* DelayP, IncP *and TotalP *are not stable by intersection.*

The classes DelayP, IncP and TotalP are stable for:

- disjoint union
Boolean combination of solutions

Proposition

If $P \neq NP$ then the classes DelayP, IncP and TotalP are not stable by subtraction.

Proposition

If $P \neq NP$ then the classes DelayP, IncP and TotalP are not stable by intersection.

The classes DelayP, IncP and TotalP are stable for:

- disjoint union
- union with an order
Boolean combination of solutions

Proposition

If $P \neq NP$ then the classes DelayP, IncP and TotalP are not stable by subtraction.

Proposition

If $P \neq NP$ then the classes DelayP, IncP and TotalP are not stable by intersection.

The classes DelayP, IncP and TotalP are stable for:

- disjoint union
- union with an order
- union without order
Boolean combination of solutions

Proposition

If $P \neq NP$ then the classes DelayP, IncP and TotalP are not stable by subtraction.

Proposition

If $P \neq NP$ then the classes DelayP, IncP and TotalP are not stable by intersection.

The classes DelayP, IncP and TotalP are stable for:

- disjoint union
- union with an order
- union without order
Meta-algorithms for enumeration and CSP

Proposition (Creignou, Hebrard’97)

The problem $\text{Enum-SAT}(C)$ is in DelayP when C is one of the following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2CNF) formulas.

Other meta-algorithms:

1. Schnoor: enumeration complexity dichotomy for conservative CSP over three element domain
2. Bulatov, Dalmau, Grohe, Marx: algebraic characterization of easy to enumerate CSP, bounded tree-width domain.
Meta-algorithms for enumeration and CSP

Proposition (Creignou, Hebrard’97)

The problem $\text{Enum-SAT}(\mathcal{C})$ is in DelayP when \mathcal{C} is one of the following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2CNF) formulas.

Other meta-algorithms:

1. Schnoor: enumeration complexity dichotomy for conservative CSP over three element domain
2. Bulatov, Dalmau, Grohe, Marx: algebraic characterization of easy to enumerate CSP, bounded tree-width domain.
Introduction to Enumeration

Enumeration and logic

Enumeration and polynomials
First order logic (FO):

- Variables: $x, y, z \ldots$
- The language σ, relations and functions: $R(x, y), f(z)$
- Unary and binary connectors: \wedge, \lor, \neg
- Quantifiers: \forall, \exists

\[
\varphi \equiv \forall x \exists y E(x, y) \lor E(y, x)
\]
First order logic (FO):

- Variables: $x, y, z \ldots$
- The language σ, relations and functions: $R(x, y), f(z)$
- Unary and binary connectors: \land, \lor, \lnot
- Quantifiers: \forall, \exists
- $\varphi \equiv \forall x \exists y E(x, y) \lor E(y, x)$

Theorem (Goldberg)

For almost all first order graph property φ, the graphs of size n which satisfies φ can be enumerated with polynomial delay in n.
First order logic (FO):

- Variables: \(x, y, z\ldots\)
- The language \(\sigma\), relations and functions: \(R(x, y), f(z)\)
- Unary and binary connectors: \(\land, \lor, \neg\)
- Quantifiers: \(\forall, \exists\)
- \(\varphi \equiv \forall x \exists y E(x, y) \lor E(y, x)\)

Theorem (Goldberg)

For almost all first order graph property \(\varphi\), the graphs of size \(n\) which satisfies \(\varphi\) can be enumerated with polynomial delay in \(n\).
Enumeration problem defined by a formula

Second order logic (SO):
Second order variable: T, denotes unknown relation over the domain.

Let $\Phi(z, T)$ be a first order formula with free first and second order variables.
Enumeration problem defined by a formula

Second order logic (SO):
Second order variable: T, denotes unknown relation over the domain.

Let $\Phi(z, T)$ be a first order formula with free first and second order variables.

\[\text{Enum} \cdot \Phi \]

Input: A σ-structure S

Output: $\Phi(S) = \{(z^*, T^*) : (S, z^*, T^*) \models \Phi(z, T)\}$

Let \mathcal{F} be a subclass of first order formulas. We denote by $\text{Enum} \cdot \mathcal{F}$ the collection of problems $\text{Enum} \cdot \Phi$ for $\Phi \in \mathcal{F}$.
Enumeration problem defined by a formula

Second order logic (SO):
Second order variable: T, denotes unknown relation over the domain.

