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ABSTRACT
A temporal constraint language is a set of relations that has
a first-order definition in (Q, <), the dense linear order of
the rational numbers. We present a complete complexity
classification of the constraint satisfaction problem (CSP)
for temporal constraint languages: if the constraint lan-
guage is contained in one out of nine temporal constraint
languages, then the CSP can be solved in polynomial time;
otherwise, the CSP is NP-complete. Our proof combines
model-theoretic concepts with techniques from universal al-
gebra, and also applies the so-called product Ramsey theo-
rem, which we believe will be useful in similar contexts of
constraint satisfaction complexity classification.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms
and Problems—Computations on discrete structures

General Terms
Theory, Algorithms

Keywords
Constraint satisfaction, Temporal reasoning, Complexity

1. INTRODUCTION
A temporal constraint language Γ is a relational structure

(Q;R1, R2, . . . ) with a first-order definition in (Q, <), the
rational numbers with the dense linear order. A first-order
sentence is called primitive positive if it is of the form

∃x1, . . . , xn.ψ1 ∧ · · · ∧ ψp ,
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where ψ1, . . . , ψp are atomic formulas of the form R(xi1 , . . . ,
xik ). The constraint satisfaction problem (CSP) for a tem-
poral constraint language Γ is the computational problem
to decide for a given primitive positive sentence Φ whether
Φ is true or false in Γ.

Several famous NP-complete problems can be formulated
as temporal CSPs. For example, if the constraint language
Γ only contains the ternary relation Betw = {(x, y, z) ∈
Q3 | (x < y < z) ∨ (z < y < x)}, then the corresponding
CSP becomes the Betweenness problem listed in the book
of Garey and Johnson [18]. Similarly, the Cyclic Ordering
problem can be formulated as a temporal CSP [18].

One of the most fundamental temporal constraint lan-
guages is (Q;≤, <, 6=,=), the so-called Point Algebra. The
constraint satisfaction problem for the Point Algebra is eas-
ily seen to be tractable [23]. A considerably larger temporal
constraint language is the set of Ord-Horn relations, intro-
duced by Nebel and Bürkert [24]. The CSP for Ord-Horn
can be solved by resolution in polynomial time.

In this paper we present a complete classification of the
computational complexity of the constraint satisfaction prob-
lem for temporal constraint languages. The CSP can be
solved in polynomial time if the temporal constraint lan-
guage is contained in one out of nine temporal constraint
languages; otherwise the problem is NP-complete. Two of
these languages properly contain all Ord-Horn relations [4].

A similar classification result was obtained by Schaefer [27]
for boolean constraint languages, i.e., relational structures
over a two element set where each relation can be defined by
a propositional formula. Schaefer showed that the CSP for
a boolean constraint language is tractable if the language
is contained in one out of six boolean constraint languages;
otherwise the CSP is NP-complete.

The question whether such a complexity dichotomy holds
for all constraint languages over a finite domain [17] is one
of the major open research problems in the area. In the last
decade, a strong connection of this problem to central and
deep questions in universal algebra has stimulated further
activity [7–12,16,21,22]; the starting point of this connection
is the observation that the complexity of the CSP is fully
described by the so-called polymorphisms of the constraint
language.

The techniques that we apply to study temporal CSPs
take their impetus from this algebraic approach. In order
to use polymorphisms for constraint languages over Q, we
need fundamental concepts from model theory, as in [1,2,5].
Another important ingredient is Cameron’s classification of



temporal constraint languages: up to first-order interdefin-
ability, there are exactly five different temporal constraint
languages. First-order definability does not preserve the
complexity of the corresponding CSP (this is why we need
polymorphisms and universal algebra), but still Cameron’s
result turns out to be useful in our proof of the complexity
dichotomy. In particular, it allows us to perform the es-
sential part of the classification with binary polymorphisms
only; the techniques how this is done are another major
contribution of our work. Finally, in the combinatorial part
of the proofs we also apply the so-called product Ramsey
theorem; we believe that this theorem can be applied in a
similar way for complexity classifications of other classes of
constraint languages over infinite domains. The proof tech-
niques, which are part of the contributions of this paper,
become visible from the top-level architecture of the classifi-
cation proof presented in this extended abstract. For proof
details we kindly refer the reader to the full version of the
paper.

2. MODEL-THEORETIC PRELIMINARIES
A temporal constraint language Γ = (Q, R1, R2, . . . ) is a

structure over a relational signature with a first-order defi-
nition in (Q, <), the dense linear order of the rational num-
bers. This is, for every relation Ri of Γ of arity ki there
is a first-order formula φ(x1, . . . , xki) with ki free variables
x1, . . . , xki that defines Ri over (Q, <) in the usual way. In
particular, the only atomic formulas of φ are of the form
x < y (or of the form x = y, equality is for us always in-
cluded in first-order logic; but this does not make a difference
here).

The structure (Q, <) has notable model-theoretical prop-
erties, which are important in this paper. The first-order
theory of a relational structure is the set of all first-order
sentences that is true in Γ.

Definition 1. A relational structure Γ over a countable
domain is called ω-categorical if all countable models of the
first order theory of Γ are isomorphic to Γ.

The structure (Q, <) is ω-categorical; this is due to Kan-
tor.

Lemma 1 (see e.g. [20]). If Γ is ω-categorical, and ∆
has a first-order definition in Γ, then ∆ is also ω-categorical.

