
Schaefer’s theorem for graphs

Manuel Bodirsky
Laboratoire d’Informatique (LIX), CNRS UMR 7161

École Polytechnique
91128 Palaiseau, France

bodirsky@lix.polytechnique.fr

Michael Pinsker

Équipe de Logique Mathmatique
Université Denis-Diderot Paris 7

UFR de Mathématiques
75205 Paris Cedex 13, France

marula@gmx.at

November 8, 2010

Abstract

Schaefer’s theorem is a complexity classification result for so-called Boolean con-
straint satisfaction problems: it states that every Boolean constraint satisfaction prob-
lem is either contained in one out of six classes and can be solved in polynomial time,
or is NP-complete.

We present an analog of this dichotomy result for the first-order logic of graphs
instead of Boolean logic. In this generalization of Schaefer’s result, the input consists
of a set W of variables and a conjunction Φ of statements (“constraints”) about these
variables in the language of graphs, where each statement is taken from a fixed finite
set Ψ of allowed formulas; the question is whether Φ is satisfiable in a graph.

We prove that either Ψ is contained in one out of 17 classes of graph formulas
and the corresponding problem can be solved in polynomial time, or the problem is
NP-complete. This is achieved by a universal-algebraic approach, which in turn allows
us to use structural Ramsey theory. To apply the universal-algebraic approach, we
formulate the computational problems under consideration as constraint satisfaction
problems (CSPs) whose templates are first-order definable in the countably infinite
random graph. Our method to then classify the computational complexity of those
CSPs produces many statements of independent mathematical interest.

1

1 Motivation and the result

In an influential paper in 1978, Schaefer [22] proved a complexity classification for system-
atic restrictions of the Boolean satisfiability problem. The way how he restricts the Boolean
satisfiability problem turned out to be very fruitful when restricting other computational
problems in theoretical computer science, and can be presented as follows.

Let Ψ = {ψ1, . . . , ψn} be a finite set of propositional (Boolean) formulas.

Boolean-SAT(Ψ)
INSTANCE: Given a finite set of variables W and a propositional formula of the form
Φ = φ1 ∧ · · · ∧ φl where each φi for 1 ≤ i ≤ l is obtained from one of the formulas ψ in Ψ
by substituting the variables of ψ by variables from W .
QUESTION: Is there a satisfying Boolean assignment to the variables of W (equivalently,
those of Φ)?

The computational complexity of this problem clearly depends on the set Ψ, and grows
with the size of Ψ. Schaefer’s theorem states that Boolean-SAT(Ψ) can be solved in polyno-
mial time if and only if Ψ is a subset of one of six sets of Boolean formulas (called 0-valid, 1-
valid, Horn, dual-Horn, affine, and bijunctive), and is NP-complete otherwise. We remark
that Schaefer’s theorem is usually formulated as a classification result of Boolean constraint
satisfaction problems, but the formulation given above is easily seen to be equivalent.

We prove a similar classification result, but for the first-order logic of graphs instead
for propositional logic. More precisely, let E be a relation symbol which denotes an antire-
flexive and symmetric binary relation and hence stands for the edge relation of a (simple,
undirected) graph. We consider formulas that are constructed from atomic formulas of
the form E(x, y) and x = y by the usual boolean connectives (negation, conjunction, dis-
junction), and call formulas of this form graph formulas. A graph formula Φ(x1, . . . , xm)
is satisfiable if there exists a graph H and an m-tuple a of elements in H such that Φ(a)
holds in H. Let Ψ = {ψ1, . . . , ψn} be a finite set of graph formulas. Then Ψ gives rise to
the following computational problem.

Graph-SAT(Ψ)
INSTANCE: Given a set of variables W and a graph formula of the form Φ = φ1 ∧ · · · ∧ φl

where each φi for 1 ≤ i ≤ l is obtained from one of the formulas ψ in Ψ by substituting
the variables from ψ by variables from W .
QUESTION: Is Φ satisfiable?

As an example, let Ψ be the set that just contains the formula

(E(x, y) ∧ ¬E(y, z) ∧ ¬E(x, z))
∨ (¬E(x, y) ∧ E(y, z) ∧ ¬E(x, z)) (1)
∨ (¬E(x, y) ∧ ¬E(y, z) ∧ E(x, z)) .

2

Then Graph-SAT(Ψ) is the problem of deciding whether there exists a graph such that
certain prescribed subsets of its vertex set of cardinality at most three induce subgraphs
with exactly one edge. This problem is NP-complete (the curious reader can check this
by means of our classification in Theorem 16). There are also many interesting tractable
Graph-SAT problems, for instance when Ψ consists of the formulas x 6= y ∨ y = z and

(E(x, y) ∧ ¬E(y, z) ∧ ¬E(x, z))
∨ (¬E(x, y) ∧ E(y, z) ∧ ¬E(x, z)) (2)
∨ (¬E(x, y) ∧ ¬E(y, z) ∧ E(x, z))
∨ (E(x, y) ∧ E(y, z) ∧ E(x, z)) .

It is obvious that the problem Graph-SAT(Ψ) is for all Ψ contained in NP. The goal of
this paper is to prove the following dichotomy result.

Theorem 1. For all Ψ, the problem Graph-SAT(Ψ) is either NP-complete or in P.

One of the main contributions of the paper is the general method of combining concepts
from universal algebra and model theory, which allows us to use deep results from Ramsey
theory to obtain the classification result.

2 Discussion of our strategy

We establish our result by translating Graph-SAT problems into constraint satisfaction
problems (CSPs) with infinite domains. More specifically, for every set of formulas Ψ we
present a relational structure ΓΨ such that Graph-SAT(Ψ) is equivalent to CSP(ΓΨ) (in a
certain sense, Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem). The relational
structure ΓΨ has a first-order definition in the random graph G, i.e., the (up to isomorphism)
unique countably infinite universal homogeneous graph. This perspective allows us to use
the so-called universal-algebraic approach, and in particular polymorphisms to classify the
computational complexity of Graph-SAT problems. In contrast to the universal-algebraic
approach for finite domain constraint satisfaction, our proof relies crucially on strong re-
sults from structural Ramsey theory; we use such results to find regular patterns in the
behavior of polymorphisms of structures on G, which in turn allows us to find analogies
with polymorphisms of structures on Boolean domains.

We call structures with a first-order definition in G reducts of G. While the standard
definition of a reduct of a relational structure ∆ is a structure on the same domain obtained
by forgetting some relations of ∆, a reduct of ∆ in our sense is really a reduct of the
expansion of ∆ by all first-order definable relations. It turns out that there is one class
of reducts Γ for which CSP(Γ) is in P for trivial reasons; further, there are 16 classes of
reducts Γ for which CSP(Γ) (and the corresponding Graph-SAT problems) can be solved
by non-trivial algorithms in polynomial time.

3

The presented algorithms are novel combinations of infinite domain constraint satisfac-
tion techniques (such as used in [3,7,16]) and reductions to the tractable cases of Schaefer’s
theorem. Reductions of infinite domain CSPs in artificial intelligence (e.g., in temporal and
spatial reasoning [17]) to finite domain CSPs (where typically the domain consists of the
elements of a so-called ‘relation algebra’) have been considered in the more applied arti-
ficial intelligence literature [27]. Our results shed some light on the question when such
techniques can even lead to polynomial-time algorithms for CSPs.

The global classification strategy of the present paper is similar in spirit to the one from
a recent result in [6] on CSPs of structures which are first-order definable in (Q;<). But
while in [6] the proof might still have appeared to be very specific to constraint satisfaction
over linear orders, with the present paper we demonstrate that in principle such a strategy
can be used for any class of computational problems C that satisfies the following:

• all problems in C can be formulated as a CSP of a structure which is first-order
definable in a single ω-categorical structure Γ;

• the class of finite substructures of Γ has the Ramsey property (as in [20]).

While in [6], the classical theorem of Ramsey and its product version were sufficient, the
Ramsey theorems used in the present paper are deeper and considerably more difficult to
prove [1, 21].

The random graph G belongs (together with (Q;<)) to one of the most fundamental
ω-categorical structures, and is an important structure in model theory that appears also
in many other areas of mathematics (see [13]). In contrast to CSPs of structures definable
in (Q;<), where there is a lot of dependence between the possible values in a solution, the
CSPs of reducts of G illuminate different phenomena in constraint satisfaction (e.g., for
all tractable classes the inequality relation 6= is 1-independent from the other constraints,
in the terminology of [16]), and the polynomial-time tractable cases are characterized by
polymorphisms that behave canonically in a Ramsey-theoretic sense.

3 Tools from universal algebra and model theory

In this section we develop in detail the tools from universal algebra and model theory needed
for our approach. We start by translating the problem Graph-SAT(Ψ) into a constraint
satisfaction problem for a reduct of G.

We denote the random graph by G = (V ;E). The graph G is determined up to iso-
morphism by the two properties of being homogeneous (i.e., any isomorphism between two
finite induced subgraphs of G can be extended to an automorphism of G), and universal
(i.e., G contains all countable graphs as induced subgraphs). It is also the up to isomor-
phism unique countable graph that satisfies the extension property, which will be useful
throughout the paper: For all disjoint finite U,U ′ ⊆ V there exists v ∈ V such that v is
in G adjacent to all members of U and to none in U ′. For the many other remarkable

4

properties of G and its automorphism group Aut(G), and various connections to many
branches of mathematics, see e.g. [13, 14].

Let Γ be a structure with a finite relational signature τ . A first-order τ -formula is called
primitive positive if it is of the form ∃x1, . . . , xn. ψ1∧· · ·∧ψm where the ψi are atomic, i.e.,
of the form y1 = y2 or R(y1, . . . , yk), where R ∈ τ a k-ary relation symbol and the yi are
not necessarily distinct. A τ -formula is called a sentence if it contains no free variables.

Definition 2. The constraint satisfaction problem for Γ, denoted by CSP(Γ), is the com-
putational problem of deciding for a given primitive positive τ -sentence Φ whether Φ is true
in Γ.

Let Ψ = {ψ1, . . . , ψn} be a set of graph formulas. Then we define ΓΨ to be the structure
with the same domain V as the random graph G which has for each ψi a relation Ri

consisting of those tuples in G that satisfy ψi (where the arity of Ri is given by the number
of variables that occur in ψi). Thus by definition, ΓΨ is a reduct of G. Now given any
instance Φ = φ1 ∧ · · · ∧ φl with variable set W of Graph-SAT(Ψ), we construct a primitive
positive sentence Φ′ in the language of ΓΨ as follows: In Φ, we replace every φi, which
by definition is of the form ψj(y1, . . . , ym) for some 1 ≤ j ≤ m and variables yk from W ,
by Rj(y1, . . . , ym); after that, we existentially quantify all variables that occur in Φ′. It is
then easy to see that the problem Graph-SAT(Ψ) has a positive answer for Φ if and only
if the sentence Φ′ holds in ΓΨ. Hence, every problem Graph-SAT(Ψ) is in fact of the form
CSP(Γ), for a reduct Γ of G in a finite signature. We will thus henceforth focus on such
constraint satisfaction problems in order to prove our dichotomy.

The following lemma has been first stated in [19] for finite structures Γ only, but the
proof there also works for arbitrary infinite structures. It shows us how we can slightly
enrich structures without changing the computational complexity of the constraint satis-
faction problem they define too much.

Lemma 3. Let Γ = (D;R1, . . . , Rl) be a relational structure, and let R be a relation
that has a primitive positive definition in Γ. Then CSP(Γ) and CSP(D;R,R1, . . . , Rl) are
polynomial-time equivalent.

The preceding lemma makes the so-called universal-algebraic approach to constraint
satisfaction possible, as exposed in the following. We say that a k-ary function (also called
operation) f : Dk → D preserves an m-ary relation R ⊆ Dm iff for all t1, . . . , tk ∈ R the
tuple f(t1, . . . , tk) (calculated componentwise) is also contained in R. If an operation f
does not preserve a relation R, we say that f violates R. If f preserves all relations of a
structure Γ, we say that f is a polymorphism of Γ (it is also common to say that Γ is closed
under f). A unary polymorphism of Γ is also called an endomorphism of Γ.

The set of all polymorphisms Pol(Γ) of a relational structure Γ forms an algebraic
object called a clone [24], which is a set of operations defined on a set D that is closed
under composition and that contains all projections. Moreover, Pol(Γ) is also closed un-
der interpolation (see Proposition 1.6 in [24]): we say that a k-ary operation f on D is

5

interpolated by a set of k-ary operations F on D if for every finite subset A of Dk there is
some operation g ∈ F such that g agrees with f on A. We say that F locally generates an
operation g if g is in the smallest clone that is closed under interpolation and contains all
operations in F . Clones with the property that they contain all functions locally generated
by their members are called locally closed, local or just closed.

We thus have that to every structure Γ, we can assign the closed clone Pol(Γ) of
its polymorphisms. For certain Γ, this clone captures the computational complexity of
CSP(Γ): A countable structure Γ is called ω-categorical if every countable model of the
first-order theory of Γ is isomorphic to Γ. It is well-known that the random graph G is
ω-categorical, and that reducts of ω-categorical structures are ω-categorical as well.

Theorem 4 (from [8]). Let Γ be an ω-categorical structure. Then the relations preserved
by the polymorphisms of Γ are precisely those having a primitive positive definition in Γ.

Clearly, the theorem implies that if two ω-categorical structures with finite relational
signatures have the same clone of polymorphisms, then their CSPs are polynomial-time
equivalent. Recall that we have only defined CSP(Γ) for structures Γ with a finite relational
signature. But we now see that it makes sense (and here we follow conventions from
finite domain constraint satisfaction, see e.g. [12]) to say that CSP(Γ) is (polynomial-time)
tractable if the CSP for every finite signature structure ∆ with the same polymorphism
clone as Γ is in P, and to say that CSP(Γ) is NP-hard if there is a finite signature structure
∆ with the same polymorphism clone as Γ whose CSP is NP-hard.

The following proposition is the analog to Theorem 4 on the “operational side”.

Proposition 5 (Corollary 1.9 in [24]). Let F be a set of functions on a domain D, and
let g be a function on D. Then F locally generates g if and only if g preserves all relations
that are preserved by all operations in F .

For some reducts, we will find that their CSP is equivalent to a CSP of a structure that
has already been studied, by means of the following basic observation.

Proposition 6. Let Γ,∆ be homomorphically equivalent, i.e., they have the same signature
and there are homomorphisms f : Γ → ∆ and g : ∆ → Γ. Then CSP(Γ) = CSP(∆).

The following general lemma allows to restrict the arity of functions violating a relation.
For a structure Γ with domain D and a tuple t ∈ Dk, the orbit of t in Γ is the set
{α(t) | α ∈ Aut(Γ)}.

Lemma 7 (From [6]). Let Γ be a relational structure with domain D, and suppose that
R ⊆ Dk consists of m orbits of k-tuples in Γ. Suppose that an operation f on D violates
R. Then {f} ∪Aut(Γ) locally generates an at most m-ary operation that violates R.

In the following two sections, we outline the main ideas of the proof of our theorem;
space does not permit us to give any details, and we refer to the appendix which contains
the full version of the paper.

6

4 Endomorphisms

Throughout the text, Γ denotes a reduct of the random graph G = (V ;E). The binary
relation N(x, y) on V is defined by ¬E(x, y)∧x 6= y. This section reduces the classification
task to the classification of those structures Γ where the relations E, N ,and 6= are primitive
positive definable; this section is covered by Section E in the full version.

The proof of the main result of this section (Proposition 10) relies on an analysis of the
endomorphism monoids of reducts Γ of G. It can be shown [10, 26] that Γ has a constant
endomorphism, or an endomorphism whose image induces a clique or an independent set
in G, or that all endomorphisms of Γ are locally generated by the automorphisms of Γ.
In the last case, we can apply a classification of the closed permutation groups (closure
for groups is defined in an analogous way as closure was defined earlier for clones) that
contain the automorphism group of G due to Thomas [25, 26], see also [10]. Combining
these two results, we obtain a good understanding of all endomorphism monoids of reducts
Γ, which allows us to conclude that if the relation N or the relation E is not primitive
positive definable in Γ, then either the relation P (3) or the relation T are primitive positive
definable in Γ (Case (c) in Proposition 10), or the classification can be reduced to structures
definable in (V ; =) (Cases (a) and (b) in Proposition 10).

Definition 8. For all k ≥ 3, let P (k) denote the k-ary relation that holds on x1, . . . , xk ∈ V
if x1, . . . , xk are pairwise distinct, and the graph induced by {x1, . . . , xk} in G is neither an
independent set nor a clique.

Definition 9. Let T be the 4-ary relation that holds on x1, x2, x3, x4 ∈ V if x1, x2, x3, x4

are pairwise distinct, and induce in G one of the following

a single edge and two isolated vertices a path with two edges and an isolated vertex
a path with three edges the complement of one of those structures

Proposition 10. Let Γ be a reduct of G. Then one of the following holds.

(a) Γ has a constant endomorphism, and CSP(Γ) is tractable (it is in fact trivial).

(b) Γ is homomorphically equivalent to a countably infinite structure that is preserved
by all permutations of its domain; in this case the complexity of CSP(Γ) has been
classified in [5], and is either tractable or NP-hard.

(c) There is a primitive positive definition of P (3) or T in Γ, and CSP(Γ) is NP-hard.

(d) The relations N , E, and 6= have primitive positive definitions in Γ.

7

5 Higher arity polymorphisms

In the following we assume that Γ = (V ;E,N, 6=, . . .) is a reduct of G that contains the
relations E, N and 6=. While the result of the last section was based on an analysis of the
endomorphisms and automorphisms of reducts of G, the remaining cases will require the
study of higher arity polymorphisms of such reducts (in the full version, this is covered by
Section F). It turns out that the relevant polymorphisms proving tractability have, in a
certain sense, regular behavior with respect to the structure of G; combinatorially, this is
due to the fact that the set of finite ordered graphs is a Ramsey-class, and that one can
find regular patterns in any arbitrary function on the random graph. We make this idea
more precise.

