
Non-dichotomies in
Constraint Satisfaction Complexity

Manuel Bodirsky1 and Martin Grohe2

1 École Polytechnique (CNRS), France
2 Humboldt-Universität zu Berlin, Germany

Abstract. We show that every computational decision problem is polynomial-
time equivalent to a constraint satisfaction problem (CSP) with an infinite tem-
plate. We also construct for every decision problem L an ω-categorical template
Γ such that L reduces to CSP(Γ) and CSP(Γ) is in coNPL (i.e., the class coNP
with an oracle for L). CSPs with ω-categorical templates are of special interest, be-
cause the universal-algebraic approach can be applied to study their computational
complexity.
Furthermore, we prove that there are ω-categorical templates with coNP-complete
CSPs and ω-categorical templates with coNP-intermediate CSPs, i.e., problems in
coNP that are neither coNP-complete nor in P (unless P=coNP). To construct
the coNP-intermediate CSP with ω-categorical template we modify the proof of
Ladner’s theorem. A similar modification allows us to also prove a non-dichotomy
result for a class of left-hand side restricted CSPs, which was left open in [10]. We
finally show that if the so-called local-global conjecture for infinite constraint lan-
guages (over a finite domain) is false, then there is no dichotomy for the constraint
satisfaction problem for infinite constraint languages.

1 Introduction

Let Γ be a relational structure over a finite signature τ , also called template or constraint
language in the following. The constraint satisfaction problem (CSP) of Γ , denoted by
CSP(Γ), is the computational problem to decide whether there exists a homomorphism
from a given finite τ -structure to Γ . For finite relational structures Γ it has been conjec-
tured that the computational complexity of CSP(Γ) exhibits a dichotomy : it is in P or
NP-complete [6, 9].

Ladner’s theorem [14] states that there are computational problems in NP that are
neither in P nor NP-complete (unless P=NP); we also say that these problems are NP-
intermediate. However, the problems constructed by Ladner are highly artificial, and
the lack of natural computational problems that could be NP-intermediate is one of
the phenomena in complexity theory that is not well understood. Even for well-studied
problems in NP that are neither known to be in P nor known to be NP-hard, such as
the Graph Isomorphism problem, there is usually no strong evidence that they are not in
P. From the computational complexity perspective, it would therefore be very interesting
if there were NP-intermediate CSPs with finite domains (since CSPs for finite templates
are, arguably, relatively natural computational problems).

The CSP dichotomy conjecture is wide open. Bulatov, Krokhin, and Jeavons [6] give
a sufficient condition for a finite domain CSP to be NP-hard, and they conjecture that

all other problems are in P. This conjecture is based on the so-called universal-algebraic
approach to the CSP, and the mentioned condition is formulated in terms of an algebra
that can be associated to the template Γ . Most work in the area goes into finding larger
and larger tractable classes of CSPs [3, 4, 13]. But not all researchers in the area believe
in the conjecture. On the negative side, Feder and Vardi [9] introduced several heavily
restricted subclasses of NP –for example monadic strict NP (MSNP)– that do not have
a dichotomy. In fact, every problem in NP has a polynomial-time equivalent problem in
MSNP.

In this paper we are mainly interested in infinite templates Γ . A particularly in-
teresting class of infinite templates is the class of ω-categorical3 structures, because ω-
categorical templates Γ generalize finite templates in such a way that the above mentioned
universal-algebraic approach still applies. For example, it holds that the complexity of the
CSP(Γ) is fully captured by the polymorphism clone of Γ (even by the pseudo-variety
generated by the algebra of the polymorphism clone [2]).

Results

We show that for every computational decision problem L there exists a polynomial-time
equivalent constraint satisfaction problem with an infinite template Γ . This improves pre-
vious complexity results about infinite domain constraint satisfaction problems obtained
by Bauslaugh [1] and Schwandtner [17]. We also construct an ω-categorical template Γ
such that L reduces to CSP(Γ) and CSP(Γ) is in coNPL (i.e., the class coNP with an
oracle for L).

Furthermore, we prove that there are ω-categorical templates with coNP-complete
CSPs and ω-categorical templates with coNP-intermediate CSPs, i.e., problems in coNP
that are neither coNP-complete nor in P (unless P=coNP). To show this we use tem-
plates that are countable homogeneous directed graphs. These graphs are ω-categorical,
and even though there are uncountably many non-isomorphic countable homogeneous
directed graphs, they are model-theoretically well-understood [8]. In our construction
we apply a modification of Ladner’s proof technique. It remains open whether there are
ω-categorical structures Γ such that CSP(Γ) is NP-intermediate.