As a consequence, all temporal constraint languages are
ω-categorical. There is also an algebraic characterization of
ω-categoricity. An automorphism of a relational structure
Γ is an isomorphism between Γ and Γ. The set of all auto-
morphisms of Γ forms a permutation group Aut(Γ) on the
domain D of Γ. The orbit of a k-tuple t ∈ Dk in Γ is the set
{α(t) | α ∈ Aut(Γ)}. The orbit of a k-set S ⊂ D (S is a k-set
if |S| = k) in Γ is the set {α(S) | α ∈ Aut(Γ)}. A permu-
tation group is called oligomorphic if for every k ≥ 1 there
is only a finite number of distinct orbits of k-tuples over D.
The theorem of Engeler, Svenonius, and Ryll-Nardzewski
says that a relational structure Γ is ω-categorical if and only
if the automorphism group of Γ is oligomorphic. Automor-
phism groups of temporal constraint languages even satisfy
a stronger property. A permutation group is called highly
set-transitive if for all k ≥ 1 there is only one orbit of k-sets.

Another important model-theoretic property of (Q, <) is
that it is homogeneous; a relational structure Γ is called ho-
mogeneous if every isomorphism between induced substruc-
tures of Γ can be extended to an automorphism of Γ.

We now quote the classical result of Cameron [13] that
describes temporal constraint languages up to first-order in-
terdefinability. We say that two structures Γ and ∆ are
first-order interdefinable if Γ has a first-order definition in
∆ and ∆ has a first-order definition in Γ.

Theorem 2. Let Γ be a temporal constraint language.
Then Γ is first-order interdefinable with exactly one out of
the following five homogeneous structures.

• The dense linear order (Q, <) itself,

• The structure (Q,Betw), where Betw is the relation
{(x, y, z) ∈ Q3 | (x < y < z) ∨ (z < y < x)}

• The structure (Q,Cycl), where Cycl is the relation
{(x, y, z) | (x < y < z) ∨ (y < z < x) ∨ (z < x < y)},

• The structure (Q,Sep), where Sep is the relation
{(x1, y1, x2, y2) | (x1 < x2 < y1 < y2) ∨ (x1 < y2 <
y1 < x2) ∨ (y1 < x2 < x1 < y2) ∨ (y1 < y2 < x1 <
x2)∨(x2 < x1 < y2 < y1)∨(x2 < y1 < y2 < x1)∨(y2 <
x1 < x2 < y1) ∨ (y2 < y1 < x2 < x1)},

• The structure (Q, ∅).

The relation Sep is the so-called separation relation; note
that Sep(x1, y1, x2, y2) holds for elements x1, y1, x2, y2 ∈ Q
iff all four points x1, y1, x2, y2 are distinct and the smallest
interval over Q containing x1, y1 overlaps with the smallest
interval containing x2, y2.

The following theorem by Cameron [13] was his original
motivation for the investigation of the structures with a first-
order definition in (Q, <).

Theorem 3. A relational structure has a highly set-transitive
automorphism group if and only if it is a temporal constraint
language.

3. THE CONSTRAINT SATISFACTION
PROBLEM

A first-order formula is called primitive positive if it is of
the form

∃x1, . . . , xn.ψ1 ∧ · · · ∧ ψp ,

where each formula ψ1, . . . , ψp is atomic, i.e., of the form
R(y1, . . . , yk) where y1, . . . , yk might be either variables from
x1, . . . , xn or free. The constraint satisfaction problem for a
constraint language Γ is the following computational prob-
lem, denoted by CSP(Γ). We are given a primitive positive
sentence Φ (i.e., a primitive positive formula without free
variables) where all relation symbols are relation symbols for
the relations in Γ, and the question is whether Φ is true in Γ.
If Γ = (Q, R), we also write CSP(R) instead of CSP((Q, R)).

Note that for infinite constraint languages the complexity
of CSP(Γ) depends also on the representation of relations
from Γ. We set aside this representation issue, as infinite
languages are not in the main focus of this paper. Let us just
mention that for infinite languages the algorithmic results
hold for example for the representation of relations by a set



of tuples, where we take one tuple from each orbit of tuples
in Aut(Q, <) forming the relation. The hardness results hold
for finite and infinite constraint languages regardless of the
representation.

The conjuncts ψ1, . . . , ψp of an instance Φ of the CSP are
also called constraints. Hence, in this paper a constraint is a
syntactic object (an atomic formula). Note that an instance
of the CSP is fully described by its set of constraints. The
set of variables that appears in a first-order formula Φ is
denoted by V (Φ). A solution for an instance Φ of the CSP
is a mapping s : V (Φ) → Q that satisfies all the constraints
of Φ. The following is easy to see.

Proposition 4. For all temporal constraint languages Γ
the problem CSP(Γ) is in NP.

The following is an essential tool to establish hardness re-
sults for the CSP. A k-ary relation is called primitive positive
definable if there exists a primitive positive formula with k
free variables that defines R. Lemma 5 says that primitive
positive definable relations can be ‘simulated’ in constraint
satisfaction problems [12].

Lemma 5. Let Γ = (Q, R1, R2, . . . ) be a constraint lan-
guage, and let R be a relation that has a primitive positive
definition in Γ. Then CSP(Γ) and CSP((Q, R,R1, R2, . . . ))
are polynomial-time equivalent.

4. ALGEBRAIC PRELIMINARIES
Primitive positive definability can be characterized by pre-

servation under so-called polymorphisms – this is the start-
ing point of the so-called (universal-) algebraic approach to
constraint satisfaction (see e.g. [10,12]).

We say that a k-ary function (also called operation) f :
Dk → D preserves an m-ary relation R ⊆ Dm if whenever
R(ai

1, . . . , a
i
m) holds for all 1 ≤ i ≤ k, then R

`
f(a1

1, . . . , a
k
1),

. . . , f(a1
m, . . . , a

k
m)

´
holds as well. If an operation f does not

preserve a relation R, we say that f violates R. If f preserves
all relations of a relational structure Γ, we say that f is a
polymorphism of Γ. The unary polymorphisms are called
endomorphisms of Γ. Note that the automorphisms of Γ
are bijective endomorphisms that preserve all relations and
their complements.