Definition 11. Let ∆,Λ be structures, and let k ≥ 1. The type tp(a) of an n-tuple
a ∈ ∆ is the set of first-order formulas with free variables x1, . . . , xn that hold for a in
∆. A k-ary type condition between ∆ and Λ is a k + 1-tuple (t1, . . . , tk, s), where each
ti is a type of an n-tuple in ∆, and s is a type of an n-tuple in Λ. A k-ary function
f : ∆k → Λ satisfies a type condition (t1, . . . , tk, s) if for all n-tuples ai of type ti in ∆ the
n-tuple (f(a1

1, . . . , a
k
1), . . . , f(a1

n, . . . , a
k
n)) is of type s in Λ. A behavior is a set of k-ary

type conditions between two structures ∆ and Λ, where k ≥ 1 is fixed. A k-ary function
has behavior B if it satisfies all the type conditions of the behavior B.

Definition 12. Let ∆,Λ be structures. An operation f : ∆k → Λ is canonical if for all
k-tuples (t1, . . . , tk) of types of n-tuples in ∆ there exists a type s of an n-tuple in Λ such
that f satisfies the type condition (t1, . . . , tk, s). If F ⊆ ∆1, then we say that f is canonical
on F if its restriction to F is canonical.

We remark that since G has only binary relations, a function f : Gk → G is canonical iff
it satisfies the condition of the definition for types of 2-tuples. The polymorphisms proving
tractability of reducts of G will be canonical.

We now define different behaviors that some of these canonical functions will have. For
Q1, . . . , Qk ∈ {E,N,=, 6=}, we will in the following write Q1 · · ·Qk for the binary relation
on V k that holds between two k-tuples x, y ∈ V k iff Qi(xi, yi) holds for all 1 ≤ i ≤ k. The
dual of an operation f on G is the operation (x1, . . . , xn) 7→ −f(−x1, . . . ,−xn), and can
be imagined as the function obtained from f by exchanging the roles of E and N . We start
by behaviors of binary functions.

Definition 13. We say that a binary injective operation f : V 2 → V is

• balanced in the first argument if for all u, v ∈ V 2 we have that E=(u, v) implies
E(f(u), f(v)) and N=(u, v) implies N(f(u), f(v));

• balanced in the second argument if (x, y) 7→ f(y, x) is balanced in the first argument;

• balanced if f is balanced in both arguments, and unbalanced otherwise;

8

• E-dominated (N -dominated) in the first argument if E(f(u), f(v)) (N(f(u), f(v)))
for all u, v ∈ V 2 with 6==(u, v); and E-dominated (N -dominated) in the second
argument if (x, y) 7→ f(y, x) is E-dominated (N -dominated) in the first argument;

• E-dominated (N -dominated) if it is E-dominated (N -dominated) in both arguments;

• of type min if for all u, v ∈ V 2 with 6=6=(u, v) we have E(f(u), f(v)) if and only if
EE(u, v); and of type max if the dual of f is of type min.

• of type p1 if for all u, v ∈ V 2 with 6=6=(u, v) we have E(f(u), f(v)) if and only if
E(u1, v1), and of type p2 if (x, y) 7→ f(y, x) is of type p1;

• of type projection if it is of type p1 or p2.

Note that, for example, being of type max is a behavior of binary functions that does
not force a function to be canonical, since the condition only talks about certain types of
pairs in V 2, but not all such types; however, being of type max and balanced does mean
that a function is canonical. The next definition contains some important behaviors of
ternary functions.

Definition 14. An injective ternary function f : V 3 → V is of type

• majority if for all u, v ∈ V 3 we have that E(f(u), f(v)) if and only if EEE(u, v),
EEN(u, v), ENE(u, v), or NEE(u, v);

• minority if for all x, y ∈ V 3 we have E(f(x), f(y)) if and only if EEE(u, v), NNE(u, v),
NEN(u, v), or ENN(u, v).

While the tractability results of this section are shown by means of a number of different
canonical functions, all hardness cases are established by the following single relation.

Definition 15. We define a 6-ary relation H(x1, y1, x2, y2, x3, y3) on V by∧
i,j∈{1,2,3},i6=j,u∈{xi,yi},v∈{xj ,yj}

N(u, v)

∧
(
((E(x1, y1) ∧N(x2, y2) ∧N(x3, y3))
∨ (N(x1, y1) ∧ E(x2, y2) ∧N(x3, y3))
∨ (N(x1, y1) ∧N(x2, y2) ∧ E(x3, y3))

)
.

The following theorem together with Theorem 10 proves Theorem 1.

Theorem 16. Let Γ = (V ;E,N, 6=, . . .) be a reduct of G. Then one of the following holds:

(a) There is a primitive positive definition of H in Γ, and CSP(Γ) is NP-hard.

9

(b) Γ has a canonical polymorphism of type minority, as well as a canonical binary in-
jection which is of type p1 and E-dominated or N -dominated in the second argument,
and CSP(Γ) is tractable.

(c) Γ has a canonical polymorphism of type majority, as well as a canonical binary injec-
tion which is of type p1 and E-dominated or N -dominated in the second argument,
and CSP(Γ) is tractable.

(d) Γ has a canonical polymorphism of type minority, as well as a canonical binary in-
jection which is balanced and of type projection, and CSP(Γ) is tractable.

(e) Γ has a canonical polymorphism of type majority, as well as a canonical binary in-
jection which is balanced and of type projection, and CSP(Γ) is tractable.

(f) Γ has a canonical polymorphism of type max or min, and CSP(Γ) is tractable.

We now outline the proof that if Γ = (V ;E,N, 6=, . . .) is a reduct of G such that there
is no primitive positive definition of H in Γ, then one of the other cases of Theorem 16
applies. By Theorem 4, Γ has a polymorphism that violates H. A function f : V n → V
is called essentially unary if it depends on only one of its variables; otherwise, it is called
essential. Since E and N are among the relations of Γ, and since any essentially unary
polymorphism preserving both E and N preserves all relations with a first-order definition
in G, we have that the polymorphism violating H must be essential.

Theorem 17 (of [10]). If Γ = (V ;E,N, 6=, . . .) is a reduct of G that has an essential poly-
morphism, it must also have one of the following binary injective canonical polymorphisms:

• an balanced operation of type p1;

• a balanced operation of type max;

• an E-dominated operation of type max;

• an E-dominated operation of type p1;

• a binary operation of type p1 that is balanced in the first and E-dominated in the
second argument;

or one of the duals of the last four operations (the first operation is self-dual).

Theorem 17 and the following proposition together imply that indeed, if Case (a) of
Theorem 16 does not apply, then one of the other cases does.

Proposition 18. Suppose that f is an operation on V that preserves the relations E and
N and violates the relation H. Then f generates a binary injective canonical operation of
type min or max, or a ternary injective canonical operation of type minority or majority.

10

In the proof of this proposition, we apply Ramsey theory in the form of the following
lemma. The crucial idea here is very general, and worth being pointed out. Suppose
that f is an n-ary operation that violates a k-ary relation R. Select tuples of constants
c1, . . . , ck ∈ V n such that f violates R on those tuples. Lemma 19 below then implies
that f generates an operation that still violates R, but is canonical as a function from
(Gn, c1, . . . , ck) to G. Since there are finitely many canonical behaviours, this allows for
combinatorial analysis (see also [9, 11]).

Lemma 19. Let c1, . . . , ck ∈ V n, and let B be a behavior for functions from (Gn, c1, . . . , ck)
to G. Let C be a local clone on V . If for every substructure F of (Gn, c1, . . . , ck) there is a
function f ∈ C which satisfies B on F , then there is also a function g ∈ C which satisfies
B on (Gn, c1, . . . , ck). Moreover, g can be chosen to be canonical.

Proof of Proposition 18. Let f be given. Since the relation H consists of three orbits of
6-tuples, by Lemma 7 f generates an at most ternary function that violates H, and hence
we can assume wlog that f itself is at most ternary. The operation f can certainly not
be essentially unary, since every essentially unary operation that preserves E and N also
preserves H. Applying Theorem 17 to the reduct which has all relations preserved by {f}
and Aut(G), and by Proposition 5, we get that f generates a binary injective canonical
function of type min, max, or p1. In the first two cases we are done, so consider the last
case and denote the function of type p1 by g.

By adding a dummy variable, we may assume that f is ternary. Now consider h(x, y, z) :=
g(g(g(f(x, y, z), x), y), z). Then h is clearly injective, and still violates H – the latter can
easily be verified combining the facts that f violates H, g is of type p1, and all tuples in H
have pairwise distinct entries. Because h violatesH, one of the following is true. There exist
x, y, u, v, p, q ∈ V 3 with ENN(x, y), NEN(u, v), NNE(p, q), and E(h(x), h(y)), E(h(u), h(v))
and E(h(p), h(q)), or there exist x, y, u, v, p, q ∈ V 3 with ENN(x, y), NEN(u, v), NNE(p, q),
and N(h(x), h(y)), N(h(u), h(v)) and N(h(p), h(q)). We can now apply Ramsey theory in
form of Lemma 19 (for details, see the long version of the paper) to show that in both
cases the operation h, and hence also f , generates a binary canonical injection of type min
or max, or a ternary canonical injection of type majority or minority.

To conclude, we want to mention an elegant universal-algebraic formulation of our main
result, which lines up with recent conjectures and results on finite domain CSPs [12,23].

Corollary 20. Let Γ be a reduct of G. Then exactly one of the following applies.

• The structure ({0, 1}; {(0, 0, 1), (0, 1, 0), (1, 0, 0)}) has a primitive positive interpreta-
tion (see e.g. [2, 9]) in Γ. In this case, CSP(Γ) is NP-hard.

• Γ has a canonical 4-ary polymorphism f and α1, α2 ∈ Aut(Γ) so that for all x, y ∈ V

f(y, y, x, x) = α1(f(x, x, x, y)) = α2(f(y, x, y, x)) .

In this case, CSP(Γ) is is tractable.

11

References

[1] Fred G. Abramson and Leo Harrington. Models without indiscernibles. Journal of
Symbolic Logic, 43(3):572–600, 1978.

[2] Manuel Bodirsky. Constraint satisfaction problems with infinite templates. In Heribert
Vollmer, editor, Complexity of Constraints (a collection of survey articles), pages 196–
228. Springer, LNCS 5250, 2008.

[3] Manuel Bodirsky, Hubie Chen, Jan Kára, and Timo von Oertzen. Maximal infinite-
valued constraint languages. Theoretical Computer Science (TCS), 410:1684–1693,
2009. A preliminary version appeared at ICALP’07.

[4] Manuel Bodirsky, Hubie Chen, and Michael Pinsker. The reducts of equality up to
primitive positive interdefinability. Journal of Symbolic Logic, 75(4):1249–1292, 2010.

[5] Manuel Bodirsky and Jan Kára. The complexity of equality constraint languages.
Theory of Computing Systems, 3(2):136–158, 2008. A conference version appeared in
the proceedings of CSR’06.

[6] Manuel Bodirsky and Jan Kára. The complexity of temporal constraint satisfaction
problems. Journal of the ACM, 57(2), 2009. An extended abstract appeared in the
proceedings of STOC’08.

[7] Manuel Bodirsky and Jan Kára. A fast algorithm and Datalog inexpressibility for
temporal reasoning. ACM Transactions on Computational Logic, 11(3), 2010.

[8] Manuel Bodirsky and Jaroslav Nešetřil. Constraint satisfaction with countable homo-
geneous templates. Journal of Logic and Computation, 16(3):359–373, 2006.

[9] Manuel Bodirsky and Michael Pinsker. Reducts of Ramsey structures. Submitted for
journal publication; preprint available from the authors’ websites.

[10] Manuel Bodirsky and Michael Pinsker. Minimal functions on the random graph.
Preprint, arXiv:1003.4030, 2010.

[11] Manuel Bodirsky, Michael Pinsker, and Todor Tsankov. Decidability of definability.
Preprint, available from the second author’s webpage, 2010.

[12] Andrei Bulatov, Andrei Krokhin, and Peter G. Jeavons. Classifying the complexity of
constraints using finite algebras. SIAM Journal on Computing, 34:720–742, 2005.

[13] Peter J. Cameron. The random graph. Algorithms and Combinatorics, 14:333–351,
1997.

12

[14] Peter J. Cameron. The random graph revisited. In Proceedings of the European
Congress of Mathematics, volume 201, pages 267–274. Birkhäuser, 2001.

[15] Hubie Chen. A rendezvous of logic, complexity, and algebra. SIGACT News, 2006.

[16] David A. Cohen, Peter Jeavons, Peter Jonsson, and Manolis Koubarakis. Building
tractable disjunctive constraints. Journal of the ACM, 47(5):826–853, 2000.

[17] Ivo Duentsch. Relation algebras and their application in temporal and spatial reason-
ing. Artificial Intelligence Review, 23:315–357, 2005.

[18] Michael Garey and David Johnson. A guide to NP-completeness. CSLI Press, Stanford,
1978.

[19] Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints.
Journal of the ACM, 44(4):527–548, 1997.

[20] Jaroslav Nešetřil. Ramsey theory. Handbook of Combinatorics, page 13311403, 1995.

[21] Jaroslav Nešetřil and Vojtech Rödl. Ramsey classes of set systems. Journal of Com-
binatorial Theory, Series A, 34(2):183–201, 1983.

[22] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the
Symposium on Theory of Computing (STOC), pages 216–226, 1978.

[23] Mark H. Siggers. A strong Mal’cev condition for varieties omitting the unary type.
Algebra universalis. To appear.

[24] Ágnes Szendrei. Clones in universal Algebra. Séminaire de Mathématiques
Supérieures. Les Presses de L’Université de Montréal, 1986.

[25] Simon Thomas. Reducts of the random graph. Journal of Symbolic Logic, 56(1):176–
181, 1991.

[26] Simon Thomas. Reducts of random hypergraphs. Annals of Pure and Applied Logic,
80(2):165–193, 1996.

[27] Matthias Westphal and Stefan Wölfl. Qualitative CSP, finite CSP, and SAT: Compar-
ing methods for Qualitative Constraint-based Reasoning. In Proceedings of the 21th
International Joint Conference on Artificial Intelligence (IJCAI), pages 628–633, 2009.

13

A Motivation and the result

In an influential paper in 1978, Schaefer [22] proved a complexity classification for system-
atic restrictions of the Boolean satisfiability problem. The way how he restricts the Boolean
satisfiability problem turned out to be very fruitful when restricting other computational
problems in theoretical computer science, and can be presented as follows.

Let Ψ = {ψ1, . . . , ψn} be a finite set of propositional (Boolean) formulas.

Boolean-SAT(Ψ)
INSTANCE: Given a finite set of variables W and a propositional formula of the form
Φ = φ1 ∧ · · · ∧ φl where each φi for 1 ≤ i ≤ l is obtained from one of the formulas ψ in Ψ
by substituting the variables of ψ by variables from W .
QUESTION: Is there a satisfying Boolean assignment to the variables of W (equivalently,
those of Φ)?

The computational complexity of this problem clearly depends on the set Ψ, and grows
with the size of Ψ. Schaefer’s theorem states that Boolean-SAT(Ψ) can be solved in polyno-
mial time if and only if Ψ is a subset of one of six sets of Boolean formulas (called 0-valid, 1-
valid, Horn, dual-Horn, affine, and bijunctive), and is NP-complete otherwise. We remark
that Schaefer’s theorem is usually formulated as a classification result of Boolean constraint
satisfaction problems, but the formulation given above is easily seen to be equivalent.

We prove a similar classification result, but for the first-order logic of graphs instead
for propositional logic. More precisely, let E be a relation symbol which denotes an antire-
flexive and symmetric binary relation and hence stands for the edge relation of a (simple,
undirected) graph. We consider formulas that are constructed from atomic formulas of
the form E(x, y) and x = y by the usual boolean connectives (negation, conjunction, dis-
junction), and call formulas of this form graph formulas. A graph formula Φ(x1, . . . , xm)
is satisfiable if there exists a graph H and an m-tuple a of elements in H such that Φ(a)
holds in H. Let Ψ = {ψ1, . . . , ψn} be a finite set of graph formulas. Then Ψ gives rise to
the following computational problem.

Graph-SAT(Ψ)
INSTANCE: Given a set of variables W and a graph formula of the form Φ = φ1 ∧ · · · ∧ φl

where each φi for 1 ≤ i ≤ l is obtained from one of the formulas ψ in Ψ by substituting
the variables from ψ by variables from W .
QUESTION: Is Φ satisfiable?

As an example, let Ψ be the set that just contains the formula

(E(x, y) ∧ ¬E(y, z) ∧ ¬E(x, z))
∨ (¬E(x, y) ∧ E(y, z) ∧ ¬E(x, z)) (3)
∨ (¬E(x, y) ∧ ¬E(y, z) ∧ E(x, z)) .

14

Then Graph-SAT(Ψ) is the problem of deciding whether there exists a graph such that
certain prescribed subsets of its vertex set of cardinality at most three induce subgraphs
with exactly one edge. This problem is NP-complete (the curious reader can check this at
the end of this paper by means of our classification in Theorem 61). There are also many
interesting tractable Graph-SAT problems, for instance when Ψ consists of the formulas
x 6= y ∨ y = z and

(E(x, y) ∧ ¬E(y, z) ∧ ¬E(x, z))
∨ (¬E(x, y) ∧ E(y, z) ∧ ¬E(x, z)) (4)
∨ (¬E(x, y) ∧ ¬E(y, z) ∧ E(x, z))
∨ (E(x, y) ∧ E(y, z) ∧ E(x, z)) .

It is obvious that the problem Graph-SAT(Ψ) is for all Ψ contained in NP. The goal of
this paper is to prove the following dichotomy result.

Theorem 1. For all Ψ, the problem Graph-SAT(Ψ) is either NP-complete or in P.

Moreover, in Theorem 61 at the end of this paper, we will see exactly which sets Ψ
correspond to tractable problems and which to hard ones.