In another line of research, the complexity of the constraint satisfaction problem has
been studied for restricted classes of input structures. Let τ be a finite relational signature,
and let C and D be two classes of finite τ -structures. Then CSP(C,D) is the computational
problem where the input consists of two structures C ∈ C and D ∈ D, and the question
is whether there exists a homomorphism from C to D. It has been shown that when D0

is the set of all finite τ -structures, then for any recursively enumerable class of finite τ -
structures C the problem CSP(C,D0) is tractable if and only if C has bounded tree-width
modulo homomorphic equivalence [10]. Note that this is not a dichotomy theorem.

With a similar modification of Ladner’s proof as in our previous result, we can show
that there is an efficiently decidable class C of finite (undirected) graphs such that
CSP(C,D0) is NP-intermediate (here, D0 is the class of all finite undirected graphs);
this was left open in [10]. In particular, this shows that there is no dichotomy for prob-
lems of the form CSP(C,D). The same result was independently obtained in a recent
paper by Chen, Thurley, and Weyer [7].
3 A structure is ω-categorical if it has for all k only a finite number of k-types (in the model-

theoretic sense [12]).

2

Finally, we show a connection between the dichotomy conjecture for infinite constraint
languages over a finite domain (implied by Conjecture 4.12 of [5]) and the so-called local-
global conjecture. If Γ is a relational structure with an infinite signature and a finite
domain, then CSP(Γ) is called locally tractable if CSP(Γ ′) is tractable for all reducts Γ ′

of Γ with a finite signature. Note that for the notion of local tractability we can fix an
arbitrary representation of the relations in the input instances. CSP(Γ) is called globally
tractable if there is a polynomial-time algorithm that solves CSP(Γ) where the relations in
the input instances are represented by fully specifying the relation R ⊂ D(Γ)k. Obviously,
global tractability implies local tractability. The local-global conjecture says that CSP(Γ)
is locally tractable if and only if it is globally tractable.

If the local-global conjecture is true, then the dichotomy for finite constraint languages
implies the dichotomy for infinite constraint languages. We show that in a certain sense
the converse is true as well: if the global tractability conjecture is false, then there is no
dichotomy for infinite constraint languages. In other words, if the dichotomy conjecture
for finite constraint languages is true, then local and global tractability are equivalent.

Preliminaries

A relational signature τ is a set of relation symbols Ri, each of which has an associated
finite arity ki. The signature will be finite unless stated otherwise. A relational structure
Γ over the signature τ (also called τ -structure) consists of a set DΓ (the domain) together
with a relation R ⊆ Dki

Γ for each relation symbol of arity ki from τ . If the reference to
the relational structure is clear from the context, we use for simplicity the same symbol
for a relation symbol and the corresponding relation. If necessary, we write RΓ for the
relation R belonging to the structure Γ . We call the elements of DΓ the vertices of Γ .

Let Γ and Γ ′ be τ -structures. A homomorphism from Γ to Γ ′ is a function f from
DΓ to DΓ ′ such that for each n-ary relation symbol R in τ and each n-tuple (a1, . . . , an),
if (a1, . . . , an) ∈ RΓ , then (f(a1), . . . , f(an)) ∈ RΓ ′

. In this case we say that the map f
preserves the relation R. Injective homomorphisms that also preserve the complement of
each relation are called embeddings. Surjective embeddings are called isomorphisms, and
isomorphisms between Γ and Γ are called automorphisms.

The order of a structure Γ , denoted by |Γ |, is the cardinality of DΓ . An induced
substructure of a structure Γ is a structure Γ ′ with DΓ ′ ⊆ DΓ and RΓ ′

= RΓ ∩ Dn
Γ ′

for each n-ary R ∈ τ . The union of two τ -structures Γ, Γ ′ is the structure Γ ∪ Γ ′ with
domain DΓ ∪DΓ ′ and relations RΓ∪Γ ′

= RΓ ∪RΓ ′
for all R ∈ τ . The intersection Γ ∩Γ ′

is defined similarly. A disjoint union of Γ and Γ ′ is the union of isomorphic copies of
Γ and Γ ′ with disjoint domains. As disjoint unions are unique up to isomorphism, we
usually speak of the disjoint union of Γ and Γ ′. A structure is called connected if it is not
the disjoint union of two nonempty structures. For a mapping f defined on the domain
of a τ -structure Γ , we let f(Γ) be the τ -structure with domain f(DΓ) and relations
Rf(Γ) = {(f(a1), . . . , f(an)) | (a1, . . . , an) ∈ RΓ } for every n-ary R ∈ τ .

