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Abstract. A permutation group on a countably infinite domain is called oligomorphic if
it has finitely many orbits of finitary tuples. We define a clone on a countable domain to be
oligomorphic if its set of permutations forms an oligomorphic permutation group. There is a
close relationship to ω-categorical structures, i.e., countably infinite structures with a first-
order theory that has only one countable model, up to isomorphism. Every locally closed
oligomorphic permutation group is the automorphism group of an ω-categorical structure,
and conversely, the canonical structure of an oligomorphic permutation group is an ω-
categorical structure that contains all first-order definable relations. There is a similar
Galois connection between locally closed oligomorphic clones and ω-categorical structures
containing all primitive positive definable relations.

In this article we generalise some fundamental theorems of universal algebra from clones
over a finite domain to oligomorphic clones. First, we define minimal oligomorphic clones,
and present equivalent characterisations of minimality, and then generalise Rosenberg’s five
types classification to minimal oligomorphic clones. We also present a generalisation of the
theorem of Baker and Pixley to oligomorphic clones.

This is a updated post-print version of an article with the same title that appeared in
Algebra Universalis, 57(1): 109-125, 2007.

1. Introduction

A clone is a set of finitary operations that is closed under compositions, and
contains all projections. A clone is called locally closed, if it contains all operations
that are interpolated on finite sets by the functions in the clone; for formal def-
initions see Section 2. A permutation group on a countably infinite set is called
oligomophic [11] if it has finitely many orbits of n-tuples, for all n ≥ 1. We define
a clone to be oligomophic if its permutations form an oligomorphic permutation
group.

Oligomorphic clones are closely related to ω-categorical structures (such struc-
tures are also called countably categorical or ℵ0-categorical). A countably infinite
structure is called ω-categorical if all countable models of its first-order theory are
isomorphic. As we will see later, a locally closed clone is oligomorphic if and only
if it is the set of polymorphisms of an ω-categorical relational structure Γ (an n-ary
polymorphism of Γ is a homomorphism from the direct product Γn to Γ). Con-
versely, a countably infinite structure is the canonical structure of an oligomorphic
clone if and only if it is ω-categorical and contains all primitive positive definable
relations.

Key words and phrases: ω-categoricity, preservation theorems, oligomorphic permutation
groups, clones on infinite domains, minimal locally closed clones.
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Oligomorphic permutation groups and ω-categorical structures have attracted a
lot of interest in various areas: in model theory (see [19], and, more specifically,
[22]), in the study of infinite permutation groups (see e.g. [11, 2]), infinite combi-
natorics (e.g. [12, 13, 16]), and, recently, in constraint satisfaction [3, 6]. This is
partly due to many equivalent characterisations of ω-categoricity, some of which
are given in Section 3. Another reason might be the wealth of concrete examples,
but also the wealth of general construction principles for ω-categorical structures,
for example amalgamation or descriptions via their automorphism groups. There
are also various methods to derive new ω-categorical structures from existing ones,
e.g. by first-order interpretations (see [19]), by taking cores [4], or by expansions
with constants.

The motivation of this article comes from the following research question.

Question. Which parts of universal algebra can be generalised from clones over a
finite domain to oligomorphic clones?

Clones over a finite domain. The set of all clones on a finite domain D forms
a lattice with respect to inclusion. The lattice has a top element, which is the set
of all finitary operations, and a bottom element, which is the set of all projections.
The clones over a Boolean domain were classified by Post [25]. For domains with
three elements, the clone lattice is already very complicated (there is a continuum
of such clones, see [24]). However, the lattice has a finite number of atoms and
co-atoms for all finite domains. The corresponding clones are called minimal and
maximal, respectively. The maximal clones over a finite domain were classified
by Rosenberg [26]. The minimal clones were classified for domains of size three by
Czákány [14], but the classification of the minimal clones over a larger finite domain
is considered to be very difficult. However, Rosenberg showed that a minimal clone
has one out of five types that are well-understood in many cases [27, 23].

Recently, the theory of minimal clones found applications in the complexity
classification of constraint satisfaction problems [21, 9, 8]. Another result from uni-
versal algebra with applications in constraint satisfaction is the theorem of Baker
and Pixley [1, 20]. In one of its versions (Corollary 5.1 in [1]) it can be seen as the
characterisation of a quantifier elimination property by the existence of a polymor-
phism that satisfies certain identities. The corresponding constraint satisfaction
problems are always tractable [20, 17]. See [10] for an introduction of the algebraic
approach to constraint satisfaction.