One of the main contributions of the paper is the general method of combining concepts
from universal algebra and model theory, which allows us to use deep results from Ramsey
theory to finally obtain the classification result.

B Discussion of our strategy

We establish our result by translating Graph-SAT problems into constraint satisfaction
problems (CSPs) with infinite domains. More specifically, for every set of formulas Ψ we
present a relational structure ΓΨ such that Graph-SAT(Ψ) is equivalent to CSP(ΓΨ) (in a
certain sense, Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem). The relational
structure ΓΨ has a first-order definition in the random graph G, i.e., the (up to isomorphism)
unique countably infinite universal homogeneous graph. This perspective allows us to use
the so-called universal-algebraic approach, and in particular polymorphisms to classify the
computational complexity of Graph-SAT problems. In contrast to the universal-algebraic
approach for finite domain constraint satisfaction, our proof relies crucially on strong re-
sults from structural Ramsey theory; we use such results to find regular patterns in the
behavior of polymorphisms of structures on G, which in turn allows us to find analogies
with polymorphisms of structures on Boolean domains.

We call structures with a first-order definition in G reducts of G. While the standard
definition of a reduct of a relational structure ∆ is a structure on the same domain obtained
by forgetting some relations of ∆, a reduct of ∆ in our sense is really a reduct of the
expansion of ∆ by all first-order definable relations. It turns out that there is one class

15

of reducts Γ for which CSP(Γ) is in P for trivial reasons; further, there are 16 classes of
reducts Γ for which CSP(Γ) (and the corresponding Graph-SAT problems) can be solved
by non-trivial algorithms in polynomial time.

The presented algorithms are novel combinations of infinite domain constraint satisfac-
tion techniques (such as used in [3,7,16]) and reductions to the tractable cases of Schaefer’s
theorem. Reductions of infinite domain CSPs in artificial intelligence (e.g., in temporal and
spatial reasoning [17]) to finite domain CSPs (where typically the domain consists of the
elements of a so-called ‘relation algebra’) have been considered in the more applied arti-
ficial intelligence literature [27]. Our results shed some light on the question when such
techniques can even lead to polynomial-time algorithms for CSPs.

The global classification strategy of the present paper is similar in spirit to the one from
a recent result in [6] on CSPs of structures which are first-order definable in (Q;<). But
while in [6] the proof might still have appeared to be very specific to constraint satisfaction
over linear orders, with the present paper we demonstrate that in principle such a strategy
can be used for any class of computational problems C that satisfies the following:

• All problems in C can be formulated as a CSP of a structure which is first-order
definable in a single ω-categorical structure Γ;

• the class of finite substructures of Γ has the Ramsey property (as in [20]).

While in [6], the classical theorem of Ramsey and its product version were sufficient, the
Ramsey theorems used in the present paper are deeper and considerably more difficult to
prove [1, 21].

The random graph G belongs (together with (Q;<)) to one of the most fundamental
ω-categorical structures, and is an important structure in model theory that appears also
in many other areas of mathematics (see [13]). In contrast to CSPs of structures definable
in (Q;<), where there is a lot of dependence between the possible values in a solution, the
CSPs of reducts of G illuminate different phenomena in constraint satisfaction (e.g., for
all tractable classes the inequality relation 6= is 1-independent from the other constraints,
in the terminology of [16]), and the polynomial-time tractable cases are characterized by
polymorphisms that behave canonically in a Ramsey-theoretic sense.

C Tools from universal algebra and model theory

In this section we develop in detail the tools from universal algebra and model theory needed
for our approach. We start by translating the problem Graph-SAT(Ψ) into a constraint
satisfaction problem for a reduct of G.

We denote the random graph by G = (V ;E). The graph G is determined up to iso-
morphism by the two properties of being homogeneous (i.e., any isomorphism between two
finite induced subgraphs of G can be extended to an automorphism of G), and universal

16

(i.e., G contains all countable graphs as induced subgraphs). It is also the up to isomor-
phism unique countable graph that satisfies the extension property, which will be useful
throughout the paper: For all disjoint finite U,U ′ ⊆ V there exists v ∈ V such that v is
in G adjacent to all members of U and to none in U ′. For the many other remarkable
properties of G and its automorphism group Aut(G), and various connections to many
branches of mathematics, see e.g. [13, 14].

Let Γ be a structure with a finite relational signature τ . A first-order τ -formula is
called primitive positive if it is of the form

∃x1, . . . , xn. ψ1 ∧ · · · ∧ ψm

where the ψi are atomic, i.e., of the form y1 = y2 or R(y1, . . . , yk), where R ∈ τ a k-ary
relation symbol and the yi are not necessarily distinct. A τ -formula is called a sentence if
it contains no free variables.

Definition 2. The constraint satisfaction problem for Γ, denoted by CSP(Γ), is the com-
putational problem of deciding for a given primitive positive τ -sentence Φ whether Φ is true
in Γ.

Let Ψ = {ψ1, . . . , ψn} be a set of graph formulas. Then we define ΓΨ to be the structure
with the same domain V as the random graph G which has for each ψi a relation Ri

consisting of those tuples in G that satisfy ψi (where the arity of Ri is given by the number
of variables that occur in ψi). Thus by definition, ΓΨ is a reduct of G. Now given any
instance Φ = φ1 ∧ · · · ∧ φl with variable set W of Graph-SAT(Ψ), we construct a primitive
positive sentence Φ′ in the language of ΓΨ as follows: In Φ, we replace every φi, which
by definition is of the form ψj(y1, . . . , ym) for some 1 ≤ j ≤ m and variables yk from W ,
by Rj(y1, . . . , ym); after that, we existentially quantify all variables that occur in Φ′. It is
then easy to see that the problem Graph-SAT(Ψ) has a positive answer for Φ if and only
if the sentence Φ′ holds in ΓΨ. Hence, every problem Graph-SAT(Ψ) is in fact of the form
CSP(Γ), for a reduct Γ of G in a finite signature. We will thus henceforth focus on such
constraint satisfaction problems in order to prove our dichotomy.

The following lemma has been first stated in [19] for finite structures Γ only, but the
proof there also works for arbitrary infinite structures. It shows us how we can slightly
enrich structures without changing the computational complexity of the constraint satis-
faction problem they define too much.

Lemma 3. Let Γ = (D;R1, . . . , Rl) be a relational structure, and let R be a relation
that has a primitive positive definition in Γ. Then CSP(Γ) and CSP(D;R,R1, . . . , Rl) are
polynomial-time equivalent.

The preceding lemma makes the so-called universal-algebraic approach to constraint
satisfaction possible, as exposed in the following. We say that a k-ary function (also called
operation) f : Dk → D preserves an m-ary relation R ⊆ Dm iff for all t1, . . . , tk ∈ R the

17

tuple f(t1, . . . , tk) (calculated componentwise) is also contained in R. If an operation f
does not preserve a relation R, we say that f violates R. If f preserves all relations of a
structure Γ, we say that f is a polymorphism of Γ (it is also common to say that Γ is closed
under f). A unary polymorphism of Γ is also called an endomorphism of Γ.

Conversely, for a set F of operations defined on a set D and a relation R on D, we say
that R is invariant under F if R is preserved by all f ∈ F , and we write Inv(F) for the set
of all finitary relations on D that are invariant under F .

The set of all polymorphisms Pol(Γ) of a relational structure Γ forms an algebraic
object called a clone [24], which is a set of operations defined on a set D that is closed
under composition and that contains all projections. Moreover, Pol(Γ) is also closed un-
der interpolation (see Proposition 1.6 in [24]): we say that a k-ary operation f on D is
interpolated by a set of k-ary operations F on D if for every finite subset A of Dk there is
some operation g ∈ F such that g agrees with f on A. We say that F locally generates an
operation g if g is in the smallest clone that is closed under interpolation and contains all
operations in F . Clones with the property that they contain all functions locally generated
by their members are called locally closed, local or just closed.

We thus have that to every structure Γ, we can assign the closed clone Pol(Γ) of
its polymorphisms. For certain Γ, this clone captures the computational complexity of
CSP(Γ): A countable structure Γ is called ω-categorical if every countable model of the
first-order theory of Γ is isomorphic to Γ. It is well-known that the random graph G is
ω-categorical, and that reducts of ω-categorical structures are ω-categorical as well.

Theorem 4 (from [8]). Let Γ be an ω-categorical structure. Then the relations in Inv(Pol(Γ))
are precisely those that have a primitive positive definition in Γ.

Clearly, the theorem implies that if two ω-categorical structures with finite relational
signatures have the same clone of polymorphisms, then their CSPs are polynomial-time
equivalent. Recall that we have only defined CSP(Γ) for structures Γ with a finite relational
signature. But we now see that it makes sense (and here we follow conventions from
finite domain constraint satisfaction, see e.g. [12]) to say that CSP(Γ) is (polynomial-time)
tractable if the CSP for every finite signature structure ∆ with the same polymorphism
clone as Γ is in P, and to say that CSP(Γ) is NP-hard if there is a finite signature structure
∆ with the same polymorphism clone as Γ whose CSP is NP-hard.

Note that the automorphisms of a structure Γ are bijective unary polymorphisms that
preserve all relations and their complements; the set of all automorphisms of Γ is denoted by
Aut(Γ). It follows from the theorem of Ryll-Nardzewski that for an ω-categorical structure
Γ, the local clones containing Aut(Γ) are precisely the polymorphism clones of reducts of
Γ. Therefore, in order to determine the computational complexity of the CSP of all reducts
Γ of G, it suffices to determine for every local clone C containing the automorphism group
Aut(G) of G the complexity of CSP(Γ) for some reduct Γ of G with Pol(Γ) = C, if there
exists such a reduct with finitely many relations; then the complexity for all reducts with
the same polymorphism clone is polynomial time equivalent to CSP(Γ).

18

The following proposition is the analog to Theorem 4 on the “operational side”, and
characterizes the local generating process of functions on a domain D by the operators Inv
and Pol.

Proposition 5 (Corollary 1.9 in [24]). Let F be a set of functions on a domain D, and
let g be a function on D. Then F locally generates g if and only if g ∈ Pol(Inv(F)).

For some reducts, we will find that their CSP is equivalent to a CSP of a structure that
has already been studied, by means of the following basic observation.

Proposition 6. Let Γ,∆ be structures of the same signature which are homomorphically
equivalent, i.e., there exist homomorphisms f : Γ → ∆ and g : ∆ → Γ. Then CSP(Γ) =
CSP(∆).

We finish this section with a technical general lemma that we will refer to several times
in the paper; it allows to restrict the arity of functions violating a relation. For a structure
Γ with domain D and a tuple t ∈ Dk, the orbit of t in Γ is the set {α(t) | α ∈ Aut(Γ)}.

Lemma 7 (From [6]). Let Γ be a relational structure with domain D, and let R ⊆ Dk be
a relation that consists of m orbits of k-tuples in Γ. Suppose that an operation f on D
violates R. Then {f} ∪ Aut(Γ) locally generates an at most m-ary operation that violates
R.

D Additional conventions

Throughout the text, Γ denotes a reduct of the random graph G = (V ;E). Since all our
polymorphism clones contain the automorphism group Aut(G) of the random graph, we
will abuse the notion of generates from the preceding section, and use it as follows: For
a set of functions F and a function g on the domain V , we say that F generates g when
F ∪Aut(G) locally generates g; also, we say that a function f generates g if {f} generates
g. That is, in this paper we consider the automorphisms of G be present in all sets of
functions when speaking about the local generating process.

The binary relation N(x, y) on V is defined by the formula ¬E(x, y)∧x 6= y. We use 6=
both in logical formulas to denote the negation of equality, and to denote the corresponding
binary relation on V .

When t is an n-tuple, we refer to its entries by t1, . . . , tn.

E Endomorphisms

The goal of this section is the proof of Proposition 10, which will allow us to reduce the
classification task to the classification of those structures where the relations E, N and 6=
are primitive positive definable.

19

Definition 8. For all k ≥ 3, let P (k) denote the k-ary relation that holds on x1, . . . , xk ∈ V
if x1, . . . , xk are pairwise distinct, and the graph induced by {x1, . . . , xk} in G is neither an
independent set nor a clique.

Definition 9. Let T be the 4-ary relation that holds on x1, x2, x3, x4 ∈ V if x1, x2, x3, x4

are pairwise distinct, and induce in G either

• a single edge and two isolated vertices,

• a path with two edges and an isolated vertex,

• a path with three edges, or

• a complement of one of the structures stated above.

Proposition 10. Let Γ be a reduct of G. Then at least one of the following holds.

(a) Γ has a constant endomorphism, and CSP(Γ) is trivial.

(b) Γ is homomorphically equivalent to a countably infinite structure that is preserved
by all permutations of its domain; in this case the complexity of CSP(Γ) has been
classified in [5], and is either in P or NP-complete.

(c) There is a primitive positive definition of P (3) or T in Γ, and CSP(Γ) is NP-complete.

(d) The relations N , E, and 6= have primitive positive definitions in Γ.

To prove the proposition, we first cite a result about the reducts of the random graph
due to Thomas [26] (also see [10] for a formulation of this result as it is used here).

The graph G contains all countable graphs as induced subgraphs. In particular, it
contains an infinite complete subgraph, denoted by Kω. It is clear that any two injective
operations from V → V whose images induce Kω in G generate one another. Let eE be
one such operation. Similarly, G contains an infinite independent set, denoted by Iω. Let
eN be an injective operation from V → V whose image induces Iω in G.

Theorem 11. Let Γ be a reduct of G. Then one of the following cases applies.

1. Γ has a constant endomorphism.

2. Γ has the endomorphism eE.

3. Γ has the endomorphism eN .

4. The endomorphisms of Γ are locally generated by the automorphisms of Γ.

20

The last case splits into five sub-cases, corresponding to the five locally closed permuta-
tion groups that contain Aut(G) exhibited by Thomas [25]. Knowledge about these groups
will be important for the complexity classification, and we will next cite the theorem that
lists them.

For any finite subset S of V , if we flip edges and non-edges between S and V \ S in G,
then the resulting graph is isomorphic to G (it is straightforward to verify the extension
property). Let iS be such an isomorphism for each non-empty finite S. Any two such
functions generate one another. We also write sw for i{0}, where 0 ∈ V is any fixed element
of V .

Let R(k) be the k-ary relation that holds on x1, . . . , xk ∈ V if x1, . . . , xk are pairwise
distinct, and the number of edges between these k vertices is odd. Note that R(4) is
preserved by −, R(3) is preserved by sw , and that R(5) is preserved by − and by sw , but
not by all permutations of V .

Definition 12. We say that two structures Γ,∆ on the same domain are first-order inter-
definable iff all relations of Γ have a first-order definition in ∆ and vice-versa.

Theorem 13 (of [25]). Let Γ be a reduct of G. Then exactly one of the following is true.

1. Γ is first-order interdefinable with (V ;E);
equivalently, Aut(Γ) = Aut(G).

2. Γ is first-order interdefinable with (V ;R(4));
equivalently, Γ is preserved by −, but not by sw.

3. Γ is first-order interdefinable with (V ;R(3));
equivalently, Γ is preserved by sw, but not by −.

4. Γ is first-order interdefinable with (V ;R(5));
equivalently, Γ is preserved by − and by sw, but not by all permutations of V .

5. Γ is first-order interdefinable with (V ; =);
equivalently, Γ is preserved by all permutations of V .

In particular, the reducts (V ;P (3)) and (V ;T) are both first-order interdefinable with
one of the five structures of this theorem; we will now show with which one, and prove
hardness for both reducts. We start with (V ;P (3)).

Proposition 14. The structure (V ;P (3)) is first-order interdefinable with (V ;R(4)).

Proof. The relation P (3) is not preserved by sw : if x1, x2 ∈ V are so that E(x1, x2) and
N(0, xi) hold for i = 1, 2, then (0, x1, x2) ∈ P (3), but {sw(0), sw(x1), sw(x2)} is a clique in
G, so (sw(0), sw(x1), sw(x2)) /∈ P (3). On the other hand, P (3) is clearly preserved by −.
Hence, Theorem 13 implies that (V ;P (3)) is first-order interdefinable with (V ;R(4)).

21

Proposition 15. CSP((V ;P (3))) is NP-complete.

Proof. For k ≥ 3, let Q(k) be the k-ary relation that holds for a tuple (x1, . . . , xk) ∈ V k iff
x1, . . . , xk are pairwise distinct, and (x1, . . . , xk) /∈ P (k).

We show that the relation Q(3) is primitive positive definable by the relation P (3).
Observe first that 6= is primitive positive definable from P (3) by the formula ∃u. P (3)(x, y, u).
Let µ be the primitive positive formula that states about the tuple (x1, . . . , x6) that all
its entries are distinct. Let φ be a conjunction of atomic formulas with variables from
x1, . . . , x6 that contains for each three-element subset {u, v, w} of those variables a conjunct
P (3)(u, v, w). It is known that every two-coloring of the edges of the graph K6 (the clique
with six vertices) contains a monochromatic triangle. Therefore, φ∧µ is unsatisfiable. Let
φ′ be a conjunction over a maximal subset of the conjuncts of φ with the property that φ′∧µ
is still satisfiable, and suppose without loss of generality that the conjunct P (3)(x1, x2, x3)
of φ is missing in φ′. We claim that ψ := ∃x4, x5, x6.φ

′∧µ defines Q(3). To see this, suppose
that t is a triple that satisfies ψ; that means that there exists a 6-tuple s extending t which
satisfies φ′ ∧ µ. From the maximality of φ′, we infer that s, and hence also t, does not
satisfy P (3)(x1, x2, x3), so t ∈ Q(3). Therefore, ψ defines a subset of Q(3). Observe also
that ψ does not define the empty set since φ′ ∧ µ, and hence also ψ, is satisfiable. Let t be
any tuple satisfying ψ. Since P (3) is preserved by −, one can check that Q(3) consists of
only one orbit in (V ;P (3)). Hence, for any tuple w in Q(3) there exists an automorphism of
(V ;P (3)) that sends t to w. This automorphism clearly preserves ψ, and hence w satisfies
ψ, proving the claim.