The set of all polymorphisms Pol(Γ) of a relational struc-
ture forms an algebraic object called clone [28], which is a
set of operations defined on a set D that is closed under
composition and that contains all projections. Moreover,
Pol(Γ) is also closed under interpolation: We say that a k-
ary operation f is interpolated by a set of k-ary operations
F if for every finite subset A of D there is some operation
g ∈ F such that f(a) = g(a) for every a ∈ Ak. A clone that
contains all operations that are interpolated by operations
in the clone is called locally closed. We say that a set of
operations F locally generates an operation g if g is in the
smallest locally closed clone containing all operations in F .

Polymorphism clones can be used to characterize primitive
positive definability in finite structures, by a result of [6]
and [19]. In general, this is not true for infinite-domain
constraint languages. However, the result remains true if
the relational structures are ω-categorical.

Theorem 6. [5] Let Γ be an ω-categorical constraint lan-
guage. Then the relations preserved by the polymorphisms of

Γ are precisely those that have a primitive positive definition
in Γ.

Lemma 7. Let Γ be a ω-categorical constraint language
and let R be a k-ary relation that is a union of l orbits of
k-tuples of Aut(Γ). If R has no primitive positive definition
in Γ, then Γ has an at most l-ary polymorphism violating R.

5. POLYMORPHISM CLONES OF TEMPO-
RAL CONSTRAINT LANGUAGES

In this paper, we always deal with polymorphism clones of
temporal constraint languages, and it is convenient to make
the following convention. We say that a set of operations
F generates an operation g if F together with all automor-
phisms of (Q, <) locally generates g. In case that F contains
just one operation f , we also say that f generates g.

The polymorphism clone of a temporal constraint lan-
guage generated by a single operation can be described dif-
ferently as follows. A k-ary operation f on Q defines a weak
linear order � on Qk, as follows: for x, y ∈ Qk, let x � y iff
f(x) ≤ f(y). The following observation easily follows from
the properties of Aut(Q, <) and local closure.

Observation 1. Let f and g be two k-ary operations that
define the same weak linear order on Qk. Then f generates
g and g generates f .

We now define fundamental operations on Q. The unary
operation − is defined as −(x) := −x in the usual sense, and
the unary operation cyc is defined as −1/(x − 1) for x ≤ 0
and −1/(x + 1) for x > 0. Cameron’s theorem can now be
reformulated (and slightly extended) in terms of endomor-
phisms of temporal constraint languages.

Proposition 8. Let Γ be a temporal constraint language.
Then one of the following cases applies.

• Γ has a constant endomorphism;

• All endomorphisms of Γ preserve <;

• The set of endomorphisms of Γ equals the set of unary
operations generated by −;

• The set of endomorphisms of Γ equals the set of unary
operations generated by cyc;

• The set of endomorphisms of Γ equals set of unary
operations generated by − and cyc;

• The set of endomorphisms of Γ equals the set of all
injective unary operations.

Let f be a k-ary operation on Q. The operation−f(−x1, . . . ,
−xk) is called the dual of f . Note that if f preserves an m-
ary relation R, then the dual of f preserves the relation
−R, which is defined as {(−t1, . . . ,−tm) | (t1, . . . , tm) ∈
R}. Clearly, if the CSP of a temporal constraint language
(Q, R1, R2, . . . ) can be solved in polynomial time (is NP-
complete), then also the CSP of (Q,−R1,−R2, . . . ) can be
solved in polynomial time (is NP-complete, respectively).



6. SOME HARD TEMPORAL CSPS
We have already mentioned in the introduction that the

Betweenness and the Cyclic Ordering problem in [18] can be
formulated as temporal CSPs, and that these problems are
NP-complete. The corresponding relations Betw and Cycl
re-appeared in Cameron’s theorem. The separation relation
Sep is another relation that appeared in Theorem 2, and the
corresponding CSP is again NP-complete.

Proposition 9. The problem CSP(Sep) is NP-complete.

An important relation for our classification is the relation
S, defined as follows.

Definition 2. Let S be the ternary relation {(x, y, z) ∈
Q3 | x = y < z ∨ x = z < y}.

Proposition 10. The problem CSP(S) is NP-complete.

We would like to remark that our classification result
(Theorem 27) implies that if there is no primitive positive
definition of Betw, Cycl, Sep, S, −S, or {(x, y, z) ∈ Q3 | x =
y 6= z ∨ x 6= y = z} in Γ, then Γ is tractable.

7. LANGUAGES PRESERVED BY PP
Let pp be a binary operation on Q such that pp(a, b) ≤

pp(a′, b′) if (a ≤ 0 and a ≤ a′) or (a > 0, a′ > 0, and b ≤ b′).
For an illustration of such an operation and its dual, see
Figure 1. In diagrams for binary operations f as in Figure 1,
we draw a directed edge from (a, b) to (a′, b′) if f(a, b) <
f(a′, b′). Unoriented lines in the picture relate pairs of values
that have the same value under f . By Observation 1, all
such operations generate the same clone and thus it does not
matter which operation satisfying the above conditions we
pick. The same argument also applies to all other definitions
of operations in this paper and we thus do not repeat it
again.

It is easy to verify that the relation S, defined in Section 6,
is preserved by pp. Proposition 10 shows that CSP(S) is NP-
complete. In our quest for tractable constraint languages,
we therefore study further restrictions of temporal constraint
languages.