Oligomorphic clones. The set of locally closed oligomorphic clones form a join-
semilattice. Again, its top element is the set of all finitary operations. However, the
locally closed oligomorphic clones do not form a lattice. Moreover, the semilattice
contains no minimal elements: for every locally closed oligomorphic clone there
is a smaller locally closed oligomorphic clone. To see this, observe that every
oligomorphic permutation group contains an infinite orbit. The stabiliser group for
an element from this orbit is smaller, and again oligomorphic and locally closed.
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We call an operation of an oligomorphic clone F elementary, if it is locally gen-
erated by the projections and the permutations in F (the terminology is motivated
by the model-theoretic notion of elementary embeddings – the connection becomes
clear in Section 4). An oligomorphic clone is called elementary if it is locally closed
and contains only elementary operations.

Minimal Oligomorphic Clones. In the semilattice of locally closed oligomorphic
clones, we are now interested in the minimal elements above the elementary clones.
These are the non-elementary locally closed oligomorphic clones such that every lo-
cally closed oligomorphic subclone is elementary. It turns out that an oligomorphic
clone F is minimal if and only if every non-elementary operation in F locally gen-
erates F – this is a fundamental property for minimal clones over a finite domain.
We prove various other equivalent characterisations of minimal oligomorphic clones,
and then show that every oligomorphic clone contains a minimal oligomorphic clone
(as in the case of finite domains).

Some properties of minimal clones over a finite domain fail for minimal oligomor-
phic clones. The most important one is idempotency : every at least binary opera-
tion f in a minimal oligomorphic clone over a finite domain satisfies f(x, . . . , x) = x.
However, every at least binary operation f in a minimal oligomorphic clone has a
related property: the (elementary) unary function g defined by g(x) = f(x, . . . , x)
preserves all first-order definable relations in the canonical structure of F . Such
operations f we call oligopotent.

Results. We present various characterisations of elementary and of minimal oligo-
morphic clones, and show that if F is the polymorphism clone of an ω-categorical
structure with a finite relational signature, then F contains a minimal oligomorphic
clone. One of the main results in this article is a generalisation of Rosenberg’s the-
orem; we distinguish four different types of minimal oligomorphic clones. Roughly
speaking, the only property we lose in the statement of the classification is idempo-
tency, but we always get oligopotency instead. Moreover, in the oligomorphic case
we can exclude the analog for one of the Rosenberg types.

We also prove a generalisation of the theorem of Baker and Pixley in a model-
theoretic formulation. The previously mentioned result in [1] does not only apply
to finite algebras, but also to locally finite varieties (Theorem 5.2 in [1]) – however,
oligomorphic clones are not locally finite. However, as we will see in Section 7,
their result also generalises to oligomorphic clones, and again leads to tractable
constraint satisfaction problems [5].

2. Clones

Let D be a countable set, and let O be the set of finitary operations on D, i.e.,
functions from Dk to D for finite k. An operation f ∈ O is a projection (or a trivial
polymorphism) if for all n-tuples, f(x1, . . . , xn) = xi for some fixed i ∈ {1, . . . , n}.
The composition f(g1, . . . , gk) of a k-ary operation f and k operations g1, . . . , gk of
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arity n is an n-ary operation defined by

f(g1, . . . , gk)(x1, . . . , xn) := f
(
g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)

)
.

A clone F is a set of operations from O that is closed under composition and that
contains all projections. We write DF for the domain D of the clone F . For a set of
operations F from O we write 〈F 〉 for the smallest clone containing all operations
in F (which is called the clone generated by F ). If the set of operations of a clone
A is a (proper) subset of the operations of another clone B over the same domain,
we say that A is a (proper) subclone of B.

We say that a k-ary operation f ∈ O is locally generated by a subset F of O if for
every finite subset A of D there is some k-ary operation g ∈ 〈F 〉 such that f(a) =
g(a) for every a ∈ Ak. The smallest clone that contains the operations locally
generated by F is called the local closure of F , and denoted by 〈F 〉loc. Clearly,
F ⊆ 〈F 〉loc. Note that the permutations in the clone might locally generate some
non-surjective unary operations. As an example, consider the set of all permutations
on a set D. This set locally generates all injective unary operations on D.

We say that a k-ary operation f depends on an argument i iff there is no
k−1-ary operation f ′ such that f(x1, . . . , xk) = f ′(x1, . . . , xi−1, xi+1, . . . , xk). We
can equivalently characterise k-ary operations that depend on the i-th argument
by requiring that there are elements x1, . . . , xk and x′i such that f(x1, . . . , xk) 6=
f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk).

Many important properties of operations in a clone can be specified with identi-
ties that are satisfied by the operations. We list some of those fundamental prop-
erties below, where the free variables in the identities are understood as universally
quantified. Let f̂ denote the operation defined by f̂(x) = f(x, . . . , x). A k-ary
operation f is

• a projection (to the i-th argument) iff there is an i ∈ {1, . . . , k} such that
f(x1, . . . , xk) = xi;

• conservative iff f(x1, . . . , xk) ∈ {x1, . . . , xk};
• idempotent iff f̂(x) = x;
• essentially unary iff there is an i ∈ {1, . . . , k} and a unary operation f0

such that f(x1, . . . , xk) = f0(xi). In other words, f depends on at most
one argument.