Next observe that Q(3)(x, y, u)∧Q(3)(y, u, v)∧Q(3)(x, y, v) defines Q(4), and hence Q(4)

has a primitive positive definition from P (3).
We now prove NP-hardness of CSP((V ;P (3))) by reduction from positive not-all-equal

3SAT, which is the variant of 3SAT where all clauses have only positive literals, and the
task is to find an assignment of Boolean values to the variables such that in no clause
three variables are set to the same value; this problem is hard by Schaefer’s theorem. For
each Boolean variable x in a given instance Φ to that problem we create two variables ux

and vx in an instance Ψ to CSP((V ;P (3), Q(4))) (which is sufficient for proving hardness of
CSP((V ;P (3))) by Lemma 3). Moreover, we create variables wC,x,y, wC,y,z, wC,z,x for every
clause C of Φ with variables x, y, z. The conjuncts of Ψ are as follows: For each clause C
of Φ with variables x, y, z we have in Ψ

• the conjunct P (3)(wC,x,y, wC,y,z, wC,z,x);

• the three conjuncts Q(4)(ux, vx, wC,z,x, wC,x,y),
Q(4)(uy, vy, wC,x,y, wC,y,z), and Q(4)(uz, vz, wC,y,z, wC,z,x).

Now suppose that Φ is a satisfiable instance of the positive not-all-3-equal SAT problem,
and let s be a solution, i.e., a satisfying Boolean assignment to the variables of Φ. Then
define a graph on the variables of Ψ as follows: There is an edge between two variables

22

2 3

1 4

2 3

1 4

2 3

1 4

2 3

1 4

2 3

1 4

2 3

1 4

2 3

1 4

2 3

1 4

2 3

1 4

2 3

1 4

2 3

1 4

Figure 1: Illustration for the relation T .

wC,i,j and wC,j,k iff the value of j under s is 1. Moreover, there are edges between ui

and all other variables iff the value of i under s is 1, and we impose the same condition
for edges with vi. The resulting graph can be assumed to be a subgraph of G, and it is
straightforward to check that it shows that Ψ holds in (V ;P (3), Q(4)). The converse that
every solution to Ψ yields a solution to Φ is left to the reader.

We now turn to the reduct (V ;T). For an illustration of the relation T , see Figure 1.
The first row shows all graphs, up to isomorphism, that are induced by 4-tuples from the
relation T (note that T is totally symmetric, i.e., whenever we have a tuple in T and we
permute its components, we obtain again a tuple in T). The other two rows show the
graphs induced by 4-tuples of distinct elements of V that are not from T , again up to
isomorphism. We denote the four vertices of those graphs by 1,2,3 and 4, as shown in the
picture.

Proposition 16. The structure (V ;T) is first-order interdefinable with (V ;R(5)).

Proof. The relation T is obviously not preserved by all permutations of V , but preserved
by −. It can be checked that T is preserved by sw . Theorem 13 implies that it is first-order
interdefinable with (V ;R(5)).

Lemma 17. Let Γ be a reduct of G with sw ∈ Aut(Γ). Then T consists of one orbit of
4-tuples with respect to Γ.

Proof. For a graph on {1, 2, 3, 4} and a vertex v ∈ {1, 2, 3, 4}, we say in the following that
we flip the graph at v when we produce a new graph by flipping the edges and non-edges
that are adjacent to v. Now consider the graphs of the first row of Figure 1, which are those
corresponding to tuples in T . If we flip the first one at 2, we obtain the second one; flipping
the second graph at 3 yields the third one; and flipping the third graph at 4 yields the

23

fourth one. Finally, flipping the first graph at 4 yields a graph isomorphic to the fifth graph.
Since this flipping operation corresponds to applications of sw (more precisely: switches
with respect to an appropriately chosen point in V) to tuples in T , and isomorphism of
these 4-vertex graphs to applications of appropriately chosen automorphisms of G, we get
that indeed any tuple in T can be transformed into any other tuple in T by applications
of sw and automorphisms of G.

We will need the following auxiliary lemma before proving hardness for CSP((V ;T)).

Lemma 18. Let T ′ be the relation consisting of all 4-tuples with distinct entries in V that
do not belong to T . Then T ′ is primitive positive definable in (V ;T).

Proof. Observe first that 6= is primitive positive definable from T by the formula ∃u, v. T (x, y, u, v).
Let µ be the primitive positive formula that states about the tuple (x1, . . . , x18) that all
its entries are distinct.

It is a well-known fact that every two-coloring of the edges of the graph K18 contains
a monochromatic clique of size 4. Let φ be the conjunction over all atomic formulas of the
form T (a, b, c, d) where {a, b, c, d} is a 4-element subset of {x1, . . . , x18}. By the above fact,
φ ∧ µ is unsatisfiable.

Let φ0 denote the conjunction over a maximal subset of the conjuncts of φ with the
property that φ0 ∧ µ is satisfiable, and let T (y1, . . . , y4) denote a conjunct from φ that is
not a conjunct of φ0.

We claim that the relation defined by the formula ψ obtained from φ0∧µ by existentially
quantifying all variables except for y1, . . . , y4 equals T ′. To see this, suppose that t is a 4-
tuple that satisfies ψ; that means that there exists a 18-tuple s extending t which satisfies
φ0 ∧ µ. From the maximality of φ0, we infer that s, and hence also t, does not satisfy
T (y1, . . . , y4), so t ∈ T ′. Therefore, ψ defines a subset of T ′. Observe also that ψ does
not define the empty set since φ0 ∧ µ, and hence also ψ, is satisfiable. Let t be any tuple
satisfying ψ. As in Lemma 17, one can check that T ′ consists of only one orbit in (V ;T).
Hence, for any tuple w in T ′ there exists an automorphism of T that sends t to w. This
automorphism clearly preserves ψ, and hence w satisfies ψ, proving the claim.

Proposition 19. CSP((V ;T)) is NP-complete.

Proof. Our hardness proof is by reduction from an NP-hard Boolean constraint satisfaction
problem. In our reduction, the following (‘link’-) relation L ⊆ V 6 is of central importance.
For a finite subset S of V , write #S for the parity of edges between members of S. Now
define

L :=
{
x ∈ V 6 | the entries of x are pairwise distinct, and

#{x1, x2, x3} = #{x4, x5, x6}
}
.

24

Let φ(x, y, z, u, v, w) be the conjunction over all atomic formulas of the form T ′(a, b, c, d)
for every four-element subset {a, b, c, d} of {x, y, z, u, v, w}. We claim that

ψ := ∃y1, y2, y3.φ(x1, x2, x3, y1, y2, y3) ∧ φ(y1, y2, y3, x4, x5, x6)

defines L(x1, . . . , x6).
Observe first that L is preserved by sw and −. Moreover, since T ′ is preserved by sw

and −, so is ψ. We can therefore take the liberty of applying sw and − to tuples when
showing the equivalence of ψ and L.

Let t ∈ V 6 be a tuple with pairwise distinct entries. We first show that when t ∈
L then it also satisfies ψ. Applying sw and − to t repeatedly, we can assume wlog.
that N(t1, t2) ∧ N(t2, t3) ∧ N(t1, t3) and N(t4, t5) ∧ N(t5, t6) ∧ N(t4, t6). Choose values
s1, s2, s3 ∈ V for the variables y1, y2, y3 such that between any two distinct vertices x, y
from {t1, . . . , t6, s1, s2, s3} we have N(x, y). This satisfies all conjuncts in ψ.

For the converse, we suppose that t satisfies ψ. Let s1, s2, s3 ∈ V be witnesses
for y1, y2, y3 that show that ψ holds for t. Assume for contradiction that t /∈ L, i.e.,
#{x1, x2, x3} 6= #{x4, x5, x6}. Applying sw and −, we can assume wlog. that N(t1, t2) ∧
N(t2, t3) ∧N(t1, t3) and E(t4, t5) ∧ E(t5, t6) ∧ E(t4, t6). Moreover, by applying sw and −
again, we can assume that {s1, s2, s3} induces a clique (or an independent set, which would
be the same for our further argument). Because of T ′(t1, t2, t3, s1), either the relation E
holds between all pairs {t1, s1}, {t2, s1}, and {t3, s1}, or the relation N holds between all
these pairs. Similarly, we can observe the same for s2 and s3, so one of the two possibili-
ties occurs twice. So assume wlog. that E holds for any pair p, q with p ∈ {t1, t2, t3} and
q ∈ {s1, s2}. But then T ′(t1, t2, s1, s2) does not hold, a contradiction.

We can now prove hardness by reduction from

CSP(({0, 1}; {t ∈ {0, 1}4 | t1 + t2 + t3 + t4 = 2})) ,

which is NP-hard by Schaefer’s theorem [22]. From a given instance Φ of this Boolean
CSP with variables x1, . . . , xn, we create an instance Ψ of CSP((V ;T)) as follows. We first
describe the variables of Ψ. There are three variables y1

x, y
2
x, y

3
x for each x ∈ {x1, . . . , xn}.

Moreover, Ψ has four variables zC
a,b,c, z

C
a,b,d, z

C
a,c,d, z

C
b,c,d for each constraint C of the form

a + b + c + d = 2 in Φ. The constraints of Ψ are as follows. For each constraint C of the
form a+ b+ c+ d = 2 in Φ, we add the constraints

T (zC
a,b,c, z

C
a,b,d, ya,c,d, yb,c,d)∧L(zC

a,b,c, z
C
a,b,d, z

C
a,c,d, y

1
a, y

2
a, y

3
a)

∧L(zC
a,b,c, z

C
a,b,d, z

C
b,c,d, y

1
b , y

2
b , y

3
b)

∧L(zC
a,b,c, z

C
a,c,d, z

C
b,c,d, y

1
c , y

2
c , y

3
c)

∧L(zC
a,b,d, z

C
a,c,d, z

C
b,c,d, y

1
d, y

2
d, y

3
d) .

Clearly, Ψ can be computed in polynomial time from Φ. We first verify that if Φ has a
solution s : {x1, . . . , xn} → {0, 1}, then Ψ is satisfiable as well. It clearly suffices to specify

25

a graph on the variables of Ψ such that the identity satisfies the constraints of Ψ. For
x ∈ {x1, . . . , xn}, we let {y1

x, y
2
x, y

3
x} form an independent set if s(x) = 1, and a clique

otherwise. Since s satisfies all constraints a+ b+ c+ d = 2 of Φ, s maps exactly two of the
variables a, b, c, d to 1; for the sake of notation, suppose that s(a) = s(b) = 0 (the other
cases are handled analogously). Then the graph on the variables of Ψ has an edge between
zC
a,b,c and zC

a,b,d. All other pairs of variables of Ψ are not adjacent. It is straightforward to
verify that indeed all constraints of Ψ are satisfied.

Then central observation for proving the converse is that for any tuple t ⊆ V 4 that
satisfies T (x1, x2, x3, x4), there are exactly two 3-element subsets {i, j, k} of {1, . . . , 4} such
that R(3)(ti, tj , tk) holds. Suppose that there is a solution to Ψ. We define a mapping
s : {x1, . . . , xn} → {0, 1} as follows. For x ∈ {x1, . . . , xn}, if in the solution to Ψ we have
that R(3)(y1

x, y
2
x, y

3
x) is true, then we set s(x) = 1, and otherwise we set s(x) = 0. It follows

from the observation we just made that s satisfies all constraints of Φ.

We are now ready to prove Proposition 10, showing that we can in the rest of our
classification project focus on those languages that contain the relations N , E, and 6=.

Proof of Proposition 10. Suppose E does not have a primitive positive definition in Γ. We
have that E consists of just one orbit of pairs in G, and thus, since Aut(Γ) ⊇ Aut(G), also
in Γ. Hence, Lemma 7 shows the existence of an endomorphism e of Γ that violates E.

Theorem 11 states that either all endomorphisms of Γ are generated by its automor-
phisms, or Γ has a constant endomorphism, or the endomorphism eE , or the endomorphism
eN . If Γ has a constant endomorphism we are in Case (a) and done. If Γ has the endomor-
phisms eE or eN , then we are in Case (b) since eE [V] and eN [V] induce structures in G
which are invariant under all permutations of their domain. So assume in the following that
Γ has neither eE , nor eN , nor a constant as an endomorphism, and that all endomorphisms
of Γ are generated by Aut(Γ).

In particular, e is generated by Aut(Γ). This implies that Aut(Γ) does not equal
Aut(G), and hence it contains either − or sw , by Theorem 13.

Suppose that Aut(Γ) contains −. If the relation P (3) is primitive positive definable in
Γ, then CSP(Γ) is NP-complete by Proposition 15 and Lemma 3, and we are in Case (c).
Otherwise, since the relation P (3) consists of only one orbit of triples in Γ and by Lemma 7,
there exists an endomorphism e1 of Γ that violates P (3). Since e1 is generated by Aut(Γ),
there is also an automorphism of Γ that violates P (3), and hence also R(4) by Proposition 14.
Thus, Theorem 13 shows that Aut(Γ) contains sw .

We can thus henceforth assume that Aut(Γ) contains sw . Then the relation T consists
of just one orbit of 4-tuples with respect to Γ, by Lemma 17. If the relation T is primitive
positive definable, then we are in Case (c) and CSP(Γ) is NP-hard by Lemma 3 and
Proposition 19. Otherwise, since T consists of one orbit in Γ, Lemma 7 implies that there
is an endomorphism e2 of Γ that violates T . Since e2 is generated by Aut(Γ), there is an
automorphism of Γ violating T , and thus by Proposition 16 there is an automorphism of

26

Γ violating R(5). It then follows from Theorem 13 that Aut(Γ) contains all permutations,
bringing us back into Case (b).

The reasoning for the case when N has no primitive positive definition in Γ is dual. So
we may assume that both E and N are primitive positive definable. Then so is 6= since
x 6= y iff ∃ z.E(x, z) ∧N(y, z).

F Higher arity polymorphisms

In the following we assume that Γ = (V ;E,N, 6=, . . .) is a reduct of G that contains the
relations E, N and 6=. While in the last section, we only dealt with endomorphisms and
automorphisms of reducts of G, the remaining cases will require the study of higher arity
polymorphisms of such reducts. It turns out that the relevant polymorphisms proving
tractability have, in a certain sense, regular behavior with respect to the structure of G;
combinatorially, this is due to the fact that the set of finite ordered graphs is a Ramsey-
class, and that one can find regular patterns in any arbitrary function on the random
graph. We make this idea more precise.

Definition 20. Let ∆ be a structure. The type tp(a) of an n-tuple a ∈ ∆ is the set of
first-order formulas with free variables x1, . . . , xn that hold for a in ∆.

Definition 21. Let ∆,Λ be structures, and let k ≥ 1. A k-ary type condition between ∆
and Λ is a k + 1-tuple (t1, . . . , tk, s), where each ti is a type of an n-tuple in ∆, and s is a
type of an n-tuple in Λ. A k-ary function f : ∆k → Λ satisfies a type condition (t1, . . . , tk, s)
if for all n-tuples ai of type ti in ∆ the n-tuple (f(a1

1, . . . , a
k
1), . . . , f(a1

n, . . . , a
k
n)) is of type

s in Λ. A behavior is a set of k-ary type conditions between two structures ∆ and Λ, where
k ≥ 1 is fixed. A k-ary function has behavior B if it satisfies all the type conditions of the
behavior B.

Definition 22. Let ∆,Λ be structures. An operation f : ∆k → Λ is canonical if for all
k-tuples (t1, . . . , tk) of types of n-tuples in ∆ there exists a type s of an n-tuple in Λ such
that f satisfies the type condition (t1, . . . , tk, s). If F ⊆ ∆1, then we say that f is canonical
on F if its restriction to F is canonical.

We remark that since G has only binary relations, a function f : Gk → G is canonical
iff it satisfies the condition of the definition for types of 2-tuples. The polymorphisms
proving tractability of reducts of G will be canonical. We now define different behaviors
that some of these canonical functions will have. For Q1, . . . , Qk ∈ {E,N,=, 6=}, we will in
the following write Q1 · · ·Qk for the binary relation on V k that holds between two k-tuples
x, y ∈ V k iff Qi(xi, yi) holds for all 1 ≤ i ≤ k.

We start by behaviors of binary functions.

Definition 23. We say that a binary injective operation f : V 2 → V is

27

• balanced in the first argument if for all u, v ∈ V 2 we have that E=(u, v) implies
E(f(u), f(v)) and N=(u, v) implies N(f(u), f(v));

• balanced in the second argument if (x, y) 7→ f(y, x) is balanced in the first argument;

• balanced if f is balanced in both arguments, and unbalanced otherwise;

• E-dominated (N -dominated) in the first argument if for all u, v ∈ V 2 with 6==(u, v)
we have that E(f(u), f(v)) (N(f(u), f(v)));

• E-dominated (N -dominated) in the second argument if (x, y) 7→ f(y, x) is E-dominated
(N -dominated) in the first argument;

• E-dominated (N -dominated) if it is E-dominated (N -dominated) in both arguments;

• of type min if for all u, v ∈ V 2 with 6=6=(u, v) we have E(f(u), f(v)) if and only if
EE(u, v);

• of type max if for all u, v ∈ V 2 with 6=6=(u, v) we have N(f(u), f(v)) if and only if
NN(u, v);

• of type p1 if for all u, v ∈ V 2 with 6=6=(u, v) we have E(f(u), f(v)) if and only if
E(u1, v1);

• of type p2 if (x, y) 7→ f(y, x) is of type p1;

• of type projection if it is of type p1 or p2.

Note that, for example, being of type max is a behavior of binary functions that does
not force a function to be canonical, since the condition only talks about certain types of
pairs in V 2, but not all such types; however, being of type max and balanced does mean
that a function is canonical. The next definition contains some important behaviors of
ternary functions.