Let $\Phi(z, T)$ be a first order formula with free first and second order variables.

$\text{Enum} \cdot \Phi$

Input: A σ-structure S

Output: $\Phi(S) = \{(z^*, T^*) : (S, z^*, T^*) \models \Phi(z, T)\}$

Let \mathcal{F} be a subclass of first order formulas. We denote by $\text{Enum} \cdot \mathcal{F}$ the collection of problems $\text{Enum} \cdot \Phi$ for $\Phi \in \mathcal{F}$.
Independent sets:

\[IS(T) \equiv \forall x \forall y \ T(x) \land T(y) \Rightarrow \neg E(x, y). \]

Hitting sets (vertex covers) of a hypergraph represented by the incidence structure \(\langle D, \{ V, E, R \} \rangle \).

\[HS(T) \equiv \forall x \ (T(x) \Rightarrow V(x)) \land \forall y \exists x \ E(y) \Rightarrow (T(x) \land R(x, y)) \]
First-order queries with free second order variables

This presentation

- FO queries with free second-order variables
- Data complexity: the query is fixed
- The complexity in term of the size of the input structure’s domain
- Quantifier depth as a parameter: $\text{Enum} \cdot \Sigma_1$
- $\text{Enum} \cdot \text{IS} \in \text{Enum} \cdot \Pi_1$ and $\text{Enum} \cdot \text{HS} \in \text{Enum} \cdot \Pi_2$
First-order queries with free second order variables

This presentation

- FO queries with free second-order variables
- Data complexity: the query is fixed
- The complexity in term of the size of the input structure’s domain
- Quantifier depth as a parameter: $\text{Enum} \cdot \Sigma_1$
- $\text{Enum} \cdot \text{IS} \in \text{Enum} \cdot \Pi_1$ and $\text{Enum} \cdot \text{HS} \in \text{Enum} \cdot \Pi_2$
Previous results

1. Only first-order free variables and bounded degree structures. Durand-Grandjean’07, Lindell’08, Kazana-Segoufin’10: **linear preprocessing + constant delay**.

2. Only first-order free variables and acyclic conjunctive formula. Bagan-Durand-Grandjean’07: **linear preprocessing + linear delay**.

Example

Enumeration of the k-cliques of a graph of bounded degree.
Previous results

2. Only first-order free variables and acyclic conjunctive formula. Bagan-Durand-Grandjean’07: linear preprocessing + linear delay

Example

Typical database query. Simple paths of length k.
Previous results

2. Only first-order free variables and acyclic conjunctive formula. Bagan-Durand-Grandjean’07: linear preprocessing + linear delay

Example

Enumeration of the cliques of a bounded tree-width graph.
A hierarchy result for counting functions

From a formula $\Phi(z, T)$, one defines the counting function:

$$\#\Phi : S \mapsto |\Phi(S)|.$$

Theorem (Saluja, Subrahmanyam, Thakur 1995)

On linearly ordered structures:

$$\#\Sigma_0 \subsetneq \#\Sigma_1 \subsetneq \#\Pi_1 \subsetneq \#\Sigma_2 \subsetneq \#\Pi_2 = \#\mathbb{P}.$$

Some $\#\mathbb{P}$-hard problems in $\#\Sigma_1$ (but existence of FPRAS at this level).

Corollary

On linearly ordered structures:

$$\text{Enum} \cdot \Sigma_0 \subsetneq \text{Enum} \cdot \Sigma_1 \subsetneq \text{Enum} \cdot \Pi_1 \subsetneq \text{Enum} \cdot \Sigma_2 \subsetneq \text{Enum} \cdot \Pi_2.$$
A hierarchy result for counting functions

From a formula \(\Phi(z, T) \), one defines the counting function:

\[
\# \Phi : S \mapsto |\Phi(S)|.
\]

Theorem (Saluja, Subrahmanyam, Thakur 1995)

On linearly ordered structures:

\[
\# \Sigma_0 \subsetneq \# \Sigma_1 \subsetneq \# \Pi_1 \subsetneq \# \Sigma_2 \subsetneq \# \Pi_2 = \# P.
\]

Some \# P-hard problems in \# \Sigma_1 (but existence of FPRAS at this level).