Definition 3. Let f be a binary operation preserving <.
If f(0, 0) = f(0, x) = f(x, 0) for all integers x > 0, we say
that f provides min-union closure. We say that f provides
min-intersection closure if f(0, 0) < f(0, x) and f(0, 0) <
f(x, 0) for all integers x > 0. We say that f provides min-
xor closure if f(0, 0) > f(0, x) = f(x, 0) for all integers
x > 0.

The binary operation min that maps its two arguments to
the minimum of the two arguments is an example of an oper-
ation that generates pp and provides min-union closure (see
Figure 2). The following proposition implies that {f, pp}
generates min for every operation f that provides min-union
closure.

Proposition 11. A temporal relation is preserved by pp
and an operation providing min-union closure if and only if
it is preserved by min.

For constraint languages over a finite domain, min- and
max-closed relations were studied in [25]. An equivalent

clausal description of such constraints is known; however,
the equivalence only holds for finite domains. The tractabil-
ity of the clausal description of max and min-closed con-
straints has also been shown for infinite domains [14]. But,
unlike our algorithm, the algorithm presented in [14] can-
not be applied to min-closed constraint languages over an
infinite domain.

We now define an operation, called mi , that clearly gen-
erates pp and provides min-intersection closure.

mi(x, y) :=

8<: α(x) if x < y
β(x) if x = y
γ(y) if x > y

where α, β, γ ∈ Aut(Q, <) such that β(x) < γ(x) < α(x) <
β(x + ε) for all x ∈ Q and all 0 < ε ∈ Q (see Figure 2). In
fact, the operation mi will be of special importance, because
the following proposition shows that pp together with any
operation providing min-intersection closure generates the
operation mi.

Proposition 12. A temporal relation R is preserved by
pp and a polymorphism f providing min-intersection closure
if and only if it is preserved by mi.

An example of a relation that is preserved by mi but not
by min is the (unique) smallest temporal relation I contain-
ing the tuples (0, 0, 1, 2), (0, 0, 1, 1), (1, 1, 0, 0), (2, 1, 0, 0). An
example of a ternary relation that is preserved by min but
not by mi is the relation U(x, y, z) defined by (x = y ∧ y <
z) ∨ (x = z ∧ z < y) ∨ (x = y ∧ y = z).

We now define an operation, called mx , that clearly gen-
erates pp and provides min-xor closure.

mx (x, y) :=


α(min(x, y)) if x 6= y
β(x) if x = y

where α and β are automorphisms of (Q, <) such that α(x) <
β(x) < α(x+ε) for all x ∈ Q and all 0 < ε ∈ Q (see Figure 2;
note that in the picture for mx, the value for f(x, y) equals
f(y, x)). The following proposition implies that {f, pp} gen-
erates mx for any operation f providing min-xor closure.

Proposition 13. A temporal relation R is preserved by
pp and an operation f providing min-xor closure if and only
if R is preserved by mx.

An example of a temporal relation that is preserved by mx
(but not by min and by mi) is the ternary relation X(x, y, z)
defined by (x = y∧y < z)∨(x = z∧z < y)∨(y = z∧y < x).

8. ALGORITHMS FOR LANGUAGES PRE-
SERVED BY PP

We now describe algorithms for constraint languages that
are preserved by min, mi , or mx . They all follow a common
strategy: they are searching for a variable that can have the
minimal value in a solution. If the algorithms have found
such a variable, say x, the algorithms add equalities and
inequalities that are implied by all constraints under the as-
sumption that x denotes the minimal value in all solutions.
Next, the algorithms recursively solve the instance consist-
ing of the projections of all constraints to the variables that
do not denote the minimal value in all solutions. We show
that for languages preserved by pp it is true that if the in-
stance has a solution, it also has a solution that satisfies all
the additional constraints.
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Figure 1: A visualization of pp (left) and dual-pp (right).

Figure 2: Illustration of the operation min (left), mi (center), and mx (right).

Definition 4. Let R be an n-ary temporal relation and
S = {p1, . . . , pk}, for 1 ≤ p1 < · · · < pk ≤ n, a subset
of indices. Let {q1, . . . , ql} be [n] \ S. Then the ordered
projection of R to S is the relation R′(xp1 , . . . , xpk ) with the
primitive positive definition

∃xq1 , . . . , xql .R(x1, . . . , xn) ∧
^

i∈S,j∈[n]\S

xi < xj .

Note that there are only finitely many ordered projections
of relations in Γ. In case that there is a primitive positive
definition of < in Γ, ordered projections are primitive posi-
tive definable. By Lemma 5, we can assume in this case that
Γ contains all relations defined by ordered projections. To
formally introduce our algorithms, we also need the concept
of an ordered projection of instances of the CSP.

Definition 5. Let Φ be an instance of CSP(Γ) and X ⊂
V (Φ). The ordered projection of Φ to X is an instance Φ′ of
CSP(Γ) defined as follows. For each constraint R(x1, . . . , xn)
in Φ with {x1, . . . , xn} ∩ X = {xk1 , . . . , xkl}, k1 < · · · <
kl, the instance Φ′ contains the constraint R′(xk1 , . . . , xkl)
where R′ is the ordered projection of R to {k1, . . . , kl}.

Definition 6. Let Φ be an instance of a temporal CSP
and let t be from Qk. The i-th entry in t is called minimal
if t[i] ≤ t[j] for every j ∈ [k]. The set of entries that are
minimal in t is called the min-set (of t), and denoted by
M(t). If ψ = R(x1, . . . , xk) is a constraint from Φ, then a
subset {xk1 , . . . , xks} of the variables of ψ is called a min-
set (of ψ) if there exists a k-tuple t satisfying ψ such that
t[k1], . . . , t[ks] are the minimal entries in t (assuming that
k1 < · · · < ks). A set of variables S ⊂ V (Φ) is called free iff
for all constraints R(x1, . . . , xk) in Φ the set S∩{x1, . . . , xk}
is either empty or a min-set of R.