Definition 24. An injective ternary function f : V 3 → V is of type

• majority if for all u, v ∈ V 3 we have that E(f(u), f(v)) if and only if EEE(u, v),
EEN(u, v), ENE(u, v), or NEE(u, v);

• minority if for all x, y ∈ V 3 we have E(f(x), f(y)) if and only if EEE(u, v), NNE(u, v),
NEN(u, v), or ENN(u, v).

While the tractability results of this section will be shown by means of a number of
different canonical functions, all hardness cases will be established by the following single
relation.

28

Definition 25. We define a 6-ary relation H(x1, y1, x2, y2, x3, y3) on V by∧
i,j∈{1,2,3},i6=j,u∈{xi,yi},v∈{xj ,yj}

N(u, v)

∧
(
((E(x1, y1) ∧N(x2, y2) ∧N(x3, y3))
∨ (N(x1, y1) ∧ E(x2, y2) ∧N(x3, y3)) (5)

(6)
∨ (N(x1, y1) ∧N(x2, y2) ∧ E(x3, y3))

)
.

Our goal for this section is to prove the following proposition, which together with
Proposition 10 proves Theorem 1.

Proposition 26. Let Γ = (V ;E,N, 6=, . . .) be a reduct of G. Then at least one of the
following holds:

(a) There is a primitive positive definition of H in Γ, and CSP(Γ) is NP-complete.

(b) Γ has a canonical polymorphism of type minority, as well as a canonical binary in-
jection which of type p1 and E-dominated or N -dominated in the second argument,
and CSP(Γ) is tractable.

(c) Γ has a canonical polymorphism of type majority, as well as a canonical binary in-
jection which of type p1 and E-dominated or N -dominated in the second argument,
and CSP(Γ) is tractable.

(d) Γ has a canonical polymorphism of type minority, as well as a canonical binary in-
jection which is balanced and of type projection, and CSP(Γ) is tractable.

(e) Γ has a canonical polymorphism of type majority, as well as a canonical binary in-
jection which is balanced and of type projection, and CSP(Γ) is tractable.

(f) Γ has a canonical polymorphism of type max or min, and CSP(Γ) is tractable.

The remainder of this section contains the proof of Proposition 26, and is organized
as follows: In Subsection F.1, we show that the relation H is hard. We then prove in
Subsection F.2 that if H does not have a primitive positive definition in a reduct Γ as
in Proposition 26, then Γ has one of the polymorphisms listed in Cases (b) to (f) of the
proposition. Tractability of Cases (b) and (c) is shown in Subsection F.3, tractability of
Case (d) in Subsection F.4, of Case (e) in Subsection F.5, and finally tractability of Case (f)
in Subsection F.6.

29

F.1 Hardness of H

This subsection is devoted to Case (a) of Proposition 26.

Proposition 27. CSP((V ;H)) is NP-hard.

Proof. The proof is reduction from positive 1-in-3-3SAT (one of the hard problems in
Schaefer’s classification; also see [18]). Let Φ be an instance of positive 1-in-3-3SAT, that
is, a set of clauses, each having three positive literals. We create from Φ an instance Ψ
of CSP((V ;H)) as follows. For each variable x in Φ we have a pair ux, vx of variables in
Ψ. When {x, y, z} is a clause in Φ, then we add the conjunct H(ux, vx, uy, vy, uz, vz) to
Ψ. Finally, we existentially quantify all variables of the conjunction Ψ in order to obtain
a sentence. Clearly, Ψ can be computed from Φ in linear time.

Suppose now that Φ is satisfiable, i.e., there exists a mapping α from the variables of
Φ to {0, 1} such that in each clause exactly one of the literals is set to 1; we claim that
(V ;H) satisfies Ψ. To show this, let F be the graph whose vertices are the variables of
Ψ, and which has an edge between ux and vx if x is set to 1 under the mapping α. By
universality of G we may assume that F is a subgraph of G. It is then enough to show
that F satisfies the conjunction of Ψ in order to show that (V ;H) satisfies Ψ. Indeed,
when H(ux, vx, uy, vy, uz, vz) is a clause from Ψ then the conjunction in the first line of the
definition of H is clearly satisfied; moreover, from the disjunction in the remaining lines
of the definition of H exactly one disjunct will be true, since in the corresponding clause
{x, y, z} of Φ exactly one of α(x), α(y), α(z) has been set to 1. This argument can easily
be inverted to see that every solution to Ψ can be used to define a solution to Φ.

F.2 Producing canonical functions

We now show that if Γ = (V ;E,N, 6=, . . .) is a reduct of G such that there is no primitive
positive definition of H in Γ, then one of the other cases of Proposition 26 applies. By
Theorem 4, Γ has a polymorphism that violates H.

Definition 28. A function f : V n → V is called essentially unary if it depends on only
one of its variables; otherwise, it is called essential.

Since E and N are among the relations of Γ, and since any essentially unary polymor-
phism preserving both E and N preserves all relations with a first-order definition in G,
we have that the polymorphism violating H must be essential. Thus the following theorem
from [10] applies. Before stating it, it is convenient to define the dual of an operation f
on G, which can be imagined as the function obtained from f by exchanging the roles of
E and N .

Definition 29. The dual of a function f(x1, . . . , xn) on G is the function −f(−x1, . . . ,−xn).

30

Theorem 30 (of [10]). If Γ = (V ;E,N, 6=, . . .) is a reduct of G that has an essential
polymorphism, it must also have at least one of the following binary injective canonical
polymorphisms.

• an balanced operation of type p1;

• a balanced operation of type max;

• an E-dominated operation of type max;

• an E-dominated operation of type p1;

• a binary operation of type p1 that is balanced in the first and E-dominated in the
second argument;

or one of the duals of the last four operations (the first operation is self-dual).

Theorem 30 and the following proposition together imply that indeed, if Case (a) of
Proposition 26 does not apply, then one of the other cases does.

Proposition 31. Suppose that f is an operation on V that preserves the relations E and
N and violates the relation H. Then f generates a binary injective canonical operation of
type min or max, or a ternary injective canonical operation of type minority or majority.

The remainder of this subsection will be devoted to the proof of Proposition 31. We will
need the Ramsey-theoretic machinery which we developed in [10], and start by recalling
the following definition from that paper.

Definition 32. Let τ be any signature and let C be a class of finite τ -structures closed
under substructures and with the property that for any two structures in C there exists a
structure in C containing both structures. We order C by the embedding relation ⊆. Let
P (w) be any property. We say that P holds

• for arbitrarily large elements of C if for any F ∈ C there exists H ∈ C such that
F ⊆ H and P (H) holds;

• for all sufficiently large elements of C iff there is an element F of C such that P holds
for H whenever F embeds into H.

Our properties P will in fact always be of the form “P (H) holds if function f has
behavior B on H”, for a fixed function f and a behavior B. This implies that if P (H)
holds, then P also holds for all substructures of H. Definition 32 then says that P holds
for arbitrarily large elements of C iff for any F ∈ C there is F ′ ∈ C isomorphic to F such
that P (F ′) holds. The following proposition is the combinatorial core of [10], and will also
serve our purposes in this subsection. For a structure ∆ and constants c1, . . . , ck ∈ ∆, we
write (∆, c1, . . . , ck) for the structure that arises when one adds the constants c1, . . . , ck to
the language of ∆.

31

Proposition 33. Let c1, . . . , ck ∈ V n, and let B be a behavior for functions from (Gn, c1, . . . , ck)
to G. Let D be a local clone on V . If for arbitrarily large finite substructures F of
(Gn, c1, . . . , ck) there is a function f ∈ D which satisfies B on F , then there is also a
function g ∈ D which satisfies B on (Gn, c1, . . . , ck). Moreover, g can be chosen to be
canonical.

In the sequel, we will also say that a function f : V n → V has behavior B between two
points x, y ∈ V n if it has behavior B on the structure {x, y}.

Lemma 34. Let a ∈ V 2, and let ha : V 2 → V be a binary injection that behaves like p1

between a and all other points of V 2, and which behaves like p2 between any two points in
V 2 \ {a}. Then ha generates a binary injection of type min.

Proof. To prove the lemma, we show that for any finite set F ⊆ V 2, ha generates a binary
injection that behaves like min on F . The claim then follows from Proposition 33.

We may assume that for all u, v ∈ F we have u1 6= v1 and u2 6= v2. This is because if
we can generate the desired functions for all F with this property, then given an arbitrary
F without this property, we may consider the set F ′ := (ha(x, y), ha(y, x))[F], and find
a function t for this set; then the function t(ha(x, y), ha(y, x)) behaves like min on the
original set F .

So let F be given. We use induction over the size of F . The beginning |F | = 1 is trivial.
So assume that the assertion holds for all F with |F | = n, let any F with |F | = n + 1 be
given, and write F = B ∪ {b}, where |B| = n.

We first claim that for all finite C ⊆ V 2 we have that ha generates a binary injection hC

which behaves like p1 between u, v ∈ V 2 whenever u ∈ C or v ∈ C, and which behaves like
p2 otherwise. We use induction over the size of C to prove the claim. When C has just one
element c, then we can take any automorphisms α, β ∈ Aut(G) such that (α(c1), β(c2)) = a
and then set hC(x, y) := ha(α(x), β(y)). In the induction step, write C = D ∪ {d}, and
let hD be provided by the induction hypothesis. By using an automorphism of G, we may
assume that hD(d) = d2. Now set hC(x, y) := h{d}(x, hD(x, y)). To check that hC satisfies
the desired condition, one needs to distinguish the cases (1) u = d and v ∈ D, (2) u = d
and v ∈ V 2 \C, (3) u ∈ D and v ∈ D, (4) u ∈ D and v ∈ V 2 \C, and finally (5) u ∈ V 2 \C
and v ∈ V 2 \ C. We leave the details to the reader.

By induction hypothesis, there exists a function t generated by ha which behaves like
min on B. Write B = B1∪B2, where B1 contains exactly those elements of B which are not
connected to b in the first coordinate. Let s := hB1 . Then set d := (s(b), t(b)) ∈ V 2, and
let f := h{d}. We claim that f(s, t) behaves like min on F . To see this, let first u, v ∈ B
be given. Then (s(u), t(u)) is adjacent to (s(v), t(v)) in the second coordinate iff u and v
are adjacent in both coordinates, since t behaves like min on B. Since (s(u), t(u)) 6= d and
(s(v), t(v)) 6= d, we have that f behaves like p2 between (s(u), t(u)) and (s(v), t(v)), and
thus f(s, t)(u) and f(s, t)(v) are adjacent iff u and v were adjacent in both coordinates,
so f(s, t) behaves like min between u and v. It remains to show that f(s, t) also behaves

32

like min between any u ∈ B and b. Distinguishing the cases u ∈ B1 and u ∈ B2, one can
verify that (s(u), t(u)) and d = (s(b), t(b)) are adjacent in the first coordinate iff u and b
are adjacent in both coordinates. Since f behaves like p1 between (s(u), t(u)) and d, we
get that f(s, t)(u) and f(s, t)(b) are adjacent iff u and b are adjacent in both coordinates,
proving that f(s, t) behaves like min between u and b.

Lemma 35. Let a ∈ V 2, and let za : V 2 → V be a binary injection that behaves like min
between a and all other points of V 2, and which behaves like p1 between any two points of
V 2 \ {a}. Then za generates a binary injection of type min.

Proof. This follows from the proof of the preceding lemma, since za deletes more edges
than ha.

Definition 36. Let ∆ be a structure. An orbit in ∆ is a maximal set of elements of ∆ of
the same type. An orbit in ∆ is called proper if it contains more than one element.

Proposition 37. Let f : V 2 → V be a binary injection preserving E and N that is neither
of type p1 nor of type p2. Then f generates a binary injection of type min or of type max.

Proof. Let f be given.
Case 1. Suppose there exists c ∈ V 2 such that for arbitrarily large finite substructures

F of (G2, c) we have that f behaves like min between c and the other points in F , and
like one and the same projection between all other points in F . Then we are done by
Proposition 33 and Lemma 35.

Case 2. Suppose there exists c ∈ V 2 such that for arbitrarily large finite substructures
F of (G2, c) we have that f behaves like p1 between c and the other points in F , and like
p2 between all other points in F . Then we are done by Proposition 33 and Lemma 34.
Same if the roles of p1 and p2 are interchanged.

Case 3. Suppose there exists c ∈ V 2 such that for arbitrarily large finite substructures
F of (G2, c) we have that f behaves like min on a proper orbit. Then we are obviously
done by Proposition 33.

Case 4. Suppose there exists c ∈ V 2 such that for arbitrarily large finite substructures
F of (G2, c) there are proper orbits T1, T2 in F such that f behaves like min between any
two points a1 ∈ T1 and a2 ∈ T2, and such that f behaves like one and the same projection
on T1. Then Proposition 33 tells us that f generates a function g which has this property
for proper orbits T1, T2 in (G2, c). This function g satisfies the condition of Case 1 (pick
any constant in T2).

Case 5. Suppose there exists c ∈ V 2 such that for arbitrarily large finite substructures
F of (G2, c) there are proper orbits T1, T2 in F such that f behaves like p2 between any two
points a1 ∈ T1 and a2 ∈ T2, and such that f behaves like p1 on T1. Then Proposition 33
tells us that f generates a function g which has this property for proper orbits T1, T2 in
(G2, c). This function g satisfies the condition of Case 2 (pick any constant in T2). Same
if the roles of p1 and p2 are interchanged.

33

Observe that if one of the cases occurs with max instead of min, then we are done also.
So assume now that we have none of the situations above. This implies that for all

c ∈ V 2, if F is a sufficiently large substructure of (G2, c) and if f is canonical on F , then
f behaves like a projection on F .

Next observe the following: For arbitrary c1, . . . , cn ∈ V 2, if F is a substructure of
(G2, c1, . . . , cn) which is large enough and if f is canonical on F , then there exists i ∈ {1, 2}
such that f behaves like pi between any a, b ∈ F with a /∈ {c1, . . . , cn}.

Now fix c1, . . . , c4 ∈ V 2 witnessing that f does not behave like a projection. Let F
be a substructure of (G2, c1, . . . , c4) on which f is canonical, and let i(F) be the i of the
observation we just made. This i is the same for arbitrarily large F , say wlog i = 1 for
arbitrarily large F . Say wlog that EN(c1, c2) and N(f(c1), f(c2)); so f behaves like min
between c1 and c2. But there are arbitrarily large finite substructures F of (G2, c1, c2) such
that f behaves like p1 between any two elements of F one of which is not equal to c1 or
c2. Thus, given any finite set F , we can delete edges between two elements of F without
adding new edges by applying functions from V 2 to V 2 which have the form (f(x, y), y).
Doing this successively we obtain a function from V 2 to V 2 which deletes all possible edges
on F , and if we apply a binary function of type projection in the end, the composite of all
these operations is a binary term over f that behaves like min on F . The proposition then
follows from Proposition 33.

Lemma 38. Let f : V 3 → V be a ternary injection that preserves E and N such that
there exist x, y, u, v, p, q ∈ V 3 with ENN(x, y), NEN(u, v), NNE(p, q), and E(f(x), f(y)),
E(f(u), f(v)) and E(f(p), f(q)). Then f generates a binary injection of type min or max,
or a ternary injection of type minority.

Proof. We may assume that whenever F ⊆ V 3 is large enough, then f is not of type mi-
nority on F ; otherwise, the lemma follows immediately from Proposition 33. Therefore,
there exist m,n ∈ V 3 which witness this assumption and which are connected to all triples
appearing in the statement of the lemma by an edge in all components. Without loss
of generality, we may assume that EEN(m,n) and E(f(m), f(n)). Let α ∈ Aut(G) be
so that it sends (p1, q1,m1, n1) to (p2, q2,m2, n2). Set g(s, t) := f(s, α(s), t) : V 2 → V .
Then NE((p1, p3), (q1, q3)) and E(g(p1, p3), g(q1, q3)). Moreover, EN((m1,m3), (n1, n3))
and E(g(m1,m3), g(n1, n3)). Thus, g is a binary injection that preserves E and N and
that does not behave like a projection. By Proposition 37, g generates a binary injection
of type min or of type max.

Lemma 39. Let f : V 3 → V be a ternary injection that preserves E and N such that
there exist x, y, u, v, p, q ∈ V 3 with ENN(x, y), NEN(u, v), NNE(p, q), and N(f(x), f(y)),
N(f(u), f(v)) and N(f(p), f(q)). Then f generates a binary injection of type min or max,
or a ternary injection of type majority.

Proof. We may assume that whenever F ⊆ V 3 is large enough, then f is not of type ma-
jority on F ; otherwise, the lemma follows immediately from Proposition 33. Therefore,

34

there exist m,n ∈ V 3 which witness this assumption and which are connected to all triples
appearing in the statement of the lemma by an edge in all components. Without loss
of generality, we may assume that EEN(m,n) and N(f(m), f(n)). Let α ∈ Aut(G) be
so that it sends (p1, q1,m1, n1) to (p2, q2,m2, n2). Set g(s, t) := f(s, α(s), t) : V 2 → V .
Then NE((p1, p3), (q1, q3)) and N(g(p1, p3), g(q1, q3)). Moreover, EN((m1,m3), (n1, n3))
and N(g(m1,m3), g(n1, n3)). Thus, g is a binary injection that preserves E and N and
that does not behave like a projection. By Proposition 37, g generates a binary injection
of type min or of type max.

We are now ready to finish this subsection and provide the proof of Proposition 31.

Proof of Proposition 31. Let f be given. Since the relation H consists of three orbits
of 6-tuples, by Lemma 7 f generates an at most ternary function that violates H, and
hence we can assume wlog that f itself is at most ternary. The operation f can certainly
not be essentially unary, since every essentially unary operation that preserves E and N
also preserves H. Applying Theorem 30 to the reduct which has Inv({f} ∪ Aut(G)) as
its relations, and by Proposition 5, we get that f generates a binary injective canonical
function of type min, max, or p1. In the first two cases we are done, so consider the last
case and denote the function of type p1 by g.