• a quasi near-unanimity operation (short, qnu-operation) iff
f̂(x) = f(x, . . . , x, y) = · · · = f(x, . . . , x, y, x, . . . , x) = · · · = f(y, x, . . . , x);

• a ternary quasi majority operation iff f is a quasi near-unanimity operation
and k = 3;

• a quasi Maltsev operation iff f is ternary and f(y, x, x) = f(x, x, y) = f̂(y);
• a quasi semiprojection iff there is an essentially unary operation g such that
f(x1, . . . , xk) = g(x1, . . . , xk) whenever |{x1, . . . , xk}| < k. If g depends
on the i-th argument, we say that f is a quasi semiprojection to the i-th
argument.

An operation f is called near-unanimity, majority, minority, or semiprojection,
if f is an idempotent quasi near-unanimity, quasi majority, quasi minority, or quasi
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semiprojection, respectively. Except for the notions with the qualifier quasi, all
notions in this section are standard [28].

A clone is called projective, conservative, idempotent, or essentially unary, if all
operations are projections, conservative, idempotent, or essentially unary, respec-
tively.

3. Oligomorphic Clones

The permutations of a clone F are the bijective unary operations in F .

Definition 1. A permutation group is called oligomorphic, if it contains only
finitely many orbits of n-tuples, for all n ≥ 0. A clone is called oligomorphic,
if its permutations form an oligomorphic permutation group.

Let F be a clone with domainD. We say that an n-ary operation f ∈ O preserves
a k-ary relation R ⊆ Dk iff for all tuples (c11, . . . , c

k
1), . . . , (c1n, . . . , c

k
n) in R the k-

tuple (f(c11, . . . , c
1
n), . . . , f(ck1 , . . . , c

k
n)) is also in R. An operation that preserves

all relations of a relational structure Γ with domain D is called a polymorphism
of Γ. We write Pol(Γ) for the set of all finitary polymorphisms. Observe that
Pol(Γ) is always a locally closed clone with domain D. Unary polymorphisms are
the endomorphisms, and polymorphisms that also preserve the complements of all
relations of the structure are called strong. The bijective strong endomorphisms are
the automorphisms of Γ. Injective strong endomorphisms are called embeddings.
Endomorphisms that are not embeddings are called strict.

We described how to associate a clone to a relational structure. We now describe
how to associate a relational structure to a clone.

Definition 2 (Canonical Structure). A relation R ⊆ Dm is invariant under F , if
every f ∈ F preserves R. The relational structure on the domain D that contains
all relations that are invariant under F is called the canonical structure for F , and
denoted by Inv(F ).

It is known that an ω-categorical structure admits uncountably many polymor-
phisms (in fact, already uncountably many automorphisms). But note that the
clone of polymorphisms of an arbitrary countable structure is locally generated by
a countable number of polymorphisms: choose for each finite set B and all potential
images of tuples from B a polymorphism if there exists such a polymorphism. The
following is a well-known fact (see e.g. [28]).

Proposition 3. A set F ⊆ O of operations is locally closed if and only if F is the
set of polymorphisms of Γ for some relational structure Γ.

In the following we use classical concepts from logic and model-theory; see
e.g. [19].

Definition 4. A countable relational structure Γ is called ω-categorical, if all count-
able models of the first-order theory of Γ are isomorphic to Γ.

The following is due to Ryll-Nardzewski, Engeler, and Svenonius (see [19]).
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Theorem 5. The following properties of a structure Γ are equivalent.
• Γ is ω-categorical;
• The automorphism group of Γ is oligomorphic;

A τ -formula is primitive positive if it is of the form ∃x.ψ1 ∧ · · · ∧ ψn where
ψ1, . . . , ψn are atomic with relation symbols from τ ∪ {=}. It is a classical result
that a relation can be defined by a primitive positive formula in a finite structure Γ
if and and only if it is preserved by the polymorphisms of Γ [7]. In [6] it is proven
that also on ω-categorical structures Γ a relation can be defined by a primitive
positive formula if and and only if it is preserved by the polymorphisms of Γ. This
is equivalent to the following.

Theorem 6. A relational structure is the canonical structure (see Definition 2) for
an oligomorphic clone F if and only if it is ω-categorical and contains all primitive
positive definable relations.

An expansion of a τ -structure Γ is a structure with a larger signature τ ′ obtained
from Γ by adding a relation for each relation symbol from τ ′ \ τ . The expansion is
called proper if the inclusion τ ⊆ τ ′ is strict.

Cores. The concept of a core of a finite relational structure is central in the liter-
ature on graph and structure homomorphisms (e.g., see [18]), and frequently used
in constraint satisfaction. We need the following generalisation for countable rela-
tional structures.