Classes of structures are always assumed to be closed under isomorphism.

2 Templates of All Complexities

In this section we show that for every computational decision problem there exists a
polynomial-time equivalent constraint satisfaction problem with an infinite template Γ .

3

Previously, it was known that for every recursive funtion f there exists an infinite structure
Γ such that CSP(Γ) is decidable, but has time complexity at least f (a result due to
Bauslaugh [1]). Recently, Schwandtner gave upper and lower bounds in the exponential
time hierarchy for some infinite domain CSPs [17]; but these bounds leave an exponential
gap.

Theorem 1. Let L be a language over a finite alphabet Σ. Then there is an infinite
relational structure Γ such that L is polynomial-time Turing equivalent to CSP(Γ).

Proof (Idea). We construct an infinite relational structure Γ over the signature τ that
contains pairwise distinct unary relation symbols Pa for all elements of a ∈ Σ; moreover,
τ contains a binary relation symbol N and unary relation symbols S and T .

For each word w ∈ Σ∗ let W be the following τ -structure with vertices 1, . . . , |w|.
The relation NW is {(i, i + 1) | 1 ≤ i < |w|}. The unary relation symbol PW

a holds on
j ∈ {1, . . . , |w|} iff the jth symbol in w is a. Finally, SW = {1} and TW = {|w|}. Let A

be {W | w ∈ L}.
Let X be the set of τ -structures with domain {1, . . . , n}, for some n, where the symbol

N is interpreted by the relation {(i, i + 1) | 1 ≤ i < n}, each vertex i is contained in at
most one relation Pa, for a ∈ Σ, and at least one of the following conditions is satisfied:

– S holds for none of the elements 1, . . . , n.
– T holds for none of the elements 1, . . . , n.
– There is an element from 1, . . . , n such that for all a ∈ Σ the relation Pa does not

hold.

The structure Γ is the infinite disjoint union over all structures in A ∪ X. The proof
that Γ has the required properties has been omitted due to space restrictions. ut

3 ω-categorical Templates of Various Complexities

A relational structure is called ω-categorical if for all k ≥ 1 there are at most finitely many
inequivalent first-order formulas with k free variables. This definition of ω-categoricity is
by the theorem of Ryll-Nardzewski equivalent to the standard definition of ω-categoricity
[12]. With the definition given here it is easy to see that the structure Γ constructed
in Section 2 is not ω-categorical, since there are infinitely many inequivalent first-order
formulas with two free variables x and y that express that x and y are at distance k with
respect to the relation N .

In this section we study the computational complexity of CSP(Γ) if Γ is an ω-
categorical structure, and prove the following.

Theorem 2. For every language L over a finite signature Σ there exists an ω-categorical
structure Γ such that L reduces to CSP(Γ) and CSP(Γ) is in coNPL.

For constructing ω-categorical templates, we need a few preliminaries from model
theory. Let B1, B2 be τ -structures such that A = B1 ∩ B2 is an induced substructure
of both B1 and B2. Then we call B1 ∪ B2 the free amalgam of B1, B2 over A. More
generally, a τ -structure C is an amalgam of B1 and B2 over A if for i = 1, 2 there are
embeddings fi of Bi to C such that f1(a) = f2(a) for all a ∈ DA. Recall that classes of
structures are always assumed to be closed under isomorphism. A class A of τ -structures

4

has the amalgamation property if for all A,B1, B2 ∈ A with A = B1 ∩ B2 there is a
C ∈ A that is an amalgam of B1 and B2 over A. A class K of finite τ -structures that has
the amalgamation property and is closed under taking induced substructures is called an
amalgamation class.

The following basic result is known as Fräıssé’s Theorem in model theory (see Theo-
rem 6.1.2 in [12]):

Fact 3. Let K be an amalgamation class. Then there is an ω-categorical τ -structure Γ
such that K is the class of finite induced substructures of Γ .

The structure Γ , which is unique up to isomorphism, is called the Fräıssé limit of K.

A few remarks are necessary to relate our version of the theorem to the more gen-
eral version stated, for example, in [12]: Firstly, the amalgamation property is usually
defined in a slightly more complicated way where the structure A is not necessarily an
induced substructure of the Bi, but embedded into Bi. As we assume classes of struc-
tures to be closed under isomorphism, this makes no difference. Secondly, the class A in
Fräıssé’s Theorem usually has to have another property known as the joint embedding
property. However, for relational structures the joint embedding property is subsumed by
the amalgmation property. And thirdly, in general the Fräıssé limit Γ is homogeneous, but
not necessarily ω-categorical. But for finite relational vocabularies, homogeneity implies
ω-categoricity.