By adding a dummy variable, we may assume that f is ternary. Now consider

h(x, y, z) := g(g(g(f(x, y, z), x), y), z) .

Then h is clearly injective, and still violates H – the latter can easily be verified combining
the facts that f violates H, g is of type p1, and all tuples in H have pairwise distinct
entries. Because h violates H, one of the following is true.

• there exist x, y, u, v, p, q ∈ V 3 with ENN(x, y), NEN(u, v), NNE(p, q), and E(h(x), h(y)),
E(h(u), h(v)) and E(h(p), h(q)), or

• there exist x, y, u, v, p, q ∈ V 3 with ENN(x, y), NEN(u, v), NNE(p, q), andN(h(x), h(y)),
N(h(u), h(v)) and N(h(p), h(q)).

By Lemmas 38 and 39, respectively, we get that h, and hence also f , generates a binary
canonical injection of type min or max, or a ternary canonical injection of type majority
or minority.

F.3 Tractability of types minority / majority with unbalanced projec-
tions

We now prove tractability of the CSP for reducts Γ as in Cases (b) and (c) of Proposition 26,
that is, for reducts Γ which have a ternary polymorphism of type majority or minority, as
well as a binary polymorphism of type p1 which is either E-dominated or N -dominated

35

in the second argument. By duality, we may assume that the polymorphism of type p1 is
E-dominated in the second argument. Throughout this section we assume that Γ has a
finite signature.

It turns out that for such Γ, we can reduce CSP(Γ) to the CSP of the injectivization of
Γ. This implies in turn that the CSP can be reduced to a CSP over a Boolean domain.

Definition 40. A relation is called injective if all its tuples have pairwise distinct entries.
A structure is called injective if it only has injective relations.

Definition 41. We define injectivizations for relations, atomic formulas, and structures.

• Let R be any relation. Then the injectivization of R, denoted by inj(R), is the subre-
lation of R that consists of all tuples of R that only have pairwise distinct entries.

• Let φ(x1, . . . , xn) be an atomic formula in the language of a reduct Γ, where x1, . . . , xn

is a list of the variables that appear in φ. Then the injectivization of φ(x1, . . . , xn)
is the formula Rinj

φ (x1, . . . , xn), where Rinj
φ is a relation symbol which stands for the

injectivization of the relation defined by φ.

• The injectivization of a relational structure Γ, denoted by inj(Γ), is the relational
structure ∆ with the same domain as Γ whose relations are the injectivizations of the
atomic formulas over Γ, i.e., the relations Rinj

φ .

Note that inj(Γ) also contains the injectivizations of relations that are defined by atomic
formulas in which one variable might appear several times. In particular, the injectivization
of an atomic formula φ might have smaller arity than the relation symbol that appears in
φ.

To state the reduction to the CSP of an injectivization, we also need the following
operations on instances of CSP(Γ).

Definition 42. Let ∆ be the injectivization of Γ, and Φ be an instance of CSP(Γ). Then
the injectivization of Φ, denoted by inj(Φ), is the instance Ψ of CSP(∆) obtained from Φ
by replacing each conjunct φ(x1, . . . , xn) of Φ by Rinj

φ (x1, . . . , xn).

We say that a constraint (=conjunct) in an instance of CSP(Γ) is false if it defines an
empty relation in Γ. Note that a constraint R(x1, . . . , xk) might be false even if the relation
R is non-empty (simply because some of the variables from x1, . . . , xn might be equal).

Proposition 43. Let Γ be preserved by a binary injection f of type p1 that is E-dominated
in the second argument. Then the algorithm shown in Figure 2 is a polynomial-time reduc-
tion of CSP(Γ) to CSP(∆), where ∆ is the injectivization of Γ.

Proof. In the main loop, when the algorithm detects a constraint that is false and therefore
rejects, then Φ cannot hold in Γ, because the algorithm only contracts variables x and y
when x = y in all solutions to Φ – and contractions are the only modifications performed

36

// Input: An instance Φ of CSP(Γ) with variables V
While Φ contains a constraint φ that implies x = y for x, y ∈ V do

Replace each occurrence of x by y in Φ.
If Φ contains a false constraint then reject

Loop
Accept if and only if inj(Φ) is satisfiable in ∆.

Figure 2: Polynomial-time Turing reduction from the CSP(Γ) for Γ closed under an un-
balanced binary injection, to the CSP of its injectivization ∆.

on the input formula Φ. So suppose that the algorithm does not reject, and let Ψ be
the instance of CSP(Γ) computed by the algorithm when it reaches the final line of the
algorithm.

By the observation we just made it suffices to show that Ψ holds in Γ if and only if
inj(Ψ) holds in ∆. It is clear that when inj(Ψ) holds in ∆ then Ψ holds in Γ (since the
constraints in inj(Ψ) have been made stronger). We now prove that if Ψ has a solution s
in Γ, then there is also a solution for inj(Ψ) in ∆.

Let s′ be any mapping from the variables to G such that for all distinct variables x, y
of Ψ we have that

• if E(s(x), s(y)) then E(s′(x), s′(y));

• if N(s(x), s(y)) then N(s′(x), s′(y));

• if s(x) = s(y) then E(s′(x), s′(y)).

Clearly, such a mapping exists. We claim that s′ is a solution to Ψ in Γ. Since s′ must be
injective, it is then clearly also a solution to inj(Ψ).

To prove the claim, let R(x1, . . . , xn) be a constraint in Ψ (where x1, . . . , xn is a list of
the variables of φ – R might have higher arity than n). Since we are at the final stage of the
algorithm, we can conclude that φ does not imply equality of any of the variables x1, . . . , xn,
and so there is for all 1 ≤ i < j ≤ n a tuple t(i,j) such that R(t(i,j)) and ti 6= tj hold. Since
R(x1, . . . , xn) is preserved by a binary injection, it is also preserved by injections of arbitrary
arity (it is straightforward to build such terms from a binary injection). Application of
an injection of arity

(
n
2

)
to the tuples t(i,j) shows that R(x1, . . . , xn) contains an injective

tuple (t1, . . . , tn).
Consider the mapping r : {x1, . . . , xn} → G given by r(xl) := f(s(xl), tl). This as-

signment has the property that for all 1 ≤ i, j ≤ n if E(s(xi), s(xj)), then E(r(x), r(y)),
and if N(s(xi), s(xj)) then N(r(xi), r(xj)), because f is of type p1. Moreover, if s(xi) =
s(xj) then E(r(xi), r(xj)) because f is E-dominated in the second argument. Therefore,
(s′(x1), . . . , s′(xn)) and (r(x1), . . . , r(xn)) have the same type in G. Since f is a polymor-

37

phism of Γ, we have that (r(x1), . . . , r(xn)) satisfies the constraint R(x1, . . . , xn). Hence,
s′ satisfies R(x1, . . . , xn) as well.

In this fashion we see that s′ satisfies all the constraints of Ψ, proving our claim.

Definition 44. Let t be a k-tuple of distinct vertices of G, and let q be
(
k
2

)
. Then B(t)

is the q-tuple (a1,2, a1,3, . . . , a1,k, a2,3, . . . , ak−1,k) ∈ {0, 1}q such that ai,j = 0 if N(ti, tj)
and ai,j = 1 if E(ti, tj). If R is a k-ary injective relation, then B(R) is the q-ary Boolean
relation {B(t) | t ∈ R}. If φ is a formula that defines a relation R over G, then we also
write B(φ) instead of B(inj(R)). Finally, for an injective reduct Γ, we write B(Γ) for the
structure over a Boolean domain which has the relations of the form B(R), where R is a
relation of Γ.

Proposition 45. Let Γ be injective. Then CSP(Γ) can be reduced to CSP(B(Γ)) in poly-
nomial time.

Proof. Let Φ be an instance of CSP(Γ), with variable set W . We create an instance Ψ
of CSP(B(Γ)) as follows. The variable set of Ψ is the set of unordered pairs of variables
from Φ. When φ = R(x1, . . . , xk) is a constraint in Φ, then Ψ contains the constraint
B(R)(x1,2, x1,3, . . . , x1,k, x2,1, . . . , xk−1,k). It is straightforward to verify that Ψ can be
computed from Φ in polynomial time, and that Φ is a satisfiable instance of CSP(Γ) if and
only if Ψ is a satisfiable instance of CSP(B(Γ)).

The Boolean majority operation is the unique ternary function f on a Boolean domain
satisfying f(x, x, y) = f(x, y, x) = f(y, x, x) = x. The Boolean minority operation is
the unique ternary function f on a Boolean domain satisfying f(x, x, y) = f(x, y, x) =
f(y, x, x) = y.

The following proposition, together with Propositions 43 and 45 solves the case where
Pol(Γ) contains a ternary injection of type minority or majority as well as one of the
functions of Theorem 30 which are unbalanced and of type projection. It thus shows
tractability of Cases (b) and (c) of Proposition 26 given that none of the other cases
applies.

Proposition 46. Let Γ be injective, and suppose it has an polymorphism of type minority
(majority). Then B(Γ) has a minority (majority) polymorphism, and hence CSP(B(Γ))
can be solved in polynomial time.

Proof. It is straightforward to show that B(Γ) has a minority (majority) polymorphism.
It is well-known (see [22]) that CSP(B(Γ)) can then be solved in polynomial time.

F.4 Tractability of type minority with balanced projections

We show tractability of reducts Γ which have a polymorphism of type minority as well as
a binary canonical injection of type p1 which is balanced. We start by proving that the

38

relations of such reducts can be defined in G by first-order formulas of a certain restricted
syntactic form; this normal form will later we essential for our algorithm.

A Boolean relation is called affine if it can be defined by a conjunction of linear equa-
tions modulo 2. It is well-known that a Boolean relation is affine if and only if it is preserved
by the Boolean minority operation (for a neat proof, see e.g. [15]).

In the following, we denote the Boolean exclusive-or connective (xor) by ⊕.

Definition 47. A graph formula is called edge affine if it is a conjunction of formulas of
the form

x1 6= y1 ∨ . . . ∨ xk 6= yk

∨
(
u1 6= v1 ∧ · · · ∧ ul 6= vl

∧ E(u1, v1)⊕ · · · ⊕ E(ul, vl) = p
)

∨ (u1 = v1 ∧ · · · ∧ ul = vl) ,

where p ∈ {0, 1}, variables need not be distinct, and each of k and l can be 0.

Definition 48. A ternary operation f : V 3 → V is called tame if for every c ∈ V , the
binary operations (x, y) 7→ f(x, y, c), (x, z) 7→ f(x, c, z), and (y, z) 7→ f(c, y, z) are balanced
injections of type p1.

Observe that the existence of tame operations and even tame minority operations fol-
lows from the fact that G contains all countable graphs as induced subgraphs.

Proposition 49. Let R be a relation with a first-order definition over G. Then the fol-
lowing are equivalent:

1. R can be defined by an edge affine formula;

2. R is preserved by every injection of type minority which is tame;

3. R is preserved by an injection of type minority, and a balanced binary injection of
type p1.

Proof. We first show the implication from 1 to 2, that n-ary relations R defined by edge
affine formulas Ψ(x1, . . . , xn) are preserved by tame functions f of type minority. By
injectivity of f , it is easy to see that we only have to show this for the case that Ψ does
not contain disequality disjuncts (i.e., k = 0). Now let φ be a clause from Ψ, say

φ :=
(
u1 6= v1 ∧ · · · ∧ ul 6= vl

∧ (E(u1, v1)⊕ · · · ⊕ E(ul, vl) = p)
)

∨ (u1 = v1 ∧ · · · ∧ ul = vl) ,

39

for p ∈ {0, 1} and u1, . . . , ul, v1, . . . , vl ∈ {x1, . . . , xn}. In the following, it will sometimes
be notationally convenient to consider tuples in G satisfying a formula as mappings from
the variable set of the formula to V . Let t1, t2, t3 : {x1, . . . , xn} → V be three mappings
that satisfy φ. We have to show that the mapping t0 : {x1, . . . , xn} → V defined by
t0(x) = f(t1(x), t2(x), t3(x)) satisfies φ.

Suppose first that each of t1, t2, t3 satisfies u1 6= v1 ∧ · · · ∧ ul 6= vl. In this case,
t0(u1) 6= t0(v1) ∧ · · · ∧ t0(ul) 6= t0(vl), since f preserves 6=. Note that E(t0(ui), t0(vi)),
for 1 ≤ i ≤ l, if and only if E(t1(ui), t1(vi)) ⊕ E(t2(ui), t2(vi)) ⊕ E(t3(ui), t3(vi)) = 1.
Therefore, since each t1, t2, t3 satisfies E(u1, v1) ⊕ · · · ⊕ E(ul, vl) = p, we find that t0 also
satisfies E(u1, v1)⊕ · · · ⊕ E(ul, vl) = p⊕ p⊕ p = p.

Next, suppose that one of t1, t2, t3 satisfies ui = vi for some (and therefore for all)
1 ≤ i ≤ l. By permuting arguments of f , we can assume that t1(ui) = t1(vi) for all
i ∈ {1, . . . , l}. Since the function f is tame, the operation g : (y, z) 7→ f(t1(ui), y, z) is
a balanced injection of type p1. Suppose that t2(ui) = t2(vi). Then E(t0(ui), t0(vi)) if
and only if E(t3(ui), t3(vi)), since g is balanced. Hence, t0 satisfies φ. Now suppose that
t2(ui) 6= t2(vi). Then E(t0(ui), t0(vi)) if and only if E(t2(ui), t2(vi)), since g is of type p1.
Again, t0 satisfies φ. This shows that f preserves φ, and hence also Ψ.

The implication from 2 to 3 is trivial, since every tame function of type minority
generates a balanced binary injection of type p1 by identification of two of its variables.
It is also here that we have to check the existence of tame injections of type minority; as
mentioned above, this follows easily from the universality of G.

We show the implication from 3 to 1 by induction on the arity n of the relation R. Let
g be the balanced binary injection of type p1, and let h be the operation of type minority.
For n = 2 the statement of the theorem holds, because all binary relations with a first-order
definition in G can be defined over G by expressions as in Definition 47:

• For x 6= y we set k = 1 and l = 0.

• For ¬E(x, y) we can set k = 0, l = 1, p = 0.

• For ¬N(x, y) we can set k = 0, l = 1, p = 1.

• Then, E(x, y) can be expressed as (x 6= y) ∧ ¬N(x, y).

• N(x, y) can be expressed as (x 6= y) ∧ ¬E(x, y).

• x = y can be expressed as ¬E(x, y) ∧ ¬N(x, y).

• The empty relation can be expressed as E(x, y) ∧N(x, y).

• Finally, V 2 can be defined by the empty conjunction.

For n > 2, we construct the formula Ψ that defines the relation R(x1, . . . , xn) as follows.
If there are distinct i, j ∈ {1, . . . , n} such that for all tuples t in R we have ti = tj , consider

40

the relation defined by ∃xi.R(x1, . . . , xn). This relation is also preserved by g and h, and by
inductive assumption has a definition Φ as required. Then the formula Ψ := (xi = xj ∧Φ)
proves the claim. So let us assume that for all distinct i, j there is a tuple t ∈ R where
ti 6= tj . Note that since R is preserved by the binary injective operation g, this implies
that R also contains an injective tuple.

Since R is preserved by an operation of type minority, the relation B(inj(R)) is pre-
served by the Boolean minority operation, and hence has a definition by a conjunction of
linear equations modulo 2. From this definition it is straightforward to obtain a definition
Φ(x1, . . . , xn) of inj(R) which is the conjunction of

∧
i<j≤n xi 6= xj and of formulas of the

form
E(u1, v1)⊕ · · · ⊕ E(ul, vl) = p ,

for u1, . . . , ul, v1, . . . , vl ∈ {x1, . . . , xn}. It is clear that we can assume that none of the
formulas of the form E(u1, v1)⊕ · · · ⊕E(ul, vl) = p in Φ can be equivalently replaced by a
conjunction of shorter formulas of this form.

For all i, j ∈ {1, . . . , n} with i < j, let Ri,j be the relation that holds for the tuple
(x1, . . . , xi−1, xi+1, . . . , xn) iff R(x1, . . . , xi−1, xj , xi+1, . . . , xn) holds. Because Ri,j is pre-
served by g and h, but has arity n − 1, it has a definition Φi,j as in the statement by
inductive assumption. We call the conjuncts of Φi,j also the clauses of Φi,j . We add to
each clause of Φi,j a disjunct xi 6= xj .

Let Ψ be the conjunction composed of conjuncts from the following two groups:

1. all the modified clauses from all formulas Φi,j ;

2. when φ = (E(u1, v1) ⊕ · · · ⊕ E(ul, vl) = p) is a conjunct of Φ, then Ψ contains the
formula

(u1 6= v1 ∧ · · · ∧ ul 6= vl ∧ φ)
∨(u1 = v1 ∧ · · · ∧ ul = vl) .

Obviously, Ψ is a formula in the required form. We have to verify that Ψ defines R.
Let t be an n-tuple such that t /∈ R. If t is injective, then t violates a formula of the

form
E(u1, v1)⊕ · · · ⊕ E(ul, vl) = p

from the formula Φ defining inj(R), and hence it violates a conjunct of Ψ of the second
group. If there are i, j such that ti = tj then the tuple ti := (t1, . . . , ti−1, ti+1, . . . , tn) /∈ Ri,j .
Therefore some conjunct φ of Φi,j is not satisfied by ti, and φ ∨ xi 6= xj is not satisfied by
t. Thus, in this case t does not satisfy Ψ either.

It remains to verify that all t ∈ R satisfy Ψ. Let ψ be a conjunct of Ψ created from
some clause in Φi,j . If ti 6= tj , then ψ is satisfied by t because φ contains xi 6= xj . If ti = tj ,
then (t1, . . . , ti−1, ti+1, . . . , tn) ∈ Ri,j and thus this tuple satisfies Φi,j . This also implies
that t satisfies ψ. Now, let ψ be a conjunct of Ψ from the second group. We distinguish
three cases.