Corollary

On linearly ordered structures:

\[
\text{Enum} \cdot \Sigma_0 \subsetneq \text{Enum} \cdot \Sigma_1 \subsetneq \text{Enum} \cdot \Pi_1 \subsetneq \text{Enum} \cdot \Sigma_2 \subsetneq \text{Enum} \cdot \Pi_2.
\]
The first level: Enum\textcdot\Sigma_0

Theorem

For \(\varphi \in \Sigma_0 \), \(\text{Enum}\cdot\varphi \) can be enumerated with preprocessing \(O(|D|^k) \) and delay \(O(1) \) where \(k \) is the number of free first order variables of \(\varphi \) and \(D \) is the domain of the input structure.

Simple ingredients:

1. Transformation of a f.o. formula \(\Phi(z, T) \) into a propositional formula:
 - Try all values for first order variables:
 \(\Phi(z^*, T) \).
 - Replace the atomic formulas by their truth value.
 - Obtain a propositional formula with variables \(T(w) \).

Remark: The k-clique query is definable. No hope to improve the $O(|D|^k)$ preprocessing.

Theorem

Let $d \in \mathbb{N}$, on d-degree bounded input structures, $\text{Enum} \cdot \Sigma_0 \in \text{Delay}(|D|, 1)$ where D is the domain of the input structure.
Remark: The \(k \)-clique query is definable. No hope to improve the \(O(|D|^k) \) preprocessing.

Theorem

Let \(d \in \mathbb{N} \), on \(d \)-degree bounded input structures,
\(\text{Enum} \cdot \Sigma_0 \in \text{Delay}(|D|, 1) \) where \(D \) is the domain of the input structure.

Idea of proof:

- Another transformation: \(\Phi(z, T) \) seen as a propositional formula whose variables are the atoms of \(\Phi \).
- From each solution, create a quantifier free formula without free second order variables.
- Enumerate the solutions of this formula thanks to [DG 2007].
Remark: The k-clique query is definable. No hope to improve the $O(|D|^k)$ preprocessing.

Theorem

Let $d \in \mathbb{N}$, on d-degree bounded input structures,
$\text{Enum} \cdot \Sigma_0 \in \text{Delay}(|D|, 1)$ where D is the domain of the input structure.

Idea of proof:

- Another transformation: $\Phi(z, T)$ seen as a propositional formula whose variables are the atoms of Φ.
- From each solution, create a quantifier free formula without free second order variables.
- Enumerate the solutions of this formula thanks to [DG 2007].
Theorem

$\text{Enum} \cdot \Sigma_1 \subseteq \text{DelayP}$. More precisely, $\text{Enum} \cdot \Sigma_1$ can be computed with precomputation $O(|D|^{h+k})$ and delay $O(|D|^k)$ where h is the number of free first order variables of the formula, k the number of existentially quantified variables and D is the domain of the input structure.

Idea of Proof: $\Phi(y, T) = \exists x \varphi(x, y, T)$

- Substitute values for x. Collection of formulas of the form:

 $\varphi(x^*, y, T)$

- Need to enumerate the (non necessarily disjoint) union.
The case $\text{Enum} \cdot \Pi_1$

Proposition

Unless $P = NP$, there is no polynomial delay algorithm for $\text{Enum} \cdot \Pi_1$.

Proof Direct encoding of SAT.

Hardness even:

- on the class of bounded degree structure
- if all clauses but one have at most two occurrences of a second-order free variable
Problem $\text{Enum} \cdot \Phi$ with $\Phi \in \Sigma_i$: transformation of Φ into a propositional formula $\tilde{\Phi}$.

Corollary

Let $\Phi(z, T)$ be a formula, such that, for all σ structures, all propositional formulas $\tilde{\Phi}$ are either Horn, anti-Horn, affine or bijunctive. Then $\text{Enum} \cdot \Phi \subseteq \text{DelayP}$.
Problem $\text{Enum} \cdot \Phi$ with $\Phi \in \Sigma_i$: transformation of Φ into a propositional formula $\tilde{\Phi}$.

Corollary

Let $\Phi(z, T)$ be a formula, such that, for all σ structures, all propositional formulas $\tilde{\Phi}$ are either Horn, anti-Horn, affine or bijunctive. Then $\text{Enum} \cdot \Phi \subseteq \text{DelayP}$.

Example: independent sets and hitting sets.
Problem $\text{Enum} \cdot \Phi$ with $\Phi \in \Sigma_i$: transformation of Φ into a propositional formula $\tilde{\Phi}$.