We will show how to use the concept of freeness to solve
instances Φ of CSP(Γ) for languages Γ preserved by pp.

Lemma 14. Let Φ be an instance of CSP(Γ) where Γ is
preserved by pp, and let S be a free set of variables of Φ.
Then Φ has a solution if and only if the ordered projection
Φ′ of Φ to V (Φ) \ S has a solution.

Proof. First suppose Φ′ has a solution s′. Let ψ =
R(x1, . . . , xm) be a constraint of Φ such that V (ψ) ∩ S =
{xp1 , . . . , xpk} 6= ∅. Let {xq1 , . . . , xql} = V (ψ) \ S for q1 <
· · · < ql. By the definition of an ordered projection, there is
a tuple t1 ∈ R such that s′(xi) = t1[i] for all i ∈ {q1, . . . , ql}.
Since V (ψ)∩S is a min-set of R, there is a tuple t2 ∈ R such
that M(t2) = {p1, . . . , pk}. Let α ∈ Aut(Q, <) be such that
α maps the minimal value of t2 to 0. Because R is preserved
by pp, the tuple t3 := pp(α(t2), t1) is in R. It is easy to verify
that M(t3) = {p1, . . . , pk} and that there is β ∈ Aut(Q, <)
such that β(t3[i]) = s′(xi) for i ∈ {q1, . . . , ql}. Because we
can find such a tuple for all the constraints ψ in Φ where
V (ψ) ∩ S 6= ∅, we conclude that a solution s′ of Φ′ can be
extended to a solution s of Φ by setting all the variables in
S to some value that is smaller than the smallest value in
{s′(x) | x ∈ V (Φ′)}. Clearly, all the constraints ψ in Φ with
V (ψ) ∩ S = ∅ or V (ψ) ⊂ S are satisfied by s as well.

Now suppose that Φ has a solution s. Let x1, . . . , xn be the
variables of Φ, and let {xr1 , . . . , xr|S|} be S. Let s′ be a map-

ping from V (Φ) to Q such that M((s′(x1), . . . , s
′(xn))) =

{r1, . . . , r|S|}, and s′(x) = s(x) for x ∈ V (Φ) \ S. We
claim that s′ is a solution for Φ. Let ψ = R(y1, . . . , ym)
be a constraint of Φ such that V (ψ) ∩ S 6= ∅. Clearly,
t1 := (s(y1), . . . , s(ym)) is in R since s is a solution of Φ.
Let {yp1 , . . . , ypl} be S ∩ {y1, . . . , ym}. Since {yp1 , . . . , ypl}
is a min-set of R, there is a tuple t2 ∈ R such that M(t2) =
{p1, . . . , pl}. Let α ∈ Aut(Q, <) be such that α maps the
minimal value of t2 to 0. Because R is preserved by pp, the
tuple t3 := pp(α(t2), t1) is in R. It is easy to verify that
M(t3) = {p1, . . . , pl}, and that there is an automorphism β
such that β(t3)[i] = s(yi) for i ∈ [m] \ {p1, . . . , pl}. Clearly,
the restriction of s′ to V (Φ) \ S is a solution to the ordered
projection Φ′ of Φ to V (Φ) \ S since s′ also satisfies all the



inequalities imposed by the ordered projection. Therefore
Φ′ is satisfied by s′.

The above lemma implies that if Γ is preserved by pp and
if we are able to identify a free set for instances of CSP(Γ)
in polynomial time, then we also have a polynomial time
algorithm that solves CSP(Γ). The running time of the al-
gorithm is O(n · (m + t(n,m))), where n = |V |, m is the
number of constraints in Φ, and t(n,m) is the running time
of the procedure that computes the free set in terms of n
and m.

We now study how to find free sets in constraint languages
Γ that are preserved by min. Let ψ = R(x1, . . . , xk) be
a constraint where R is from Γ, and let L be a subset of
{x1, . . . , xk}. Let A1, . . . , Al be all min-sets of ψ such that
Ai ⊆ L for all i ∈ [l]. If l ≥ 1, i.e., if such a min-set exists,
there is a unique min-set Aj , j ∈ [l], with the property that
Ai ⊆ Aj for all i ∈ [l], because R is preserved by min. We
call Aj the maximal min-set of ψ contained in L.

The algorithm for finding a free set starts with the set of
all variables as a candidate set S. For each constraint ψ the
algorithm determines the maximal min-setM of ψ contained
in S and replaces S by S ∩M . This step is repeated until
no variable is removed from S. It can be shown that if the
resulting set is empty, then Φ does not have a solution, and
that otherwise we have found a free set.

Theorem 15. If Γ is preserved by min there is an algo-
rithm solving CSP(Γ) in time O(n2m).

Next, we study instances Φ of CSP(Γ) where Γ is pre-
served by mi . Let ψ = R(x1, . . . , xk) be a constraint in Φ,
and let L ⊆ {x1, . . . , xk}. Let A1, . . . , Al be all min-sets of ψ
such that L ⊆ Ai for all i ∈ [l]. It can be verified that there
is a min-set Aj of R that is a subset of every min-set con-
taining L. We call Aj the minimal min-set of R containing
L.

The algorithm for finding a free set starts with S := {x}
for some variable x. In each step the algorithm determines
for each constraint ψ in Φ the minimal min-set M of ψ con-
taining S. If there is no such min-set, the algorithm proceeds
with another variable x. Otherwise, S is replaced by S∪M ,
and the algorithm proceeds with another constraint, until
no variable is added to S. It can be shown that in this case
the resulting set is free, and that Φ does not have a solution
if this procedure fails to find a free set for all variables x.