41

1. For all 1 ≤ i ≤ l we have that t satisfies ui = vi. In this case we are clearly done
since t satisfies the second disjunct of ψ.

2. For all 1 ≤ i ≤ l we have that t satisfies ui 6= vi. Suppose for contradiction that t does
not satisfy E(u1, v1) ⊕ · · · ⊕ E(ul, vl) = p. Let r ∈ R be injective, and consider the
tuple s := g(t, r). Then s ∈ R, and s is injective since the tuple r and the function
g are injective. However, since g is of type p1, we have E(s(ui), s(vi)) if and only
if E(t(ui), t(vi)), for all 1 ≤ i ≤ l. Hence, s violates the conjunct E(u1, v1) ⊕ · · · ⊕
E(ul, vl) = p from Φ, a contradiction since s ∈ inj(R).

3. The remaining case is that there is a proper non-empty subset S of {1, . . . , l} such
that t satisfies ui = vi for all i ∈ S and t satisfies ui 6= vi for all i ∈ {1, . . . , n} \ S.
We claim that this case cannot occur. Suppose that all tuples t′ from inj(R) satisfy
that

⊕
i∈S E(ui, vi) = d for some d ∈ {0, 1}. In this case we could have replaced

E(u1, v1) ⊕ · · · ⊕ E(ul, vl) = p by the two shorter formulas
⊕

i∈S E(ui, vi) = d and⊕
i∈{1,...,n}\S E(ui, vi) = p ⊕ d, in contradiction to our assumption on Φ. So, for

each d ∈ {0, 1} there is a tuple sd ∈ inj(R) where
⊕

i∈S E(ui, vi) = d (and thus⊕
i∈{1,...,n}\S E(ui, vi) = p⊕ d). Now, for the tuple g(t, s1−p) we have⊕

i∈[n]

E(ui, vi) =
⊕
i∈S

E(ui, vi)⊕
⊕

i∈[n]\S

E(ui, vi)

= p⊕ (p⊕ (1− p))
= 1− p 6= p

which is a contradiction since g(t, s1−p) ∈ inj(R).

Hence, all t ∈ R satisfy all conjuncts ψ of Ψ. We conclude that Ψ defines R.

We now present a polynomial-time algorithm for CSP(Γ) for the case that Γ has finitely
many edge affine relations.

Definition 50. Let Γ only have edge affine relations, and let Φ be an instance of CSP(Γ).
Then the graph of Φ is the (undirected) graph whose vertices are unordered pairs of distinct
variables of Φ, and which has an edge between distinct sets {a, b} and {c, d} if Φ contains
a constraint whose definition as in Definition 47 has a conjunct of the form(

u1 6= v1 ∧ · · · ∧ ul 6= vl ∧ (E(u1, v1)⊕ · · · ⊕ E(ul, vl) = p)
)

∨ (u1 = v1 ∧ · · · ∧ ul = vl)

such that {a, b} = {ui, vi} and {c, d} = {uj , vj} for some i, j ∈ {1, . . . , l}.

It is clear that for Γ with finite signature, the graph of an instance Φ of CSP(Γ) can
be computed in linear time from Φ.

42

// Input: An instance Φ of CSP(Γ) with variables V
Repeat

For each connected component C of the graph of Φ do
Let Ψ be the affine Boolean formula inj(Φ, C).
If Ψ is unsatisfiable then

For each {x, y} ∈ C do
Replace each occurrence of x by y in Φ.

If Φ contains a false constraint then reject
Loop

Until inj(Φ, C) is satisfiable for all components C
Accept

Figure 3: A polynomial-time algorithm for CSP(Γ) when Γ is preserved by a tame operation
of type minority.

Definition 51. Let Γ only have edge affine relations, and let Φ be an instance of CSP(Γ).
For a set C of 2-element subsets of variables of Φ, we define inj(Φ, C) to be the following
affine Boolean formula. The set of variables of inj(Φ, C) is C. The constraints of inj(Φ, C)
are obtained from the constraints φ of Φ as follows. If φ has a definition as in Definition 47
with a clause of the form(

u1 6= v1 ∧ · · · ∧ ul 6= vl ∧ (E(u1, v1)⊕ · · · ⊕ E(ul, vl) = p)
)

∨ (u1 = v1 ∧ · · · ∧ ul = vl)

where all pairs {ui, vi} are in C, then inj(Φ, C) contains the conjunct {u1, v1} ⊕ · · · ⊕
{ul, vl} = p.

Tractability of Case (d) of Proposition 26 now follows from the following proposition
and Proposition 49.

Proposition 52. Let Γ = (V ;E,N, 6=, . . .) be a reduct of G with a finite signature and
which is preserved by a tame function of type minority. Then the algorithm shown in
Figure 3 solves CSP(Γ) in polynomial time.

Proof. We first show that when the algorithm detects a constraint that is false and therefore
rejects in the innermost loop, then Φ must be unsatisfiable. Since variable contractions
are the only modifications performed on the input formula Φ, it suffices to show that
the algorithm only equates variables x and y when x = y in all solutions. To see that
this is true, assume that Ψ := inj(Φ, C) is an unsatisfiable Boolean formula for some
connected component C. Hence, in any solution s to Φ there must be a {x, y} in C such
that s(x) = s(y). It follows immediately from the definition of the graph of Φ that then
s(u) = s(v) for all {u, v} adjacent to {x, y} in the graph of Φ. By connectivity of C,

43

we have that s(u) = s(v) for all {u, v} ∈ C. Since this holds for any solution to Φ, the
contractions in the innermost loop of the algorithm preserve satisfiability.

So we only have to show that when the algorithm accepts, there is indeed a solution
to Φ. When the algorithm accepts, we must have that inj(Φ, C) has a solution sC for all
components C of the graph of Φ, and no equality is forced by an individual constraint.
Let s be a mapping from the variables of Φ to the V such that E(xi, xj) if {xi, xj} is
in component C of the graph of Φ and sC({xi, xj}) = 1, and N(xi, xj) otherwise. It is
straightforward to verify that this assignment satisfies all of the constraints.

F.5 Tractability of type majority with balanced projections

We turn to Case (e) of Proposition 26, i.e., the case where Γ has ternary injection of type
majority and a binary canonical injection of type p1 which is balanced.

A Boolean relation is called bijunctive if it can be defined by a conjunction of clauses
of size at most two (i.e., it is the solution set to a 2SAT instance). It is well-known that
a Boolean relation is bijunctive if and only if it is preserved by the Boolean majority
operation (see e.g. [15]).

Definition 53. A relation R on G is called graph bijunctive if it can be defined in G by
a conjunction of disjunctions of disequalities, and of formulas of the form

x1 6= y1 ∨ . . . ∨ xk 6= yk

∨
(
u1 6= v1 ∧ u2 6= v2 ∧ (X(u1, v1) ∨ Y (u2, v2))

)
∨ (u1 = v1 ∧ u2 = v2) ,

where X,Y ∈ {E,N}, variables need not be distinct, and k can be 0.

Proposition 54. Let R be a relation with a first-order definition in G. Then the following
are equivalent.

1. R is graph bijunctive;

2. R is preserved by every tame function of type majority;

3. R is preserved by a function of type majority and a balanced injection of type p1.

Proof. The proof is very similar to the proof of Proposition 49. We first show the implica-
tion from 1 to 2, that relations that are graph bijunctive are preserved by tame functions f
of type majority. By injectivity of f , it suffices to show this for the case that the formulas
do not contain disequality disjuncts (i.e., k = 0). Since the clauses φ of such a formula
are such that B(φ) is bijunctive, the claim follows from the fact that bijunctive Boolean
relations are preserved by the Boolean majority operation in very much the same way as
in Proposition 49.

44

For the implication from 2 to 3, observe that tame functions of type majority exist since
G is universal, and that identifying two variables of such an operation yields a balanced
injection of type p1.

We show the implication from 3 to 1 by induction on the arity n of the relation R. Let g
be the balanced binary injection of type p1, and let h be the operation of type majority. For
n = 2 the statement of the proposition holds because all binary relations with a first-order
definition over G can be defined as in Definition 53.

• for ¬E(x, y) we can set k = 0, X = Y := N , u1 = v1 := x, u2 = v2 := y; dually,
¬N(x, y) can be defined;

• For x 6= y, this is trivial;

• E(x, y) can be defined as the conjunct of x 6= y and ¬N(x, y); dually, we can define
N(x, y);

• The relation x = y can be obtained as the conjunction of ¬E(x, y) and ¬N(x, y);

• The empty relation is obtained as the conjunction of E(x, y) and N(x, y);

• Finally, V 2 can be defined by the empty conjunction.

For n > 2, we construct the formula Ψ that defines the relation R(x1, . . . , xn) as follows.
If there are distinct i, j ∈ {1, . . . , n} such that for all tuples t in R we have ti = tj , consider
the relation defined by ∃xi.R(x1, . . . , xn). This relation is also preserved by g and h, and by
inductive assumption has a definition Φ as required. Then the formula Ψ := (xi = xj ∧Φ)
proves the claim. So let us assume that for all distinct i, j there is a tuple t ∈ R where
ti 6= tj . Note that since R is preserved by the binary injective operation g, this implies
that R also contains an injective tuple.

Since R is preserved by a function of type majority, the relation B(inj(R)) is preserved
by the Boolean majority operation, and hence is bijunctive. From this definition it is
straightforward to obtain a definition Φ(x1, . . . , xn) of inj(R) which is the conjunction of∧

1≤i<j≤n xi 6= xj and of formulas of the form E(u, v), N(u, v), or

X(u1, v1) ∨ Y (u1, v1) ,

for u1, u2, v1, v2 ∈ {x1, . . . , xn}, and X,Y ∈ {E,N}. We can assume (by removing succes-
sively literals from clauses) that this formula is reduced, i.e., that each of the conjuncts is
such that removing any of its literals results in an inequivalent formula.

For all i, j ∈ {1, . . . , n} with i < j, let Ri,j be the relation that holds for the tuple
(x1, . . . , xi−1, xi+1, . . . , xn) iff R(x1, . . . , xi−1, xj , xi+1, . . . , xn) holds. Because also Ri,j is
preserved by g and h, but has arity n − 1, it has a definition Φi,j as in the statement by
inductive assumption. We call the conjuncts of Φi,j also the clauses of Φi,j . We add to
each clause of Φi,j a disjunct xi 6= xj .

Let Ψ be the conjunction composed of conjuncts from the following two groups:

45

1. all the modified clauses from all formulas Φi,j ;

2. when φ = (X(u1, v1) ∨ Y (u2, v2)) is a conjunct of Φ, then Ψ contains the formula

(φ ∧ u1 6= v1 ∧ u2 6= v2) ∨ (u1 = v1 ∧ u2 = v2) .

Obviously, Ψ is a formula in the required form. We have to verify that Ψ defines R.
Let t be an n-tuple such that t /∈ R. If t is injective, then since t /∈ inj(R), it violates

a clause of the form X(u1, v1) ∨ Y (u1, v1) of Φ, and hence the corresponding clause in Ψ.
If there are i, j such that ti = tj then the tuple ti := (t1, . . . , ti−1, ti+1, . . . , tn) /∈ Ri,j .
Therefore some conjunct φ of Φi,j is not satisfied by ti, and φ ∨ xi 6= xj is not satisfied by
t. Thus, in this case t does not satisfy Ψ either.

It remains to verify that all t ∈ R satisfy Ψ. Let ψ be a conjunct of Ψ created from
some clause in Φi,j . If ti 6= tj , then ψ is satisfied by t because ψ contains xi 6= xj . If ti = tj ,
then (t1, . . . , ti−1, ti+1, . . . , tn) ∈ Ri,j and thus this tuple satisfies Φi,j . This also implies
that t satisfies ψ. Now, let ψ be a conjunct of Ψ from the second group, so it is of the form

ψ =
(
u1 6= v1 ∧ u2 6= v2 ∧ (X(u1, v1) ∨ Y (u2, v2))

)
∨ (u1 = v1 ∧ u2 = v2) .

We distinguish three cases.

1. The tuple t satisfies both u1 = v1 and u2 = v2. In this case we are clearly done since
t satisfies the second disjunct of ψ.

2. The tuple t satisfies u1 6= v2 and u2 6= v2. Then the argument is exactly the same as
the argument in the proof of Proposition 49.

3. The remaining case is that t satisfies u1 = v1 and u2 6= v2 (or u1 6= v1 and u2 =
v2, but the proof there is symmetric). We claim that this case cannot occur. If t
satisfies Y (u2, v2), we are done; so let us assume that t satisfies ¬Y (u2, v2). Since we
assumed that Φ is reduced, it follows that there exists a tuple s ∈ inj(R) (and hence
in R) where ¬X(u1, u1) and Y (u1, v1); otherwise, we could have replaced the clause
X(u1, v1) ∨ Y (u2, v2) by X(u1, v1). Then the tuple r := g(t, s) is also injective, and
satisfies ¬Y (u2, u2) (since g is of type p1) and it also satisfies ¬X(u1, v1) (since g is
balanced). Since g is injective, we have found a tuple r ∈ inj(R) that does not satisfy
X(u1, v1) ∨ Y (u1, v1), a contradiction.

Combining the following proposition with Proposition 54 finishes the proof of tractabil-
ity of Case (e) of Proposition 26.

46

Proposition 55. Let Γ = (V ;E,N, 6=, . . .) be a reduct of G with a finite signature and
which is preserved by a tame function of type majority. Then CSP(Γ) can be solved in
polynomial time.

Proof. The algorithm for CSP(Γ) is a straightforward adaptation of the procedure given
in Figure 3, with the difference that instead of affine Boolean equation systems we have to
solve 2-SAT instances in the inner loop.

F.6 Tractability of types max and min

We are left with the case where Γ has a canonical binary injective polymorphism of type
max or min, which corresponds to Case (f) of Proposition 26.

We claim that we can assume that this polymorphism is either balanced, or of type
max and E-dominated, or of type min and N -dominated.

Proposition 56. If Γ = (V ;E,N, 6=, . . .) is a reduct of the random graph that has a canon-
ical binary injective polymorphism of type max (min), then it also has a canonical binary
injective polymorphism of type max which is balanced or E-dominated (N -dominated).

Proof. We prove the statement for type max (the situation for min is dual). Let p be the
polymorphism of type max. Then h(x, y) := p(x, q(x, y)) is not N -dominated in the first
argument; this is easy to see. But then p(h(x, y), h(y, x)) is either balanced or E-dominated,
and still of type max.

We will need the following result which was shown in [3, Proposition 14]. For a relational
structure Γ, we denote by Γ̂ the expansion of Γ that also contains the complement for each
relation in Γ. We call a homomorphism between two structures Γ and ∆ strong if it is also
a homomorphism between Γ̂ and ∆̂.

Proposition 57. Let Γ be an ω-categorical homogeneous structure such that CSP(Γ̂) is
tractable, and let ∆ be a reduct of Γ. If ∆ has a polymorphism which is a strong homo-
morphism from Γ2 to Γ, then CSP(∆) is tractable as well.

In the following, a strong homomorphism from a power of Γ to Γ will be called strong
polymorphism. We apply Proposition 57 to our setting as follows.

Proposition 58. Let Γ = (V ;E,N, 6=, . . .) be a reduct of G with a finite signature, and
which is preserved by a binary canonical injection which is of type max and balanced or
E-dominated, or of type min and balanced or N -dominated. Then CSP(Γ) can be solved
in polynomial time.

Proof. We have the following.

• A canonical binary injection which is of type min and N -dominated is a strong
polymorphism of (V ;E,=).

47

• A canonical binary injection which is of type max and E-dominated is a strong
polymorphism of (V ;N,=).

• A canonical binary injection which is of type max and balanced is a strong polymor-
phism of (V ;¬E,=).

• A canonical binary injection which is of type min and balanced is a strong polymor-
phism of (V ;¬N,=).

The tractability result follows from Proposition 57, because

CSP(V ;E,¬E,N, 6= N,=, 6=)

can be solved in polynomial time. One way to see this is to verify that all relations are
preserved by a tame polymorphism of type majority, and to use the algorithm presented
in Section F.5.

This completes the proof of Proposition 26!

G Classification

By Theorem 1, all reducts of the random graph with finitely many relations define a CSP
which is either tractable or NP-complete. We now give a list of 17 reducts Γ with the
following properties (assuming that P6= NP): (1) For any reduct ∆ with finitely many
relations, CSP(∆) is in P if and only if the relations of ∆ are a subset of one of the reducts
of our list, and (2) the list is minimal, i.e., if one reduct Γ is removed from our list, then
the list loses property (1).

Clearly, if we add relations to a reduct Γ, then the CSP of the structure thus obtained
is computationally at least as complex as the CSP of Γ. On the other hand, by Theo-
rem 13, adding relations with a primitive positive definition to a reduct does not increase
the computational complexity of the corresponding CSP more than polynomially. In this
section, we consider the lattice of reducts of G which are closed under primitive positive
definitions (i.e., which contain all relations that are primitive positive definable from the
reduct), and describe the border between tractability and NP-completeness in this lattice.
We remark that the reducts will, since we expand them by all primitive positive definable
relations, have infinitely many relations, and hence do not define a CSP; however, as al-
ready stated earlier, consider a reduct Γ tractable if and only if all structures with domain
V which have finitely many relations, all taken from Γ, have a tractable CSP. Similarly, we
consider a reduct Γ to be hard if it has at least one hard relation. With this convention, it
is interesting to determine the maximal tractable reducts, i.e., those reducts closed under
primitive positive definitions which do not contain any hard relation and which cannot be
further extended without losing this property.

48

Recall the notion of a clone from Section C. By Theorem 4 and Proposition 5, the
lattice of primitive positive closed reducts of G and the lattice of locally closed clones
containing Aut(G) are antiisomorphic via the mappings Γ 7→ Pol(Γ) (for reducts Γ) and
C 7→ Inv(C) (for clones C). We refer to the introduction of [4] for a detailed exposition
of this well-known connection. Therefore, the maximal tractable reducts correspond to
minimal tractable clones, which are precisely the clones of the form Pol(Γ) for a maximal
tractable reduct. Determining these minimal tractable clones is the goal of this section.