Let us now turn to the proof of Theorem 2. We encode words over the alphabet Σ by
structures similarly, but not exactly as in the proof of Theorem 1. Let τ be a signature
that contains the binary relation symbols N, 6=, the unary relation symbols S, T , and a
unary relation symbol Pa for each a ∈ Σ. With each word w = a1 . . . an ∈ Σ∗ we associate
the τ -structure W with universe {0, 1, . . . , n + 1}, NW = {(i, i + 1) | 0 ≤ i < n + 1},
6=W = {(i, j) | 0 ≤ i, j ≤ n + 1, i 6= j}, SW = {0}, TW = {n + 1}, and Pa = {i | 1 ≤ i ≤
n, ai = a}.

For every τ -structure A, we define an undirected graph GN (A) to be the graph with
vertex set DA and an edge between a, b ∈ DA if and only if a 6= b and (a, b) ∈ NA or
(b, a) ∈ NA. We say that A is connected by N if the graph GN (A) is connected.

Let C be the class of all τ -structures isomorphic to a structure W for some w ∈ Σ∗ \L.
Let K be the class of all τ -structures A with the following properties.

(1) The binary relation 6=A is anti-reflexive, i.e., it does not contain pairs of the form
(x, x).

(2) The relations SA, TA, and Pa for a ∈ Σ are pairwise disjoint.
(3) NA is anti-reflexive and anti-symmetric. Furthermore, if 6=A has cardinality |A|(|A|−

1), then the graph GN (A) is acyclic.
(4) A does not contain a structure from C as an induced substructure.

Lemma 1. The class K is an amalgamation class.

Proof. It is straightforward to verify that K is closed under isomorphisms and induced
substructures. To show that K has the amalgamation property, let B1, B2 ∈ K such that
A = B1 ∩ B2 is an induced substructure of both B1 and B2. We claim that the free
amalgam C = B1 ∪B2 is contained in K.

We have to prove that C has properties (1)–(4) from page 5. This is obvious for
properties (1) and (2), because both B1 and B2 have the property and their intersection

5

A is an induced substructure of both structures. To see that C has property (3), note
that either C = B1 or C = B2, and C inherits the property from the respective structure,
or DC \ DB1 6= ∅ and DC \ DB2 6= ∅, and 6=C=6=B1 ∪ 6=B2 has cardinality less than
|C|(|C| − 1). It remains to prove that C has property (4). Suppose for contradiction that
C has an induced substructure W ∈ C. As 6=W connects all pairs of distinct vertices of W ,
the structure W must be an induced substructure of B1 or of B2, which is a contradiction.

Let Γ be the Fräıssé-limit of K.

Lemma 2. A finite structure A has a homomorphism to Γ if and only if A has properties
(1)–(4).

Proof (of Theorem 2). There is the following reduction from L to CSP(Γ). Given a word
w ∈ Σ∗, let W be the corresponding τ -structure. If w /∈ L, then W is in C, and hence W
does not satisfy 4. Lemma 2 then implies that there is no homomorphism from W to Γ . If
w ∈ L, then W /∈ C. The structure W has no induced substructure from C, because every
proper induced substructure of W either does not have an element in S, or does not have
an element in T , or is not connected by N . Therefore, W homomorphically maps to Γ .
This shows that the function that returns for a given word w its word-structure W is a
polynomial-time many-one reduction from L to CSP(Γ).

We finally show that CSP(Γ) can be decided by a universal-nondeterministic polynomial-
time algorithm with an oracle for L, by the following algorithm.

Input: A

If A does not have properties (1)–(3) then reject.
For all induced substructures W of A:

// (can be implemented non-deterministically)
If W is the τ -structure of a word w ∈ Σ∗ then

If w /∈ L then reject.
Accept.

Lemma 2 shows that A homomorphically maps to Γ if and only if A satisfies (1)–
(4), and this is what the algorithm tests. The algorithm can be implemented on a non-
deterministic polynomial-time Turing machine such that there exists a run on input A
where the algorithm rejects if and only if A homomorphically maps to Γ .

4 coNP-intermediate ω-categorical Templates

In this section we construct an ω-categorical directed graph Γ such that CSP(Γ) is in
coNP, but neither coNP-complete nor in P (unless coNP=P). As in the previous section,
the infinite structures studied here are all defined as Fräıssé limits. All structures in this
section will be directed graphs.