Theorem 16. If Γ is preserved by mi there is an algo-
rithm solving CSP(Γ) in time O(n3m).

Finally, we consider languages Γ preserved by mx . Let
R(x1, . . . , xk) be a constraint with R from Γ. For a tuple
t ∈ R, we define χmin(t) to be a vector from {0, 1}k such
that χmin(t)[i] = 1 if and only if t[i] is minimal in t. We
define χmin(R) to be {χmin(t) | t ∈ R}. Since R is pre-
served by mx , the set χmin(R) is closed under addition of
distinct vectors over GF (2) and so χmin(R) ∪ {0k} is also
closed under the operation g(x, y, z) := x+y+z over GF (2).
Such an operations is called affine (usually, affine operations
are defined as x + y − z, but for GF (2) this is equivalent)
and a set of vectors preserved by the affine operation is ex-
actly the set of solutions of a system of linear equations;
see e.g. [15]. Moreover, this system can be constructed in
polynomial time. So if we have an instance Φ of CSP(Γ),

we can find a free set of variables as follows (if it exists): we
first construct a system of linear equations over GF (2) with
the set of variables xv, v ∈ V, and equations as described
above for each constraint in Φ. Then we compute a solution
of the system that is distinct from 0k (essentially by Gaus-
sian elimination). If there is such a solution, then the set of
variables mapped to 1 is a free set of Φ. If S has no such
solution, then there is no free set of variables, and there is
no solution for Φ.

Theorem 17. If Γ is preserved by mx there is an algo-
rithm solving CSP(Γ) in time O(n(m+ n3)).

We are now ready to classify the complexity of the tem-
poral constraint languages that are preserved by pp.

Lemma 18. Let f be a binary operation that preserves <
and violates the relation S. Then {f, pp} generates an op-
eration providing min-intersection, min-union, or min-xor
closure.

Theorem 19. Let Γ be a temporal constraint language
such that < has a pp-definition in Γ and pp ∈ Pol(Γ). If
S has a pp-definition in Γ, then CSP(Γ) is NP-complete.
Otherwise Γ is tractable.

Proof. If S has a primitive positive definition in Γ, then
Proposition 10 shows that CSP(Γ) is NP-hard. Otherwise,
Lemma 7 implies that there is an at most binary polymor-
phism f of Γ that violates S (and preserves < as < has a pp-
definition in Γ). We can therefore apply Lemma 18 and find
a binary polymorphism h of Γ providing min-intersection,
min-union, or min-xor closure. In each of these cases, be-
cause Γ is preserved by pp, Proposition 11, 12, or 13 assert
that Γ is preserved under min, mi, or mx and thus we can
conclude using Theorem 15, 16, or 17 that Γ is tractable.

9. THE FULL CLASSIFICATION
Temporal constraint languages where not all first-order

definable relations have a primitive positive definition can
be divided into three (overlapping) groups: those preserved
by pp, those preserved by dual-pp, and those preserved by an
operation called lex. In this section we focus on languages
preserved by lex and complete the classification. Operation
lex is a binary operation on Q such that lex(a, b) < lex(a′, b′)
if either a < a′, or a = a′ and b < b′. Note that every
operation lex satisfying these conditions is by definition in-
jective. It is easy to see that the relation Betw is preserved
by lex. Therefore, we are interested in further restrictions
of languages preserved by lex that imply tractability of the
corresponding CSP. One restriction and its dual counterpart
are introduced in [4]; again, these restrictions are defined in
terms of binary polymorphisms.

Let ll be a binary operation on Q such that ll(a, b) <
ll(a′, b′) if (a ≤ 0 and a < a′) or (a ≤ 0 and a = a′ and
b < b′) or (a, a′ > 0 and b < b′) or (a > 0 and b = b′ and
a < a′). All operations satisfying these conditions are by
definition injective, and they all generate the same clone.
For an illustration of ll and its dual, see Figure 3. The
class of Ord-Horn relations mentioned in the introduction
is preserved by these operations. It is easy to see that ll
generates lex.

To talk about properties of an operation on restricted sub-
sets of the domain Q, the following concepts are useful: If
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Figure 3: A visualization of ll (left) and dual-ll (right).

S1, . . . , Sd are sets, we call a set of the form S1 × · · · × Sd a
grid, and also write Sd for a product of the form S× · · ·×S
with d factors. A [k]d-subgrid of a grid S1 × · · · × Sd is a
subset of S1 × · · · × Sd of the form S′

1 × · · · × S′
d, where S′

i

is a k-element subset of Si. We say that a k-ary operation
f behaves like a k-ary operation g on G ⊂ Qk if the weak
linear order induced by f on the tuples in G is the same as
the order induced on these tuples by g.

The following two technical lemmas are used in the proof
of Lemma 23:

Lemma 20. Let f be a binary operation violating Betw
and preserving <. Then there are t1, t2 ∈ Betw such that
f(t1, t2) has three distinct entries and f(t1, t2) 6∈ Betw.

Lemma 21. Let f be a binary operation, let c, d ∈ Q, and

let S(i), T
(i)
1 , T

(i)
2 ⊆ Q for every i > 0 be such that

• |S(i)| = |T (i)
1 | = |T (i)

2 | ≥ i,

• t1 < d < t2 for all t1 ∈ T (i)
1 , t2 ∈ T (i)

2 ,

• f(s, t1) < c < f(s, t2) for all s ∈ S(i), t1 ∈ T
(i)
1 , t2 ∈

T
(i)
2 ,

• f behaves like a projection to the first argument on

S(i) × T
(i)
1 and on S(i) × T

(i)
2 .

(See Figure 4 for an illustration.) Then f generates lex(y, x).