Definition 7. A relational structure Γ is a core, if every endomorphism is an
embedding.

An example of a core structure is (Q, <), the linear order defined on the set
of rational numbers. Note that this structure contains many endomorphisms that
are not automorphisms. This is different from cores on finite domains, where all
endomorphisms are also surjective. An example of a structure that is not a core is
the random graph, see e.g. [19, 11]. However, the random graph is homomorphically
equivalent to an infinite complete subgraph, which is a core. Two structures Γ and
∆ are called homomorphically equivalent if there is a homomorphism from A to B
and from B to A.

An ω-categorical structure Γ is called model-complete if every embedding of Γ
into Γ preserves all first-order formulas. Embeddings with this property are called
elementary in model theory. We later need the following [4].

Theorem 8. Every ω-categorical structure Γ is homomorphically equivalent to a
model-complete core ∆, which is unique up to isomorphism. The core ∆ is ω-
categorical or finite, and the orbits of n-tuples in Γ are primitive positive definable,
for all n ≥ 1.

4. Minimal Oligomorphic Clones

In this section, we define and study the notion of minimal oligomorphic clones.
Recall that an embedding between two structures is called elementary if it preserves
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all first-order formulas. One can, similarly, define an operation of an oligomorphic
clone F to be elementary if it preserves all first-order definable relations of the
canonical structure of F (see Definition 2). We will take the following to be our
official definition of an elementary operation.

Definition 9. An operation of an oligomorphic clone F is called elementary, if
it is locally generated by the projections and permutations of F . An oligomorphic
clone is called elementary if it only contains elementary operations.

Proposition 3 will show that an operation of an oligomorphic clone F is elemen-
tary if and only if it preserves all first-order definable relations in the canonical
structure of F .

Definition 10. A non-elementary oligomorphic clone F is called minimal if every
locally closed oligomorphic proper subclone of F is elementary.

We call the signature of the canonical structure of a minimal clone maximal.
Note that an ω-categorical structure Γ has a maximal signature if and only if in
every proper expansion of Γ every first-order definable relation has a primitive
positive definition.

To deal with elementary and minimal oligomorphic clones, the following char-
acterisation of the essentially unary clones will be useful. The characterisation
does not require that the clone is oligomorphic, but holds for general clones. We
need the following special relation P4 that is defined on a domain D by P4 :=
{(a, b, c, d) | a = b or c = d; a, b, c, d ∈ D}.

Proposition 11. Let F be a clone on the (finite or infinite) domain D. Then the
following are equivalent.

(1) F is essentially unary
(2) The relation P4 is contained in Inv(F )
(3) The projections and the unary operations in F (i.e., the endomorphisms of

Inv(F)) generate F

Proof. The equivalence of (1) and (2) follows from [Lemma 1.3.1 in [24], page 56].
To give intuition about the expressive power of P4, we repeat the argument. Clearly
every essentially unary operation preserves P4. Suppose a k-ary function f is not
essentially unary, but depends on the i-th and j-th argument, 1 ≤ i 6= j ≤ k.
Hence there exist tuples a1, b1, a2, b2 ∈ Dk

F where a1, b1 and a2, b2 only differ at
the entries i and j, respectively, such that f(a1) 6= f(b1) and f(a2) 6= f(b2). Since
(a1(l), b1(l), a2(l), b2(l)) ∈ P4 for all l ≤ k, but (f(a1), f(b1), f(a2), f(b2)) /∈ P4, we
conclude that P4 /∈ Inv(F ).

(3) implies (2): Clearly, unary operations and projections preserve the relation
P4, which is therefore contained in Inv(F ).

(1) implies (3): By definition, every essentially unary operation f ∈ F is com-
posed out of a projection and a unary operation. �

Proposition 12. Let F be an oligomorphic clone, and Γ := Inv(F ) its canonical
structure. Then the following are equivalent:
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(1) F is elementary, i.e., all operations in F are locally generated by the pro-
jections and permutations of F

(2) All operations in F preserve all first-order definable relations in Γ
(3) Γ contains all first-order definable relations
(4) Γ is a model-complete core and contains the relation P4

Proof. Since projections and permutations preserve all first-order definable relations
in Γ, and by Proposition 3, (1) implies (2). The implication from (2) to (3) is by
definition of the canonical structure.

(3) implies (4). The relation P4 clearly is first-order definable and therefore
in the signature of Γ. Since this is also the case for the inequality relation and all
negated atoms, every endomorphism of Γ preserves all first-order definable relations
and therefore Γ is a model-complete core.

To show that (4) implies (1), first apply Proposition 11 to see that all polymor-
phisms of Γ are essentially unary. Since Γ is a core, Theorem 8 implies that all
endomorphisms of Γ are embeddings, and since Γ is model-complete, all endomor-
phisms are elementary. Therefore all polymorphisms of Γ, i.e., all operations in F ,
are elementary. �

We will often use the different characterisations of elementary oligomorphic
clones without referring to Proposition 12.