Henson [11] used Fräıssé limits to construct 2ω many ω-categorical directed graphs.
If N is a class of τ -structures, Forb(N) denotes the class of all finite τ -structures A such
that no structure from N embeds into A. A tournament is a directed graph G (without
self-loops) such that for all pairs x, y of distinct vertices exactly one of the pairs (x, y),
(y, x) is an arc in G. Note that for all classes N of finite tournaments, Forb(N) is an

6

amalgamation class, because if G1 and G2 are directed graphs in Forb(N) such that
H = G1 ∩ G2 is an induced substructure of both G1 and G2, then the free amalgam
G1 ∪ G2 is also in Forb(N). We write ΓN for the Fräıssé-limit of Forb(N). Observe that
for finite N the problem CSP(ΓN) can be solved in deterministic polynomial time, because
for a given instance S of this problem an algorithm simply has to check whether there is
a homomorphism from one of the structures in N to S, which is the case if and only if
there is a homomorphism from S to ΓN.

Henson in his proof specified an infinite set T of tournaments T1, T2, . . . with the
property that Ti does not embed into Tj if i 6= j. Note that this implies that for two
distinct subsets T1 and T2 of T the two sets Forb(T1) and Forb(T2) are distinct as well.
Since there are 2ω many subsets of the infinite set T, there are also that many distinct ω-
categorical directed graphs. The tournament Tn in Henson’s set T has vertices 0, . . . , n+1,
and the following edges:

– (i, j) for j = i + 1 and 0 ≤ i ≤ n;
– (0, n + 1);
– (j, i) for j > i + 1 and (i, j) 6= (0, n + 1).

Proposition 1. The problem CSP(ΓT) is coNP-complete.

Proof. The problem is contained in coNP, because we can efficiently test whether a se-
quence v1, . . . , vk of distinct vertices of a given directed graph G induces Tk in G, i.e.,
whether (vi, vj) is an arc in G if and only if (i, j) is an arc in Tk, for all i, j ∈ {1, . . . , k}.
If for all such sequences of vertices this test is negative, we can be sure that G is from
Forb(T), and hence homomorphically maps to ΓT. Otherwise, G embeds a structure from
T, and hence does not homomorphically map to ΓT.

The proof of coNP-hardness goes by reduction from the complement of the NP-
complete 3-SAT problem, and is inspired by a classical reduction from 3-SAT to Clique.
For a given 3-SAT instance, we create an instance G of CSP(ΓT) as follows: If

{x1
0, x

2
0, x

3
0}, . . . , {x1

k+1, x
2
k+1, x

3
k+1}

are the clauses of the 3-SAT formula (we assume without loss of generality that the 3-SAT
instance has at least three clauses), then the vertex set of G is {(0, 1), (0, 2), (0, 3), . . . , (k+
1, 1), (k+1, 2), (k+1, 3)}, and the arc set of G consists of all pairs ((i, j), (p, q)) of vertices
such that xj

i 6= ¬xq
p and such that (i, p) is an arc in Tk.

We claim that a 3-SAT instance is unsatisfiable if and only if the created instance G
homomorphically maps to ΓT. The 3-SAT instance is satisfiable iff there is a mapping
from the variables to true and false such that in each clause at least one literal, say
xj0

0 , . . . , x
jk+1
k+1 , is true. This is the case if and only if the vertices (0, j1), . . . , (k + 1, jk+1)

induce Tk in G, i.e., ((i, ji), (p, jp)) is an edge if and only if (i, p) is an edge in Tk. This is
the case if and only if Tk embeds into G, and if and only if G does not homomorphically
map to ΓT. ut

We now modify the proof of Ladner’s Theorem given in [16] (which is basically Ladner’s
original proof) to create a subset T0 of T such that CSP(ΓT0) is in coNP, but neither in P
nor coNP-complete (unless coNP=P). One of the ideas in Ladner’s proof is to ‘blow holes
into SAT’, such that the resulting problem is too sparse to be NP-complete and to dense

7

to be in P. Our modification is that we do not blow holes into a computational problem
itself, but that we ‘blow holes into the obstruction set T of CSP(ΓT)’.

In the following, we fix one of the standard encodings of graphs as strings over the
alphabet {0, 1}. Let M1,M2, . . . be an enumeration of all polynomial-time bounded Tur-
ing machines, and let R1, R2, . . . be an enumeration of all polynomial time bounded
reductions. We assume that these enumerations are effective; it is well-known that such
enumerations exist.

The definition of T0 uses a Turing machine F that computes a function f : N → N,
which is defined below. The set T0 is then defined as follows.