The next lemma (Lemma 23) demonstrates how we use
the Product Ramsey theorem in our classification proof.
The product Ramsey theorem can be derived easily from
the classical infinite Ramsey theorem; see [26] for a general
introduction to Ramsey theory.

Theorem 22. For all positive integers d, r, m, and k,
there is a positive integer R(d, r,m, k) such that for all sets
S1, . . . , Sd, |Si| ≥ R(d, r,m, k) for all i ∈ [d], and an arbi-
trary coloring of the [m]d subgrids of S1 × . . . × Sd with r
colors, there exists a [k]d subgrid of S1 × . . .× Sd such that
all [m]d subgrids of the [k]d subgrid have the same color.

The PRT is also used in the proof of Lemma 25 in a similar
way as in the proof of Lemma 23.

Lemma 23. Let f be a binary operation that preserves <
and violates Betw. Then f generates lex, pp, or dual-pp.

Proof. As f violates Betw and preserves <, Lemma 20
asserts that there are t1, t2 ∈ Betw such that t := f(t1, t2) 6∈
Betw and t has pairwise distinct entries. As f preserves

<, we can assume without loss of generality that t1[1] <
t1[2] < t1[3] and t2[1] > t2[2] > t2[3] (otherwise, we apply
the argument to f(y, x)).

Either the triple t satisfies t[1] > t[2] < t[3] or t[1] < t[2] >
t[3]. In the first case, let S1 := {x ∈ Q | t1[1] < x < t1[2]},
S2 := {x ∈ Q | t1[3] < x}, T1 := {y ∈ Q | t2[3] < y < t2[2]},
and T2 := {y ∈ Q | t2[1] < y}. In the second case, let
S1 := {x ∈ Q | t1[2] < x < t1[3]}, S2 := {x ∈ Q | x < t1[1]},
T1 := {y ∈ Q | t2[2] < y < t2[1]}, and T2 := {y ∈ Q | y <
t2[3]}. See Figure 5 for an illustration of these sets.

We apply the PRT for d = m = 2 and a sufficiently large
integer k to the grid S1×T1. We color each [2]× [2] subgrid
of this grid according to the weak linear order of the four
elements (see Figure 6). As S1 and T1 are infinite and,
in particular, larger than R(R(k)) (we ommit d, r and m
from the notation since they are fixed), the PRT asserts

that there are subsets U (k) ⊆ S1 and V (k) ⊆ T1 such that
|U (k)| ≥ R(k), |V (k)| ≥ R(k), and the [2] × [2] subgrids of

U (k)×V (k) are monochromatic. Next, we similarly apply the
PRT to the grid U (k)×T2 for each k > 0 and obtain subsets

S
(k)
1 ⊆ U (k) and T

(k)
2 ⊆ T2. We finally apply the PRT to the

grid S2 × V (k) for each k > 0 and obtain subsets S
(k)
2 ⊆ S2

and T
(k)
1 ⊆ V (k). By construction, grids S

(k)
1 × T

(k)
2 and

S
(k)
2 ×T (k)

1 have the same linear order induced on all [2]× [2]

subgrids, |S(k)
1 | ≥ k, |S(k)

2 | ≥ k, |T (k)
1 | ≥ k, and |T (k)

2 | ≥ k.
The only linear order that can be induced on [2]×[2] subgrids
of a large grid are the first two order depicted in the first line
of Figure 6 and the first four order depicted in the second
line of Figure 6. Therefore, on each of those three grids
f behaves either as a projection to one of arguments, as
lex(x, y), as lex(y, x), as lex(x,−y), or as lex(y,−x). We see
that f can behave on each of the grids in 6 different ways
and thus there are just 63 possibilities how f behaves on the
grids for given k. Hence, there is an infinite set K ⊆ N such

that f behaves the same way on the grids S
(k)
1 ×T (k)

1 for all

k ∈ K, the same way on the grids S
(k)
1 × T (k)

2 for all k ∈ K,

and the same way on the grids S
(k)
2 × T

(k)
1 for all k ∈ K.

If f behaves like lex(x, y), lex(y, x), lex(x,−y), or lex(y,−x)
on some of the grids for all k ∈ K, it clearly generates either
lex(x, y) or lex(x,−y). Since lex(x,−lex(x,−y)) induces the
same order on Q2 as lex, the operation lex(x,−y) generates
lex, and thus we are done.

So assume that f behaves like a projection on all three

grids for all k ∈ K. Observe that by the choice of S
(k)
1 ,

S
(k)
2 , T

(k)
1 , and T

(k)
2 , and because f preserves <, we have

that either f(x, y) < f(t1[2], t2[2]) < f(x′, y′) for all (x, y) ∈
S

(k)
1 × T

(k)
1 , (x′, y′) ∈ (S

(k)
1 × T

(k)
2 ) ∪ (S

(k)
2 × T

(k)
1 ) (this
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Figure 4: An operation from Lemma 21.
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Figure 5: Grids chosen for the application of the product Ramsey theorem. The depicted order on the values
of f follows from the choice of t1, t2 and because f preserves <.

Figure 6: Possible weak linear orders on [2]× [2] grids.



is in case S
(k)
1 is below S

(k)
2 and T

(k)
1 is below T

(k)
2 ), or

f(x, y) > f(t1[2], t2[2]) > f(x′, y′) for all (x, y) ∈ S(k)
1 ×T (k)

1 ,

(x′, y′) ∈ (S
(k)
1 × T

(k)
2 ) ∪ (S

(k)
2 × T

(k)
1 ) (this is in case S

(k)
1

is above S
(k)
2 and T

(k)
1 is above T

(k)
2 ). Now, we distinguish

two cases. Either f behaves like a projection to the same
argument on each of the three grids for all k ∈ K or f
behaves like a projection to the first argument on one grid
and as a projection to the second argument on some other
grid for all k ∈ K. In the first case, suppose without loss
of generality that f behaves on each grid as a projection to
the first argument (otherwise we can swap arguments). Due
to the observation from the beginning of the paragraph, we
can apply Lemma 21 and conclude that f generates lex.