Theorem 13. Let F be a non-elementary oligomorphic clone, and Γ := Inv(F ) its
canonical structure. Then the following are equivalent:

(1) F is minimal, i.e., every oligomorphic proper subclone of F is elementary
(2) Γ is maximal, i.e., in every first-order expansion of Γ all first-order formu-

las have a primitive positive definition
(3) Every proper first-order expansion of Γ is a model-complete core with a

primitive positive definition of P4

(4) Every non-elementary operation in F together with the permutations in F
locally generates F .

Proof. The equivalence of (1), (2), and (3) follows from Proposition 12.
(1) implies (4). Let f ∈ F be a non-elementary operation. Let F ′ be the

clone that is locally generated by f together with the permutations, and suppose
for contradiction that there is an operation g in F \ F ′. The clone F ′ is a proper
subclone of F , and (1) implies that it is elementary. This contradicts the assumption
that f is non-elementary.

(4) implies (1). Suppose that (4) holds, and that F has a proper non-elementary
subclone F ′. Then F ′ contains a non-elementary operation f . Statement (4) implies
that f together with the permutations from F locally generates F , contradicting
the assumption that F ′ is a proper subclone. �

It is well-known that every non-elementary clone F over a finite domain contains
a minimal clone. For oligomorphic clones, we can show the following.

Theorem 14. Let Γ be an ω-categorical model-complete core such that F := Pol(Γ)
be non-elementary. Then F contains a minimal oligomorphic clone.
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Proof. We have to prove that Γ has a maximal expansion ∆. Observe that the
relation P4 can not have a primitive positive definition in Γ, since otherwise Propo-
sition 12 would imply that F is elementary. Consider an enumeration of all first-
order definable relations in Γ. We construct an expansion ∆ of Γ with a maximal
signature as follows. We start our construction with Γ. Whenever the next re-
lation R in the enumeration together with the expansion constructed so far does
not admit a primitive positive definition of P4, we expand Γ by R. Let ∆ be the
expanded structure that can be obtained from this process by Zorn’s Lemma. By
construction, the relation P4 does not have a primitive positive definition in ∆.
Suppose ∆ does not have a maximal signature. Then there is a relation R such
that the expansion of ∆ with R still does not admit a primitive positive definition
of all first-order definable relations. But then, R should have been added in the
construction of the signature of ∆, a contradiction. �

5. Oligopotent Operations

For finite relational structures that are cores it is easy to see that every polymor-
phism is the composition of an idempotent polymorphism and an automorphism.
This does not generalise to ω-categorical structures, since idempotency is a very
strong condition for polymorphisms of infinite structures. There are structures
with many polymorphisms, but where the only idempotent operations are the pro-
jections. This is for instance the case for the well-known homogeneous generic
triangle-free graph; see the discussion in [4]. We therefore introduce the notion of
oligopotent operations.

Definition 15. An operation f of an oligomorphic clone F is called oligopotent if
f̂ is an elementary operation in F , i.e., if f̂ is locally generated by the permutations
in F .

A core contains only oligopotent polymorphisms. On finite subsets of the domain
oligopotent operations behave like idempotent operations. We formalise this in the
next proposition. Let A be a finite subset of the domain D of an operation. We say
that f is idempotent on A if f̂(x) = x for all x ∈ A. We say that f is conservative
on A if f(x1, . . . , xn) ∈ {x1, . . . , xn} for all x1, . . . , xn ∈ A.

Proposition 16. Let f be an operation of an oligomorphic clone F . Then f is
oligopotent if and only if for every finite subset A of the domain D the clone F
contains a permutation h such that h(f) is idempotent on A.

Proof. First suppose that f is oligopotent, i.e., f̂ is elementary. Let A be a finite
subset of the domain, and let a be an tuple that enumerates the elements of A.
Since f̂ is locally generated by the permutations in F , there exists a permutation h
in F that maps f̂(a) back to a. Then the operation h(f) ∈ F is idempotent on A.

Now suppose that f̂ is not elementary. Consider the oligomorphic subclone lo-
cally generated by f and the permutations in F , and let Γ be its canonical structure.
Here, f̂ is a strict endomorphism of Γ, i.e., f̂ is not injective or strong on some finite
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subset of vertices A. Then there can be no automorphism h of Γ such that h(f) is
idempotent on A. �

6. Minimal Operations

We generalise Rosenberg’s five types theorem from clones on finite domains to
oligomorphic clones.

Definition 17. Let F be an oligomorphic clone. A minimal operation in F is a
non-elementary operation of minimal arity from F that together with the permuta-
tions in F locally generates a minimal oligomorphic clone.