Corollary

Let $\Phi(z, T)$ be a formula, such that, for all σ structures, all propositional formulas $\tilde{\Phi}$ are either Horn, anti-Horn, affine or bijunctive. Then $\text{Enum} \cdot \Phi \subseteq \text{DelayP}$.

Example: independent sets and hitting sets.
\[\text{Enum} \cdot \Sigma_0 \subsetneq \text{Enum} \cdot \Sigma_1 \subsetneq \text{Enum} \cdot \Pi_1 \subsetneq \text{Enum} \cdot \Sigma_2 \subsetneq \text{Enum} \cdot \Pi_2 = \text{EnumP}. \]

- Nice but small hierarchy.
- Other tractable classes above \(\Sigma_1 \) (optimization operator)?
- Efficient probabilistic enumeration procedure?
Introduction to Enumeration

Enumeration and logic

Enumeration and polynomials
Polynomial given by a black-box

\[P(X_1, X_2, X_3) = X_1X_2 + X_1X_3 + X_2 + X_3 \]
Polynomial given by a black-box

\[P(X_1, X_2, X_3) = X_1X_2 + X_1X_3 + X_2 + X_3 \]

\[X_1 = 1, \ X_2 = 2, \ X_3 = 1 \]

\[1 \times 2 + 1 \times 1 + 2 + 1 \]

\[Output = 6 \]
Polynomial given by a black-box

\[P(X_1, X_2, X_3) = X_1X_2 + X_1X_3 + X_2 + X_3 \]

\[X_1 = -1, \ X_2 = 1, \ X_3 = 2 \]

\[-1 \times 1 + -1 \times 2 + 1 + 2 \]

Output = 0
Polynomial given by a black-box

\[P(X_1, X_2, X_3) = X_1X_2 + X_1X_3 + X_2 + X_3 \]

- Problem: interpolation, compute \(P \) from its values.
- Complexity: time and number of calls to the oracle.
Polynomial given by a black-box

\[P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3 \]

- Problem: interpolation, compute \(P \) from its values.
- Complexity: time and number of calls to the oracle.
- Parameters: number of variables and total degree.
Polynomial given by a black-box

\[P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3 \]

- **Problem**: interpolation, compute \(P \) from its values.
- **Complexity**: time and number of calls to the oracle.
- **Parameters**: number of variables and total degree.

Enumeration problem: output the monomials one after the other.
Polynomial given by a black-box

\[P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3 \]

- Problem: interpolation, compute \(P \) from its values.
- Complexity: time and number of calls to the oracle.
- Parameters: number of variables and total degree.

Enumeration problem: output the monomials one after the other.
Motivation

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix: cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.
- Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3-uniform hypergraph.
- The polynomial representing the language accepted by a probabilistic automaton.
 Only multilinear polynomials.
Motivation

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix: cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.

Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3-uniform hypergraph.

The polynomial representing the language accepted by a probabilistic automaton.

Only multilinear polynomials.
Motivation

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix: cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.
- Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3-uniform hypergraph.
Motivation

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix: cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.
- Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3-uniform hypergraph.
- The polynomial representing the language accepted by a probabilistic automaton.
Motivation

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix: cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.
- Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3-uniform hypergraph.
- The polynomial representing the language accepted by a probabilistic automaton.

Only multilinear polynomials.
Motivation

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix: cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.
- Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3-uniform hypergraph.
- The polynomial representing the language accepted by a probabilistic automaton.

Only multilinear polynomials.
The decision problem

Polynomial Identity Testing

Input: a polynomial given as a black box.

Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)

Let P be a non zero polynomial with n variables of total degree D, if x_1, \ldots, x_n are randomly chosen in a set of integers S of size $\frac{D}{\epsilon}$ then the probability that $P(x_1, \ldots, x_n) = 0$ is bounded by ϵ.
The decision problem

Polynomial Identity Testing

Input: a polynomial given as a black box.
Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)

Let P be a non zero polynomial with n variables of total degree D, if x_1, \ldots, x_n are randomly chosen in a set of integers S of size $\frac{D}{\epsilon}$, then the probability that $P(x_1, \ldots, x_n) = 0$ is bounded by ϵ.

No way to make PIT deterministic for black box.
Polynomial Identity Testing

Input: a polynomial given as a black box.
Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)

Let P be a non-zero polynomial with n variables of total degree D, if x_1, \ldots, x_n are randomly chosen in a set of integers S of size $\frac{D}{\epsilon}$ then the probability that $P(x_1, \ldots, x_n) = 0$ is bounded by ϵ.