T0 = {Tn | f(n) is even }

The input number n is given to the machine F in unary representation. The computation
of F proceeds in two phases. In the first phase, F simulates itself4 on input 1, then on
input 2, 3, and so on, until the number of computation steps of F in this phase exceeds n
(we can always maintain a counter during the simulation to recognize when to stop). Let
k be the value f(i) for the last input i for which the simulation was completely performed
by F .

In the second phase, the machine stops if phase two takes more than n computation
steps, and F returns k. We distinguish whether k is even or odd. If k is even, all directed
graphs G on s = 1, 2, 3, . . . vertices are enumerated. For each directed graph G in the
enumeration the machine F simulates Mk/2 on the encoding of G. Moreover, F computes
whether G homomorphically maps to ΓT0 . This is the case if for all structures Tl ∈ T that
embed into G the value of f(l) is even. So F tests for l = 1, 2, . . . , s whether Tl embeds
to G (F uses any straightforward exponential time algorithm for this purpose), and if it
does, simulates itself on input l to find out whether f(l) is even. If

(1) Mk/2 rejects and G homomorphically maps to ΓT0 , or
(2) Mk/2 accepts and G does not homomorphically map to ΓT0 ,

then F returns k + 1 (and f(n) = k + 1).
The other case of the second phase is that k is odd. Again F enumerates all directed

graphs G on s = 1, 2, 3, . . . vertices, and simulates the computation of Rbk/2c on the
encoding of G. Then F computes whether the output of Rbk/2c encodes a directed graph
G′ that homomorphically maps to ΓT0 . The graph G′ homomorphically maps to ΓT0 iff for
all tournaments Tl that embed into G′ the value f(l) is even. Whether Tl embeds into G′

is tested with a straightforward exponential-time algorithm. To test whether f(l) is even,
F simulates itself on input l. Finally, F tests with a straightforward exponential-time
algorithm whether G homomorphically maps to ΓT. If

(3) G homomorphically maps to ΓT and G′ does not homomorphically map to ΓT0 , or
(4) G does not homomorphically map to ΓT and G′ homomorphically maps to ΓT0 ,

then F returns k + 1.

Lemma 3. The function f is a non-decreasing function, that is, for all n we have f(n) ≤
f(n + 1).

4 Note that by the fixpoint theorem of recursion theory we can assume that F has access to its
own description.

8

Lemma 4. For all n0 there is n > n0 such that f(n) > f(n0) (unless coNP 6= P).

Proof. Assume for contradiction that there exists an n0 such that f(n) equals a constant
k0 for all n ≥ n0. Then there also exists an n1 such that for all n ≥ n1 the value of k
computed by the first phase of F on input n is k0.

If k0 is even, then on all inputs n ≥ n1 the second phase of F simulates Mk0/2 on
encodings of an enumeration of graphs. Since the output of F must be k0, for all graphs
neither (1) nor (2) can apply. Since this holds for all n ≥ n1, the polynomial-time bounded
machine Mk0/2 correctly decides CSP(ΓT0), and hence CSP(ΓT0) is in P. But then there
is the following polynomial-time algorithm that solves CSP(ΓT), a contradiction to coNP-
completeness of CSP(ΓT) (Proposition 1) and our assumption that coNP 6= P.

Input: A directed graph G.

Test whether G homomorphically maps to ΓT0 .
If yes, accept.
If no, test whether one of the finitely many graphs in T \ T0 embeds into G.
Accept if none of them embeds into G.
Reject otherwise.

If k0 is odd, then on all inputs n ≥ n1 the second phase of F does not find a graph
G for which (3) or (4) applies, because the output of F must be k0. Hence, Rbk0/2c is a
polynomial-time reduction from CSP(ΓT) to CSP(ΓT0), and by Proposition 1 the problem
CSP(ΓT0) is coNP-hard. But note that because f(n) equals the odd number k0 for all
but finitely many n, the set T0 is finite. Therefore, CSP(ΓT0) can be solved in polynomial
time, contradicting our assumption that coNP 6= P. ut

Theorem 4. CSP(ΓT0) is in coNP, but neither in P nor coNP-complete (unless coNP=P).

Proof. It is easy to see that CSP(ΓT0) is in coNP. On input G the algorithm non-
deterministically chooses a sequence of l vertices, and checks in polynomial time whether
this sequence induces a copy of Tl. If yes, the algorithm computes f(l), which can be
done in linear time by executing F on the unary representation of l. If f(l) is even, the
algorithm accepts. Recall that G does not homomorphically map to ΓT0 iff a tournament
Tl ∈ T0 embeds into G, which is the case iff there is an accepting computation path for
the above non-deterministic algorithm.