It follows from the discussions in Section 4 that every oligomorphic clone contains
such a minimal operation. We show that a minimal operation has one out of the
following four types.

Theorem 18. Let f be a minimal operation in an oligomorphic clone F . Then f
is of one of the following types:

(1) A strict endomorphism of the canonical structure of F , where f(f) together
with the permutations in F locally generates f .

(2) A binary operation
(3) A ternary quasi majority operation
(4) A k-ary quasi semi-projection, for k ≥ 3

Moreover, if f is at least binary, then it is oligopotent and the canonical structure
of F is a model-complete core.

Proof. First consider the case that f is unary. Since f is non-elementary, it is a
strict endomorphism of the canonical structure. Also the composition of f with
itself is strict, and thus non-elementary. Hence, together with the permutations in
F the operation f(f) locally generates a non-elementary locally closed oligomorphic
clone. By minimality of f , this clone can not be a proper subclone of the clone
generated by f , and therefore f(f) locally generates f .

If f is not unary, we show that f is oligopotent. Suppose for contradiction that
f̂(x) and the permutations generate a non-elementary clone. This contradicts the
minimal arity requirement of Definition 17 for f . Moreover, if f is not unary, the
canonical structure Γ of F is in this case a model-complete core. The reason is
that if Γ has a non-elementary endomorphism e, then this endomorphism locally
generates with the permutations in F a non-elementary oligomorphic clone. Clearly,
all operations in this clone are essentially unary, and hence this clone does not
contain the elementary operation f , contradicting the choice of f .

For ternary f we have to show that f satisfies the equations of the quasi majority
or the quasi semiprojection. It is easy to check that these cases are disjoint. By
minimality of f , every operation f1(x, y) := f(y, x, x), f2(x, y) := f(x, y, x), and
f3(x, y) := f(x, x, y) obtained by identifications of two variables yields an elemen-
tary operation, i.e., an essentially unary operation. Thus, each of f1, f2, f3 is either
equal to f̂(x) or to f̂(y). As in the proof of Rosenberg’s theorem [27], we therefore
distinguish eight cases.
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(1) f(y, x, x) = f̂(x), f(x, y, x) = f̂(x), f(x, x, y) = f̂(x): In this case f satisfies
the equations of the quasi majority operation.

(2) f(y, x, x) = f̂(x), f(x, y, x) = f̂(x), f(x, x, y) = f̂(y): In this case f satisfies
the equations of a quasi semiprojection to the third argument.

(3) f(y, x, x) = f̂(x), f(x, y, x) = f̂(y), f(x, x, y) = f̂(x): The same for the
second argument.

(4) f(y, x, x) = f̂(x), f(x, y, x) = f̂(y), f(x, x, y) = f̂(y).
(5) f(y, x, x) = f̂(x), f(x, y, x) = f̂(x), f(x, x, y) = f̂(y). In this case f satisfies

the equations of a semiprojection to the first argument.
(6) f(y, x, x) = f̂(y), f(x, y, x) = f̂(x), f(x, x, y) = f̂(y).
(7) f(y, x, x) = f̂(x), f(x, y, x) = f̂(y), f(x, x, y) = f̂(y).
(8) f(y, x, x) = f̂(y), f(x, y, x) = f̂(y), f(x, x, y) = f̂(y).

We claim that cases 4,6,7,8 are impossible. For that, we first show that in these
cases we can derive a quasi Maltsev operation, and we then show that a quasi Malsev
operation is not possible. In case 6 and 7, the operation f satisfies the equations
of the quasi Maltsev operation, i.e., f(x, x, y) = f(y, x, x) = f̂(y). In case 4 the
operation g′ defined by g′(x, y, z) := g(x, z, y), and in case 7 the operation g′ defined
by g′(x, y, z) := f(y, x, z) satisfy the identities of a quasi Maltsev operation.

We now show that F can not contain a quasi Maltsev operation. By Theorem 5,
the relational structure Γ has finitely many orbits of pairs of elements. Because Γ
is a model-complete core, Theorem 8 implies that every relation that consists of an
orbit of k-tuples has an existential positive definition. In particular, the orbits of
pairs must have primitive positive definitions. Now, let v1, v2, . . . be an enumeration
of the elements of Γ. We assign a pair (vi, vj), where i < j, a color according to the
orbit of the pair. This is, two pairs have the same color if and only if they lie in the
same orbit of pairs. Since Γ is ω-categorical, Theorem 5 implies that we only have to
use a finite number of colors. The classical version of Ramsey’s theorem then implies
that Γ contains a monochromatic triangle, i.e., there exist three elements a, b, c such
that (a, b), (a, c), and (b, c) are from the same orbit of pairs O that is distinct from
the orbit of pairs of the form (x, x). Now, suppose f is a quasi Maltsev operation.
We then have f((a, b), (a, c), (b, c)) = (f̂(b), f̂(b)). Because (a, b), (a, c), (b, c) are
from O, but (f̂(b), f̂(b)) is not, and because O has by Theorem 8 a primitive
positive definition, the operation f cannot be a polymorphism of Γ.