Now, we turn our attention to the second case and show
that f generates pp or dual-pp. Again, we assume without
loss of generality that f behaves like a projection to the

first argument on S
(k)
1 × T

(k)
1 for all k ∈ K. Let S

(k)
1 ×

T
(k)
2 be the grid where f behaves like a projection to the

second argument (the other case is symmetric). Due to the
observation from the beginning of the previous paragraph
we immediately see that f behaves either as pp (this is in

case T
(k)
1 is above T

(k)
2 ) or as dual-pp (this is in case T

(k)
1 is

below T
(k)
2 ) on the grid S

(k)
1 × (T

(k)
1 ∪ T (k)

2 ) after swapping
arguments for all k ∈ K. Thus f generates pp or dual-pp.

Lemma 24. Let f be a binary operation that preserves <
and violates Betw. Then {f, lex} generates a binary injective
operation that preserves < and violates Betw.

Lemma 25. Let f be a binary injective operation preserv-
ing < and violating Betw. Then f generates ll or dual-ll.

In the proof of the following theorem we make essential
use of Cameron’s theorem:

Theorem 26. Let Γ be a temporal constraint language.
Then it satisfies at least one of the following:

1. There is a primitive positive definition of Cycl,Betw,
or Sep in Γ.

2. Pol(Γ) contains a constant operation.

3. Aut(Γ) contains all permutations of Q.

4. There is a primitive positive definition of < in Γ and
Pol(Γ) contains a binary operation f violating Betw.

Proof. If there is a primitive positive definition of Betw
in Γ we are in the first case and done. Otherwise, Lemma 7
shows that there is a binary polymorphism of Γ that violates
Betw. If there is a primitive positive definition of < in Γ, we
are in case four and done. Otherwise, again by Lemma 7,
there is a unary polymorphism of Γ that violates <. Propo-
sition 8 shows that Γ is preserved by a constant, −, or cyc.
In the first case we are done, so we assume in the following
that Γ is not preserved by a constant.

In the second case, the relation Betw consists of only one
orbit of triples, and Lemma 7 shows that there is an endo-
morphism that violates Betw. Proposition 8 then implies
that Γ is preserved by cyc (and by −). In this case, the rela-
tion Sep consists of only one orbit of 4-tuples. Again, either
Sep has a primitive positive definition, and the first item of
the theorem is true, or there is an endomorphism that vio-
lates Sep. Proposition 8 now shows that Γ is preserved by
all injective unary operations.

In the third case, the relation Cycl consists of only one
orbit of triples. If Cycl has a primitive positive definition in
Γ, the first item of the theorem is true. Otherwise, Lemma 7
shows that there is an endomorphism that violates Cycl.
Proposition 8 then shows that Γ is preserved by − (and
by cyc). This case we have already discussed in the last
paragraph.

We are now ready to state and prove our classification
result.

Theorem 27. A temporal constraint language Γ is tract-
able if Γ is preserved by at least one of the following nine
operations: ll,min,mi ,mx, their duals, or a constant oper-
ation. Otherwise, CSP(Γ) is NP-complete.

Proof. If Γ is preserved by a constant operation, then
assigning the same value to every variable of an instance Φ
of CSP(Γ) is a solution of I, unless there is a constraint for
false in the instance, in which case we simply reject. Thus
CSP(Γ) is clearly tractable. In case that Γ is preserved by
ll or dual-ll, there is a quadratic time algorithm that solves
CSP(Γ), see [4]. If Γ is preserved by min,mi ,mx or one of
their duals, tractability is shown in Section 7.

Theorem 26 asserts that one of the following cases it true:
CSP(Γ) is NP-complete (because there is a primitive posi-
tive definition of some relation with an NP-complete CSP),
Pol(Γ) contains a constant operation (in which case CSP(Γ)
is tractable as we have argued above), Pol(Γ) contains all
permutations of Q, or there is a primitive positive defi-
nition of < in Γ and a binary f ∈ Pol(Γ) that violates
Betw. In the third case, Γ is an equality constraint lan-
guage, and the statement follows easily from [3]. In the
fourth case, Lemma 23 implies that the operation f gener-
ates pp, dual-pp, or lex. If Γ is preserved by pp or dual-pp, we
are in one of the described tractable cases or NP-complete
by Theorem 19 and its dual counterpart. If Γ is preserved
by lex, then by Lemma 24 the operation f generates a bi-
nary injective operation g preserving < and violating Betw.
Finally, using Lemma 25 we get that g generates ll or dual-ll
and thus we are in one of the described tractable cases.

10. CONCLUDING REMARKS
See Table 1 for an overview over the nine largest tractable

temporal constraint languages; the entries also mention typ-
ical relations for the respective language, i.e., a set of rela-
tions that is contained in the language, but not contained
in any other of the nine languages – hence, these relations
show that all the languages are distinct. Note that from the
description of the constraint languages via polymorphisms
it also follows that the so-called meta-problem for tractabil-
ity is decidable, i.e., there is an algorithm that decides for
a given finite temporal constraint language (given e.g. by
defining first-order formulas for the relations in the lan-
guage) whether it is tractable or has an NP-complete CSP.
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[3] M. Bodirsky and J. Kára. The complexity of equality
constraint languages. Accepted for publication in
Theory of Computing Systems, 2007. A conference
version of the paper appeared in the proceedings of
the International Computer Science Symposium in
Russia (CSR’06).
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