Suppose that CSP(ΓT0) is in P . Then for some i the machine Mi decides CSP(ΓT0).
By Lemma 3 and Lemma 4 there exists an n0 such that f(n0) = 2i. Then there must
also be an n1 > n2 such that the value k computed during the first phase of F on input
n1 equals 2i. Since Mi correctly decides CSP(ΓT0), the machine F returns 2i on input
n1. By Lemma 3, the machine F also returns 2i for all inputs from n1 to n2, and by
induction it follows that it F returns 2i for all inputs larger than n ≥ n0, in contradiction
to Lemma 4.

Finally, suppose that CSP(ΓT0) is coNP-complete. Then for some i the machine Ri is
a valid reduction from CSP (ΓT) to CSP(ΓT0). Again, by Lemma 3 and Lemma 4 there
exists an n1 such that the value k computed during the first phase of F on input n1 equals
2i. Since the reduction Ri is correct, the machine F returns 2i on input n1, and in fact
returns 2i on all inputs greater than n1. This contradicts Lemma 4. ut

9

5 Left-hand Side Restrictions

Let S be a class of finite τ -structures. Then CSP(S,) is the computational problem
to decide whether for a given pair (A,B) of finite τ -structures with A ∈ S there is a
homomorphism from A to B.

As an example, let τ be the signature that consists of a single binary relation. In this
case, τ -structures can be considered as directed graphs (potentially with loops). If C is
the set of all complete graphs (without loops!), then CSP(C,) is essentially a formulation
of the Clique problem.

The following question was left open in [10]: Are there classes of structures S such that
CSP(S,) is in NP, but neither in P nor NP-complete?

We answer this question positively, and construct such a class S, which can even
be decided in polynomial time. Again we use a modification of Ladner’s theorem. The
modification is similar to the modification presented in Section 4. This time, we ‘blow
holes into the possible clique sizes for the clique problem’ and obtain a class C0 ⊆ C such
that CSP(C0,) is in NP \ P and not NP-complete (unless P=NP).

The idea is to define C0 in such a way that the C\C0 becomes finite when CSP(C0,) is
in P; hence, CSP(C0,) is polynomial-time equivalent to the Clique problem, a contradic-
tion unless P=NP. Moreover, the construction of C0 is such that C0 is finite if CSP(C0,)
is NP-hard. But for finite C0, the problem CSP(C0,) is in P, again contradicting the
assumption that P 6= NP. We also take extra care to make C0 polynomial-time decidable.

Theorem 5. CSP(C0,) is in NP, but neither in P nor NP-complete (unless P=NP).
Moreover, the set C0 can be decided in deterministic polynomial time.

In our proof we do not use any specific properties of the class C and the clique problem,
but in fact we can construct classes S0 ⊆ S with NP-intermediate CSP(S0,) for any class
S where CSP(S,) is NP-complete.

6 The Local-Global Conjecture

The complexity of the constraint satisfaction problem has also been studied for templates
Γ with an infinite signature. Several well-known computational problems can be mod-
eled as CSPs only if we allow (countably) infinite constraint languages: examples are
boolean Horn-satisfiability, Ord-Horn constraints in temporal reasoning [15], or solving
linear equation systems over a finite field.

If the local-global conjecture as stated in Section 1 is true, then the dichotomy for
finite constraint languages implies the dichotomy for infinite constraint languages: if an
infinite constraint language Γ has a finite reduct Γ ′ such that CSP(Γ ′) is NP-hard, then
CSP(Γ) is clearly NP-hard as well. On the other hand, if CSP(Γ) is locally tractable,
then the conjecture implies that CSP(Γ) is globally tractable.

We show that if the local-global conjecture is false, then there is no dichotomy for
infinite constraint languages.

Theorem 6. If the local-global conjecture is false, then there exists a template Γ0 with
finite domain D and infinite signature such that CSP(Γ0) is neither globally tractable nor
NP-complete (unless P=NP); moreover, the meta-problem for Γ0 is efficiently decidable,
i.e., given a relation R over D, we can decide in polynomial-time whether R is in Γ0.

10

The proof of Theorem 6 is essentially again a modification of Ladner’s theorem, but we
have to overcome a complication: for a straightforward application of Ladner’s theorem,
we need that if Γ is an expansion of Γ ′ by finitely many relation symbols, and CSP(Γ)
is NP-hard, then CSP(Γ ′) is NP-hard as well: but this is not true in general. We only
sketch the basic setting of Ladner’s construction, which we have already seen twice in this
paper, and focus on the complication.