Finally, let f be k-ary, where k ≥ 4. By minimality of f , the operations ob-
tained from f by identifications of arguments of g are essentially unary. We have
to show that f is a quasi semiprojection. Note that if an operation f is a quasi
semiprojection then there is an i, 1 ≤ i ≤ k, such that f satisfies the equations
f(x1, x1, x3, . . . , xk) = f(x1, x2, x1, x4, . . . , xk) = · · · = f(x1, . . . , xk−1, xk−1) =
f(xi, . . . , xi). Conversely, every operation satisfying these equations is a semipro-
jection. By compactness, it suffices to show that on every finite subset A, there
exists an i such that the above equations hold on A.

The lemma of Świerczkowski (the lemma was discovered independently several
times; see Satz 4.4.6 in [24]) states that every at least 4-ary operation on a finite
domain that turns into a projection whenever two arguments are the same is a
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semiprojection. We can use essentially the same proof for the lemma as it is given
in [15] to show that the operation g above acts like a semiprojection on A. Because
the proof is short, we recall it here for the convenience of the reader.

Fix a finite subset A of the domain of size at least two. By Proposition 16, there
exists a permutation h from F such that g := h(f) is idempotent on A. In the
following, the variables xi, for 1 ≤ i ≤ k, denote values from A. It is enough to
show that g(x1, x1, x3, x4, . . . , xk) = g(x1, x2, x1, x4, . . . , xk) for all x1, . . . , xk. For
other identifications of nonoverlapping pairs of arguments of f , apply permutations
of arguments; for identifications of overlapping pairs of variables, apply the above
two times.

Let i and j be such that g(x1, x1, x3, x4, . . . , xk) = xi and g(x1, x2, x1, x4, . . . , xk)
= xj . If i = 1 and j ∈ {1, 2} we are done. Similarly, if i ∈ {1, 3} and j = 1 we are
also done. We claim that all other cases lead to a contradiction.

Suppose that i ∈ {1, 3} and j /∈ {1, 2}. Then g(x1, x1, x3, x4, . . . , xk) = xi implies
that g(x1, x1, x1, x4, . . . , xk) = xi. But g(x1, x2, x1, x4, . . . , xk) = xj implies that
g(x1, x1, x1, x4, . . . , xk) = xj , a contradiction. The same argument can be applied
in case that i /∈ {1, 3} and j ∈ {1, 2}.

The only remaining case is that i = 3 and j = 2. Because g(x1, x1, x3, x4,
. . . , xk) = x3 we also have g(x1, x1, x3, x1, . . . , xk) = x3. This in turn shows
that g(x1, x2, x3, x1, . . . , xk) = x3. On the other hand, g(x1, x2, x1, x4, . . . , xk)
= x2 implies that g(x1, x2, x1, x1, . . . , xk) = x2, and this in turn implies that
g(x1, x2, x3, x1, . . . , xk) = x2, a contradiction. �

7. Baker and Pixley Generalised

Several results on clones over a finite domain are about idempotent operations
or idempotent clones. As mentioned earlier, for operations on an infinite domain
idempotency is a very strong condition. In this section, we show that the famous
theorem of Baker and Pixley can be proved for oligomorphic clones if the condition
of idempotency is replaced with that of oligopotency.

Theorem 19. Let Γ be an ω-categorical relational structure. Then for every k ≥ 2
the following is equivalent.

• Γ has an oligopotent k+1-ary polymorphism that is a quasi near-unanimity
operation.

• Every primitive positive formula is in Γ equivalent to a conjunction of at
most k-ary primitive positive formulas.

Proof. Throughout the whole proof let τ denote the signature that contains a re-
lation symbol for each at most k-ary primitive positive relation in Γ.

We first show that (1) implies that every primitive positive formula φ is equiva-
lent to a conjunction of atomic τ -formulas. We can assume without loss of generality
that φ has a single existentially quantified variable x0, otherwise we eliminate the
existential quantifiers one by one. This is, we can assume that φ has the form
∃x0.Φ(x0, x1, . . . , xl), where Φ is quantifier free.
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If φ has at most k free variables, then we can directly eliminate the existential
quantifier with the help of the corresponding k-ary relation. We now proceed by
induction on the arity l of φ, l > k, inductively assuming that the claim holds for
all formulas with l−1 free variables. Let Ψ be the set of all atomic τ -formulas with
the free variables x1, . . . , xl that are implied by the formula φ. We have to prove
that every tuple B := {b1, . . . , bl} satisfying all formulas in Ψ also satisfies φ. By
inductive assumption, the formula ∃xi.φ is equivalent to a quantifier-free τ -formula
ψi in Ψ, for all 1 ≤ i ≤ l. Hence, we find a witness bi0 for the existentially quantified
variable x0 in ∃x0, xi.Φ(x0, b1, . . . , bi−1, xi, bi+1, . . . , bl). By assumption and Propo-
sition 16 we know that Γ has a k+1-ary qnu-operation f that is idempotent on the
elements b1, . . . , bl. We claim that f(b10, . . . , b