No way to make PIT deterministic for black box.

Error exponentially small in the size of the integers!
The decision problem

Polynomial Identity Testing

Input: a polynomial given as a black box.
Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)

Let P be a non zero polynomial with n variables of total degree D, if x_1, \ldots, x_n are randomly chosen in a set of integers S of size $\frac{D}{\epsilon}$ then the probability that $P(x_1, \ldots, x_n) = 0$ is bounded by ϵ.

No way to make PIT deterministic for black box.

Error *exponentially small* in the size of the integers!
Existing interpolation methods

- Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
Existing interpolation methods

- Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- Klivans and Spielman (2001): transformation of a multivariate into an univariate one.
Existing interpolation methods

- Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- Klivans and Spielman (2001): transformation of a multivariate into an univariate one.
- Garg and Schost (2009): non black-box but complexity independent from the degree of the polynomial
Existing interpolation methods

- Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- Klivans and Spielman (2001): transformation of a multivariate into an univariate one.
- Garg and Schost (2009): non black-box but complexity independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time with a good delay.
Existing interpolation methods

- Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- Klivans and Spielman (2001): transformation of a multivariate into an univariate one.
- Garg and Schost (2009): non black-box but complexity independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time with a good delay.
Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

Idea: Subtract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.
Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

Idea: Substruct the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial $Q = \text{the sum of the generated monomials.}$
When there is a call, compute $P - Q$.
Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial $Q = \text{the sum of the generated monomials}$.
When there is a call, compute $P - Q$.

Incremental delay.
Assume there is a procedure which returns a monomial of a polynomial \(P \), then it can be used to interpolate \(P \).

Idea: Subtract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial \(Q = \) the sum of the generated monomials. When there is a call, compute \(P - Q \).

Incremental delay.
Finding one monomial

Aim: reducing the number of calls to the black-box at each step.

- KS algorithm: $O(n^7D^4)$ calls, n number of variables and D the total degree

Open question: how to efficiently represent and compute the partial polynomial at each step? Easier with circuits, formulas, polynomials of low degree, over fixed finite fields?
Finding one monomial

Aim: reducing the number of calls to the black-box at each step.

- KS algorithm: $O(n^7 D^4)$ calls, n number of variables and D the total degree
- Question: is it possible to decrease the number of calls to a more manageable polynomial.
Finding one monomial

Aim: reducing the number of calls to the black-box at each step.

- KS algorithm: $O(n^7D^4)$ calls, n number of variables and D the total degree
- Question: is it possible to decrease the number of calls to a more manageable polynomial.
- Yes for polynomial of fixed degree d. One can find the "highest" degree polynomial with $O(n^2D^{d-1})$ calls.
Finding one monomial

Aim: reducing the number of calls to the black-box at each step.

- KS algorithm: $O(n^7D^4)$ calls, n number of variables and D the total degree
- Question: is it possible to decrease the number of calls to a more manageable polynomial.
- Yes for polynomial of fixed degree d. One can find the "highest" degree polynomial with $O(n^2D^{d-1})$ calls.
- Yes for polynomial whose each two monomials have distinct supports: $O(n^2)$ calls.
Finding one monomial

Aim: reducing the number of calls to the black-box at each step.

- KS algorithm: $O(n^7D^4)$ calls, n number of variables and D the total degree
- Question: is it possible to decrease the number of calls to a more manageable polynomial.
- Yes for polynomial of fixed degree d. One can find the ”highest“ degree polynomial with $O(n^2D^{d-1})$ calls.
- Yes for polynomial whose each two monomials have distinct supports: $O(n^2)$ calls.

Open question: how to efficiently represent and compute the partial polynomial at each step? Easier with circuits, formulas, polynomials of low degree, over fixed finite fields?
Finding one monomial

Aim: reducing the number of calls to the black-box at each step.

- **KS algorithm:** \(O(n^7D^4)\) calls, \(n\) number of variables and \(D\) the total degree
- **Question:** is it possible to decrease the number of calls to a more manageable polynomial.
- **Yes for polynomial of fixed degree** \(d\). One can find the ”highest“ degree polynomial with \(O(n^2D^{d-1})\) calls.
- **Yes for polynomial whose each two monomials have distinct supports:** \(O(n^2)\) calls.