Definition 59. Let B be a behavior for binary functions on G. A ternary injection f :
V 3 → V is hyperplanely of type B if the binary functions (x, y) 7→ f(x, y, c), (x, z) 7→
f(x, c, z), and (y, z) 7→ f(c, y, z) have behavior B for all c ∈ V .

We have already met a special case of this concept in Definition 48 of Section F.4: A
ternary function is tame if and only if it is hyperplanely balanced and of type p1.

We now define some more behaviors of binary functions which will appear “hyper-
planely” in ternary functions in our classification.

Definition 60. A binary injection f : V 2 → V is of type

• E-constant if the image of f is a clique;

• N -constant if the image of f is an independent set;

• xnor if for all u, v ∈ V 2 with 6=6=(u, v) the relation E(f(u), f(v)) holds if and only if
EE(u, v) or NN(u, v) holds;

• xor if for all u, v ∈ V 2 with 6=6=(u, v) the relation E(f(u), f(v)) holds if and only if
neither EE(u, v) nor NN(u, v) hold.

Before stating the theorem that lists the minimal tractable polymorphism clones of
reducts of G, we observe that if two canonical functions f, g : V n → V have the same
behavior, then they generate the same clone. This follows easily from the homogeneity of
G and by local closure.

Theorem 61. The following 17 distinct clones are precisely the minimal tractable local
clones containing Aut(G):

1. The clone generated by a constant operation.

2. The clone generated by a balanced binary injection of type max.

3. The clone generated by a balanced binary injection of type min.

4. The clone generated by an E-dominated binary injection of type max.

5. The clone generated by an N -dominated binary injection of type min.

49

6. The clone generated by a function of type majority which is hyperplanely balanced
and of type projection.

7. The clone generated by a function of type majority which is hyperplanely E-constant.

8. The clone generated by a function of type majority which is hyperplanely N -constant.

9. The clone generated by a function of type majority which is hyperplanely of type max
and E-dominated.

10. The clone generated by a function of type majority which is hyperplanely of type min
and N -dominated.

11. The clone generated by a function of type minority which is hyperplanely balanced
and of type projection.

12. The clone generated by a function of type minority which is hyperplanely of type
projection and E-dominated.

13. The clone generated by a function of type minority which is hyperplanely of type
projection and N -dominated.

14. The clone generated by a function of type minority which is hyperplanely of type xnor
and E-dominated.

15. The clone generated by a function of type minority which is hyperplanely of type xor
and N -dominated.

16. The clone generated by a binary injection which is E-constant.

17. The clone generated by a binary injection which is N -constant.

Proof. We briefly discuss the tractability of these clones: Clone 1 is tractable by Proposi-
tion 10, and Clones 2 to 5 are tractable by Case (f) of Proposition 26. The clones generated
by a function of type majority or minority (Clones 6 to 15) are tractable by Cases (b) to (e)
of Proposition 26: in those cases, certain binary canonical injections of type projection are
required – these are obtained by identifying any two variables of the function of type ma-
jority / minority; Figure 4 shows which function of type majority / minority yields which
type of binary injection. We leave the verification to the reader. Finally, let f(x, y) be
an E-constant binary injection generating Clone 16, and denote the reduct corresponding
to this clone by Γ. Then g(x) := f(x, x) is a homomorphism from Γ to the structure ∆
induced by the image g[V] in Γ. This structure ∆ is invariant under all permutations of
its domain, and hence is definable in (g[V]; =); such structures definable by equality only
have been called equality constraint languages in [5], and their computational complex-
ity has been classified. The structure ∆ has a binary injection among its polymorphisms

50

Binary injection type p1 Type majority Type minority
Balanced Hp. balanced, type p1 Hp. balanced, type p1

E-dominated Hp. E-constant Hp. type p1, E-dominated
N -dominated Hp. N -constant Hp. type p1, N -dominated
Balanced in 1st, E-dom. in 2nd arg. Hp. type max, E-dom. Hp. type xnor, E-dom.
Balanced in 1st, N -dom. in 2nd arg. Hp. type min, N -dom. Hp. type xor, N -dom.

Figure 4: Minimal tractable canonical functions of type majority / minority and their
corresponding canonical binary injections of type projection.

(namely, the restriction of f to ∆). It then follows from the results in [5] that CSP(∆) is
tractable. Hence, CSP(Γ) tractable as well, since Γ and ∆ are homomorphically equivalent
(cf. Proposition 6). The argument for Clone 17 is identical.

It is not difficult to see and even automatically verifiable that the clones are all distinct
– a task we leave to the reader or his computer.

We now show minimality for each clone, i.e., we show for each clone C of the theo-
rem that any subclone of C containing Aut(G) is not tractable. By the results of [10],
Clones 1 to 5 only have the clone generated by Aut(G) as proper subclone; this latter
clone corresponds to an NP-complete problem since it only contains essentially unary
functions (see [3]), and hence minimality follows. The largest proper subclone of Clone 16
which contains Aut(G) is the clone generated by eE – this clone contains only essen-
tially unary functions, and hence is hard. The same argument proves minimality for
Clone 17. In order to show minimality for the rest of the clones (Clones 6 to 15), we
need the following notation: For a ternary function t and a binary function p, we define
a ternary function s by s(x, y, z) := t(p(x, y), p(y, z), p(z, x)), and a ternary function w by
w(x, y, z) := s(p(x, y), p(y, z), p(z, x)). Let C be one of the Clones 6 to 15, and suppose
that D is a tractable subclone. Then Proposition 26 applies to D, and since C contains no
binary injection of type max or min, we see that D contains a function of type majority
or minority; denote this operation by t. Moreover, D contains a binary canonical injection
p of type projection by Theorem 30. But then it contains also the function w as defined
above, which is one of the functions generating Clones 6 to 15 (which of the functions
depends on the precise behavior of p, and is shown in Figure 4 – we leave the verification
to the reader). Hence D = C.

We now show that there are no other minimal tractable clones except for those of the
theorem. Suppose that C is any minimal tractable clone, and denote by Γ the corresponding
reduct. We apply Theorem 7. If C contains a constant operation, then it contains Clone 1,
and hence is equal to this clone by minimality. So we assume that this is not the case.
Assume next that C contains eE . Then consider the structure ∆ induced in Γ on the
image eE [V]. Since Γ and ∆ are homomorphically equivalent, CSP(∆) is tractable. Since
∆ is definable in the structure (eE [V]; =) it follows from the results in [5] that it has a
polymorphism which is either a constant or a binary injection. The former case is impossible

51

as otherwise also Γ has a constant polymorphism by composing the constant of ∆ with
eE . Let thus f(x, y) be the binary injection on e[V] which is a polymorphism of ∆. Then
g(x, y) := f(eE(x), eE(y)) is a polymorphism of Γ. But g is a binary canonical injection
which is E-constant, and hence C contains Clone 16 of our list. By minimality, C is equal to
this clone. The argument when C contains eN is identical. Hence by Theorem 11 it remains
to consider the case where the endomorphisms of Γ are generated by its automorphisms.
Let G := Aut(Γ). By Theorem 13 there are five possibilities for G. Suppose first that G
is the group of all permutations on V . Then the assumption that C contains no constant
operation and the tractability of C imply that G contains all binary injections, by the results
of [5]. In particular, C contains, say, a balanced binary canonical injection operation of type
max. But then the clone generated only by this operation and Aut(G) is a tractable proper
subclone of C, contradicting the minimality of C. Hence, G cannot contain all permutations.
Next consider the case where G is the group generated by the function − : V → V together
with Aut(G). Then the hard relation P (3) consists of only one orbit in Γ, and hence is
violated by an automorphism of Γ. This is a contradiction since the function − preserves
P (3). Now suppose that G contains sw and is a proper subgroup of the full symmetric
group. Then the hard relation T has just one orbit in Γ, and since T must be violated,
it is also violated by an endomorphism, and hence also an automorphism of Γ. This is
again a contradiction since the functions in G preserve T . It remains to consider the case
G = Aut(G); this implies that all polymorphisms of Γ preserve E and N , so Γ contains
the relations E and N . Thus Proposition 26 applies, and C contains a binary canonical
injection of type max or min, or a function of type minority or majority. If it contains
a canonical injection of type max or min, then it contains one of the Clones 2 to 5 by
Proposition 56. Otherwise, it contains an a function of type minority or majority, and one
of the binary canonical injections of type projection listed in Theorem 30. As in the proof
of the minimality of Clones 6 to 15 above, building the terms s and w one can now show
that C contains one of the clones of our list.

By inspection of all hardness proofs in this paper and the hardness proofs in [5], we
also obtain the following. The relation E6 refers to a relation that forces the clone Pol(E6)
to contain precisely all unary injective operations, and no other operations, and is defined
by

{(x1, x2, y1, y2, z1, z2) ∈ V 6 | (x1 = x2 ∧ y1 6= y2 ∧ z1 6= z2)
∨ (x1 6= x2 ∧ y1 = y2 ∧ z1 6= z2)
∨ (x1 6= x2 ∧ y1 6= y2 ∧ z1 = z2)} .

Corollary 62. For all reducts Γ of G, CSP(Γ) is tractable, or one of the following relations
has a primitive positive definition in Γ: the relation E6, or the relation T , H, or P (3).

Figure 5 showing the border between the hard and the tractable clones. The picture
contains all minimal tractable clones as well as all maximal hard clones, plus some other

52

clones that are of interest in this context. When two clones are connected by a line, we
do not mean to imply that there are no other clones between them which are not shown
in the picture. Clones are symbolized with a double border when they have a dual clone
(generated by the dual function in the sense of Definition 29, whose behavior is obtained
by exchanging E with N , max with min, and xnor with xor). Of two dual clones, only one
representative (the one which has E and max in its definition) is included in the picture.
The numbers of the minimal tractable clones refer to the numbers in Theorem 61. “E-
semidominated” refers to “balanced in the first and E-dominated in the second argument”.

Interestingly, our classification result can be put into the form of the so-called tractabil-
ity conjecture [12] for finite domain CSPs. This conjecture says that a finite structure
Γ where all endomorphisms are automorphisms either admits a primitive positive inter-
pretation of ({0, 1}; {(0, 0, 1), (0, 1, 0), (1, 0, 0)}), and CSP(Γ) is NP-hard, or else Γ has a
four-ary polymorphism f that satisfies f(y, y, x, x) = f(x, x, x, y) = f(y, x, y, x) for all ele-
ments x, y of Γ, and CSP(Γ) can be solved in polynomial time. The only part that is open
in the tractability conjecture is whether the existence of a polymorphism with the given
properties implies polynomial-time tractability. We show that an analogous version of the
tractability conjecture is true for constraint languages Γ that are reducts of the random
graph.

Theorem 63. Let Γ be a reduct of (V ;E). Then exactly one of the following holds.

• Γ has a canonical 4-ary polymorphism f and automorphisms α1 and α2 such that for
all x, y ∈ V we have

f(y, y, x, x) = α1(f(x, x, x, y)) = α2(f(y, x, y, x)) .

In this case, CSP(Γ) is tractable.

• Γ admits a primitive positive interpretation of ({0, 1}; {(0, 0, 1), (0, 1, 0), (1, 0, 0)}). In
this case, CSP(Γ) is NP-complete.

Before we derive this statement from what was shown earlier, we prove a general lemma
that will certainly be useful also in other contexts. As usual in universal algebra, when A
is an algebra1 we denote by Ak the k-th direct power A× · · · ×A of A, and by H(A) the
set of all algebras with the same signature as A that are homomorphic images of A. A
factor of an algebra is the homomorphic image of a subalgebra of A.

Lemma 64. Let (D; f) be an algebra with domain D. Suppose f is a k-canonical poly-
morphism of a structure Γ with domain D, and suppose that Γ has a finite number m
of k-types. Then there is an algebra ({1, . . . ,m}; f) in H((D; f)k). Moreover, when Γ is
homogeneous and the maximal arity of the relations in Γ is less than or equal to k, then

1In universal algebra, an algebra is simply a structure with a purely functional signature.

53

balanced
max

sw
constant

eE

E-
constant

NP-complete

in P

-

E-dominated
max

E-
dominated

p1 balanced
p1 E-semi-

dominated p1

majority
hp balanced p1

minority
hp balanced p1

majority
hp E-

constant

minority
hp xnor E-
dominated

majority
hp E-dominated

max

minority
hp E-dominated p1

Pol(H)

Pol(P(3))

Pol(T)

Pol(E6)

1:

4,5:

2,3:

7,8:

6:

11:

16,17:

14,15:12,13:

9,10:

Figure 5: The border: Minimal tractable and maximal hard clones containing Aut(G).

54

({1, . . . ,m}; f) satisfies a universally quantified atomic formula t1(x̄) = t2(x̄) if and only
if there is an automorphism α of Γ such that (D; f, α) satisfies

∀x̄. t1(x̄) = α(t2(x̄))

Proof. Let T1, . . . , Tm be the k-types of Γ. Define µ : Dk → {1, . . . ,m} by µ(t1, . . . , tk) = i
if (t1, . . . , tk) has type Ti. Since f is k-canonical, the kernel of µ is a congruence of (D; f)k,
and we obtain ({1, . . . ,m}; f) as a factor algebra.

Now suppose that Γ is homogeneous and the maximal arity of Γ is less than or equal
to k. To prove the two implications from the statement, let α be an automorphism of
Γ such that (D; f, α) satisfies ∀x̄. t1(x̄) = α(t2(x̄)). Then the kernel of µ is certainly
also a congruence ∼ of (D; f, α). All universally quantified atomic formulas satisfied by
an algebra also hold in products and homomorphic images, and therefore the sentence
∀x̄. t1(x̄) = α(t2(x̄)) also holds in the quotient-algebra A := (D; f, α)/ ∼. Since α denotes
the identity in this quotient algebra, we can assume wlog that A = ({1, . . . ,m}; f, id). It
follows that ({1, . . . ,m}; f) satisfies ∀x̄. t1(x̄) = t2(x̄).

For the opposite direction, we show the existence of the required automorphism α of Γ
as follows. Let p be the length of the vector x̄. By local closure, it suffices to show that
for every finite subset S = {d1, . . . , dq} of Dp there is an automorphism β of Γ such that
t1(d) = β(t2(d)) for all d ∈ S. By our assumptions on Γ, the type of (t1(d1), . . . , t1(dq))
in Γ is determined by the k-types that hold on all tuples (t1(e1, . . . , t1(ek))) for e1, . . . , ek
from S. By assumption, (t1(e1), . . . , t1(ek)) and (t2(e1), . . . , t2(ek)) have the same k-type.
Hence, (t1(d1), . . . , t1(dq)) and (t2(d1), . . . , t2(dq)) have the same type in Γ as well, and so
there is an automorphism β of Γ that maps t2(d) to t1(d) for all d ∈ S.

Proof of Corollary 20. Let f be one of the 17 at most ternary canonical polymorphisms
from Theorem 61. The number of 2-types in (V ;E) is 3, so by Lemma 64 there is a
homomorphism µ from (D; f)2 to an algebra A = ({=, E,N}, f) (where =, E, and N
are the image of µ for all pairs (x, y) such that x = y, E(x, y), or N(x, y), respectively).
A recent unpublished but already famous result in universal algebra, which improves the
main result of [23] (see concluding remarks in [23]), implies that every finite idempotent
algebra either has a factor all of whose operations are generated by permutations, or the
operations of the algebra generate an operation g satisfying

g(y, y, x, x) = g(x, x, x, y) = g(y, x, y, x) .

Hence, by Lemma 64, it suffices to show that all factors of A contain operations that are
not generated by permutations. Three out of the 17 operations are such that the operation
f denotes a constant operation in A; in this case, we are clearly done. So suppose we are
not in one of those cases.

In all the remaining 14 cases, {E,N} induces a subalgebra in which f either acts
as a majority (that is, f(x, x, y) = f(x, y, x) = f(y, x, x) = x), as a minority (that is,

55

f(x, x, y) = f(x, y, x) = f(y, x, x) = y), or they are binary and satisfy f(x, y) = f(y, x). It
is then clear that f cannot be generated by permutations. Four out of the 14 remaining
operations are balanced, which is equivalent to saying that both {E,=} and {N,=} induce
a subalgebra B in A. In this case it is easy to check from the description of the balanced
operations in Theorem 61 that

f(x, y) satisfies f(x, y) = f(y, x) if f is binary, and (7)
g(x, y) := f(x, x, y) satisfies g(x, y) = g(y, x) if f is ternary. (8)

So f is not generated by permutations in B as well. For five of the remaining non-balanced
operations we have that {E,=} induces a subalgebra of A. Again, f satisfies the condition
in (7). For the other five remaining operations, the set {N,=} induces a subalgebra, and
the argument that the operation f is not generated by permutations in those algebras is
analogous.

Finally, we have to argue that in none of the 2-element homomorphic images of A
the function f is generated by permutations. All of the 14 remaining operations admit a
factoring by the equivalence relation with the classes {E,N} and {=}. Then the function
f satisfies (7) in the corresponding factor. It can be verified that from all 14 operations,
only

• the balanced operation of type max,

• the N-dominated operation of type min,

• and the edge majority that is hyperplanely of type min and N-dominated

preserve the relation E(x, y) ↔ E(u, v). In those cases, the algebra A has a factor B
with kernel classes {E} and {N,=}. For the balanced operation of type max, and the
N-dominated operation of type min, the operation f of B satisfies the condition in (7). For
the edge majority that is hyperplanely of type min and N-dominated, the condition in (8)
applies. Factors of A with the classes {N} and {E,=} can be checked analogously.

These are the only non-trivial homomorphic images of A. This follows from the fact
that none of the 14 operations preserves the relation {(x, y, u, v) | x = y ↔ u = v} (since
all the operations are essential). This completes the proof that f is not generated by
permutations in all factors of A.

56