k+1
0 ) is a witness for the existentially

quantified variable x0 in φ that shows that φ holds on b1, . . . , bl. Let c1, . . . , ck be
the witnesses for x in ∃xi.Ψ(bi0, . . . , bi−1, xi, bi+1, . . . , bk, bk+1, . . . , bl). Since f is a
polymorphism it preserves the primitive positive definable relation Φ(x0, x1, . . . , xl),
which therefore also holds on f(b10, . . . , b

k+1
0 ), f(c1, b1, . . . , b1), . . . , f(bk, . . . , bk, ck),

f(bk+1, . . . , bk+1), . . . , f(bl, . . . , bl). Moreover, since f is a qnu-operation and idem-
potent on B, we have that f(bi, . . . , bi, ci, bi, . . . , bi) = bi for 1 ≤ i ≤ l. Therefore Φ
holds on (f(b10, . . . , b

k+1
0 ), b1, . . . , bl); this proves that the tuple (b1, . . . , bl) satisfies

φ.
Conversely, let us assume that in the signature τ we have quantifier elimination

for primitive positive formulas. We have to show that Γ has an oligopotent k+1-ary
polymorphism that is a quasi near-unanimity operation. We equip the structure
∆ := Γk+1 with the qnu equivalence relation ∼, which is a binary relation defined
on ∆ by (b1, . . . , bk+1) ∼ (b, . . . , b) iff all except one bi are equal to b. Every
homomorphism f from (∆,∼) to (Γ,=) is by definition a qnu-operation, and a
polymorphism of Γ.

We now construct such a polymorphism, and also make sure that the polymor-
phism is oligopotent. For that we prove that every finite substructure S of ∆ has
a homomorphism to Γ that maps elements from S of the form (b, . . . , b) to b. The
existence of the oligopotent polymorphism is then an easy consequence of König’s
lemma: consider an enumeration a1, a2, . . . of the elements of ∆, and the infinite di-
rected graph G whose vertices are the equivalence classes of homomorphisms from
{a1, . . . , an} to Γ, for n ≥ 0, where two homomorphisms f1, f2 are equivalent if
there is an automorphism h of Γ such that h(f1) = f2. There is an arc from one
equivalence class of homomorphisms to another in G, if there are representatives
f1 and f2 of the two classes such that the homomorphism f1 extends the homo-
morphism f2 by one element ai of ∆. Theorem 5 and ω-categoricity of Γ assert
that every vertex in G has a finite number of outgoing arcs, and König’s lemma
asserts the existence of an infinite path. This infinite path gives rise to a homo-
morphism f from ∆ to Γ defined inductively as follows. The mapping f will be
such that its restriction to {a1, . . . , an} is from the n-th element of the infinite path
in G. Initially, this is trivially true if f is restricted to the empty set. Suppose f
is already defined on a1, . . . , an, for n ≥ 0. By construction of the infinite path,
we find representatives fn and fn+1 of the n-th and the n + 1-st element on the
path such that fn is a restriction of fn+1. The inductive assumption gives us an



14 MANUEL BODIRSKY AND HUBIE CHEN

automorphism h of Γ such that h(fn(x)) = f(x) for all x ∈ {a1, . . . , an}. We set
f(an+1) to be h(fn+1(an+1)). The restriction of f to a1, . . . , an will therefore be a
member of the n+ 1-st element of the infinite path. This shows that f is indeed a
homomorphism from ∆ to Γ. We have thus shown that if every finite substructure
of ∆ homomorphically maps to Γ, then ∆ homomorphically maps to Γ.

Let S be a finite substructure of ∆, and let B be the substructure of S containing
all the elements (b1, . . . , bk+1) where all but at most one entries are equal. Consider
the primitive positive formula that corresponds to S, where all vertices that are
not in B are existentially quantified, and where all other vertices correspond to
free variables. By assumption, this primitive positive formula is equivalent to a
conjunction of τ -atoms. We show that we can map the free variables to Γ such
that these atoms are satisfied, which implies that S homomorphically maps to
Γ. We map vertices (b1, . . . , bk+1) to b if all but one entry are equal to b. The
pigeon hole principle then implies that for k vertices in B there is a position i,
1 ≤ i ≤ k + 1, such that the i-th entries of the k vertices are not the exceptional
positions. The projection to the i-th component therefore satisfies the τ -atoms on
these k vertices. �
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