Open question: how to efficiently represent and compute the partial polynomial at each step? Easier with circuits, formulas, polynomials of low degree, over fixed finite fields?
Improving the delay

How to achieve a polynomial delay?

We want to determine the degree of a subset S of variables of the polynomial.
Improving the delay

How to achieve a polynomial delay?

We want to determine the degree of a subset S of variables of the polynomial.

1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree
Improving the delay

How to achieve a polynomial delay?

We want to determine the degree of a subset S of variables of the polynomial.

1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree

2. evaluate the polynomial on a large value for the variables of S and small random values for the others
Improving the delay

How to achieve a polynomial delay?

We want to determine the degree of a subset S of variables of the polynomial.

1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree
2. evaluate the polynomial on a large value for the variables of S and small random values for the others
3. if the polynomial is given by a circuit, transform it into its homogeneous components with regard to S
Improving the delay

How to achieve a polynomial delay?

We want to determine the degree of a subset S of variables of the polynomial.

1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree
2. evaluate the polynomial on a large value for the variables of S and small random values for the others
3. if the polynomial is given by a circuit, transform it into its homogeneous components with regard to S

These algorithms are randomized (again the error is exponentially small) and in polynomial time in the number of variables.
How to achieve a polynomial delay?

We want to determine the degree of a subset S of variables of the polynomial.

1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree

2. evaluate the polynomial on a large value for the variables of S and small random values for the others

3. if the polynomial is given by a circuit, transform it into its homogeneous components with regard to S

These algorithms are randomized (again the error is exponentially small) and in polynomial time in the number of variables.
Partial-Monomial

Input: a polynomial given as a black box and two sets of variables L_1 and L_2

Output: accept if there is a monomial in the polynomial in which no variables of L_1 appear, but all of those of L_2 do.

When the polynomial is *multilinear*, this problem can be solved by finding the degree of $P_{\bar{L}_1}$ with regard to L_2: test if the degree is equal to $|L_2|$.
Partial-Monomial

Input: a polynomial given as a black box and two sets of variables L_1 and L_2

Output: accept if there is a monomial in the polynomial in which no variables of L_1 appear, but all of those of L_2 do.

When the polynomial is **multilinear**, this problem can be solved by finding the degree of P_{L_1} with regard to L_2: test if the degree is equal to $|L_2|$.

Use this procedure for a depth first traversal of a tree whose leaves are the monomials.
Partial-Monomial

Input: a polynomial given as a black box and two sets of variables L_1 and L_2

Output: accept if there is a monomial in the polynomial in which no variables of L_1 appear, but all of those of L_2 do.

When the polynomial is **multilinear**, this problem can be solved by finding the degree of $P_{\overline{L_1}}$ with regard to L_2: test if the degree is equal to $|L_2|$.

Use this procedure for a depth first traversal of a tree whose leaves are the monomials.
\[P(X_1, X_2, X_3) = 2X_1 - X_2 X_3 + X_1 X_3 + 5X_2 \]
Theorem

Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1 - \epsilon$ and a delay polynomial in n, D and $\log(\epsilon)^{-1}$.

- The algorithm can be parallelized.
Polynomial delay algorithm

Theorem

Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1 - \epsilon$ and a delay polynomial in n, D and $\log(\epsilon)^{-1}$.

- The algorithm can be parallelized.
- It works on finite fields of small characteristic (can be used to speed up computation).
Theorem

Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1 - \epsilon$ and a delay polynomial in n, D and $\log(\epsilon)^{-1}$.

- The algorithm can be parallelized.
- It works on finite fields of small characteristic (can be used to speed up computation).
- On classes of polynomials given by circuits on which PIT can be derandomized, this algorithm also can be derandomized.

STOC 2011, Saraf, Volkovich: deterministic identity testing of depth-4 multilinear circuits with bounded top fan-in
Theorem

Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1 - \epsilon$ and a delay polynomial in n, D and $\log(\epsilon)^{-1}$.

- The algorithm can be parallelized.
- It works on finite fields of small characteristic (can be used to speed up computation).
- On classes of polynomials given by circuits on which PIT can be derandomized, this algorithm also can be derandomized.

STOC 2011, Saraf, Volkovich: deterministic identity testing of depth-4 multilinear circuits with bounded top fan-in
Comparison to other algorithms

<table>
<thead>
<tr>
<th>Algorithm type</th>
<th>Ben-Or Tiwari</th>
<th>Zippel</th>
<th>KS</th>
<th>My Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm type</td>
<td>Deterministic</td>
<td>Probabilistic</td>
<td>Probabilistic</td>
<td>Probabilistic</td>
</tr>
<tr>
<td>Number of calls</td>
<td>$2T$</td>
<td>tnD</td>
<td>tn^7D^4</td>
<td>$tnD(n + \log(e^{-1}))$</td>
</tr>
<tr>
<td>Total time</td>
<td>Quadratic in T</td>
<td>Quadratic in t</td>
<td>Quadratic in t</td>
<td>Linear in t</td>
</tr>
<tr>
<td>Enumeration</td>
<td>Exponential</td>
<td>TotalPP</td>
<td>IncPP</td>
<td>DelayPP</td>
</tr>
<tr>
<td>Size of points</td>
<td>$T \log(n)$</td>
<td>$\log(nT^2e^{-1})$</td>
<td>$\log(nDe^{-1})$</td>
<td>$\log(D)$</td>
</tr>
</tbody>
</table>

Figure: Comparison of interpolation algorithms on multilinear polynomials

Good total time and best delay, but only on multilinear polynomials.
Comparison to other algorithms

<table>
<thead>
<tr>
<th>Algorithm type</th>
<th>Ben-Or Tiwari</th>
<th>Zippel</th>
<th>KS</th>
<th>My Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm type</td>
<td>Deterministic</td>
<td>Probabilistic</td>
<td>Probabilistic</td>
<td>Probabilistic</td>
</tr>
<tr>
<td>Number of calls</td>
<td>$2T$</td>
<td>tnD</td>
<td>tn^7D^4</td>
<td>$tnD(n + \log(e^{-1}))$</td>
</tr>
<tr>
<td>Total time</td>
<td>Quadratic in T</td>
<td>Quadratic in t</td>
<td>Quadratic in t</td>
<td>Linear in t</td>
</tr>
<tr>
<td>Enumeration</td>
<td>Exponential</td>
<td>TotalPP</td>
<td>IncPP</td>
<td>DelayPP</td>
</tr>
<tr>
<td>Size of points</td>
<td>$T \log(n)$</td>
<td>$\log(nT^2e^{-1})$</td>
<td>$\log(nDe^{-1})$</td>
<td>$\log(D)$</td>
</tr>
</tbody>
</table>

Figure: Comparison of interpolation algorithms on multilinear polynomials

Good total time and best delay, but only on multilinear polynomials.
Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision problem.

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables L_1 and L_2
Output: accept if there is a monomial in the polynomial in which no variables of L_1 appear, but all of those of L_2 do.
Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision problem.

Partial-Monomial

Input: a polynomial given as a black box and two sets of variables L_1 and L_2

Output: accept if there is a monomial in the polynomial in which no variables of L_1 appear, but all of those of L_2 do.

The polynomial delay algorithm works by repeatedly solving this problem.
Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision problem.

Partial-Monomial

Input: a polynomial given as a black box and two sets of variables L_1 and L_2

Output: accept if there is a monomial in the polynomial in which no variables of L_1 appear, but all of those of L_2 do.

The polynomial delay algorithm works by repeatedly solving this problem.

Proposition

The problem Partial-Monomial restricted to degree 2 polynomials is NP-hard.
Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision problem.

Partial-Monomial

Input: a polynomial given as a black box and two sets of variables L_1 and L_2

Output: accept if there is a monomial in the polynomial in which no variables of L_1 appear, but all of those of L_2 do.

The polynomial delay algorithm works by repeatedly solving this problem.

Proposition

The problem Partial-Monomial restricted to degree 2 polynomials is NP-hard.
Thanks!
Thanks!
Thanks,
Thanks!
Thanks, thanks,
Thanks!
Thanks, thanks, thanks,
Thanks!
Thanks, thanks, thanks, thanks,
Thanks!
Thanks, thanks, thanks, thanks, thanks, thanks,
Thanks!
Thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks,
Thanks!

Thanks, thanks,
Thanks!
Thanks, thanks,
Thanks!
Thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks,
Thanks!
Thanks, thanks
Thanks!
Thanks, thanks, thanks, thanks, thanks,
thanks, thanks, thanks, thanks, thanks,
thanks, thanks
Let’s all do enumeration