Proof (Sketch). Assume that there is an infinite constraint language Γ with a finite do-
main such that CSP(Γ) is locally tractable, but not globally tractable. If Γ is not NP-
complete, we are already done with Γ0 = Γ , so assume that Γ is NP-complete. We
claim that we can assume without loss of generality that Γ contains all primitive positive
definable relations (for an introduction to this basic concept in model theory and its ap-
plications in constraint satisfaction theory, see e.g. [6]). To see this, first observe that the
expansion Γ ′ of Γ by all those relations trivially still has an NP-complete CSP. Moreover,
all reducts of Γ ′ with a finite signature have a CSP that is in P , because all relations
in this reduct can be defined by finitely many relations from Γ . So, Γ ′ can be obtained
from a finite reduct of Γ by expansion with finitely many primitive positive relations, and
hence CSP(Γ ′) is in P.

We construct a reduct Γ0 of Γ such that CSP(Γ0) is neither in P nor NP-complete
(unless P=NP). Again, the definition of Γ0 is by a Turing machine F that computes a
function f : N → N, and the n-th relation of Γ (according to some fixed enumeration of
the relations of Γ) is in Γ0 if f(n) is even.

As in the proofs before, n is given to the machine F in unary representation, and we
can define F in such a way that

– it runs in polynomial time in n, and
– Γ0 becomes finite if CSP(Γ0) is NP-hard, and
– Γ is an expansion of Γ0 by finitely many relations if CSP(Γ0) is in P.

If Γ0 is finite, then CSP(Γ0) is tractable, because every reduct of Γ with a finite
signature is by assumption tractable, and we obtain that P=NP. Now, suppose that we
are in the other case, and that Γ is an expansion of Γ0 by finitely many relations. We
want to show that CSP(Γ0) is NP-hard by reducing CSP(Γ) to CSP(Γ0).

Let S be an instance of CSP(Γ). Note that S might contain constraints for the relations
from Γ that are not in Γ0, but there is a k such that all those constraints have arity
less than k. Because Γ contains all primitive positive definable relations, Γ contains in
particular for every l-ary relation R the k-ary relation R′ := R × D × · · · × D. We now
replace each constraint in S with a relation R from Γ that is not in Γ0 by a constraint
for R′, introducing k − l new dummy variables for the last k − l arguments of R′. Even
though the representation of R′ is much larger than the representation of R, this can only
lead to a linear increase in the size of the instance S, because both D and k are fixed. The
resulting structure S′ is an instance of CSP(Γ0), and S′ homomorphically maps to Γ0

if and only if S homomorphically maps to Γ . Therefore CSP(Γ0) is NP-complete, which
again implies that P=NP. ut

Acknowledgements. We would like to thank Hubie Chen for his helpful comments on an
earlier version of this paper.

11

References

1. B. L. Bauslaugh. The complexity of infinite h-coloring. J. Comb. Theory, Ser. B, 61(2):141–
154, 1994.

2. M. Bodirsky. Constraint satisfaction problems with infinite templates. Survey, to appear,
2007.

3. A. Bulatov. Tractable conservative constraint satisfaction problems. In Proceedings of
LICS’03, pages 321–330, 2003.

4. A. Bulatov. A graph of a relational structure and constraint satisfaction problems. In
Proceedings of LICS’04, Turku, Finland, 2004.

5. A. Bulatov and P. Jeavons. Algebraic structures in combinatorial problems. Technical report
MATH-AL-4-2001, Technische Universitat Dresden, submitted to International Journal of
Algebra and Computing, 2001.

6. A. Bulatov, A. Krokhin, and P. G. Jeavons. Classifying the complexity of constraints using
finite algebras. SIAM Journal on Computing, 34:720–742, 2005.

7. Y. Chen, M. Thurley, and M. Weyer. Understanding the complexity of induced substructure
isomorphisms. In ICALP’08, 2008.

8. G. Cherlin. The classification of countable homogeneous directed graphs and countable
homogeneous n-tournaments. AMS Memoir, 131(621), January 1998.

9. T. Feder and M. Vardi. The computational structure of monotone monadic SNP and con-
straint satisfaction: A study through Datalog and group theory. SIAM Journal on Comput-
ing, 28:57–104, 1999.

10. M. Grohe. The complexity of homomorphism and constraint satisfaction problems seen from
the other side. Journal of the ACM, 54(1), 2007.

11. C. W. Henson. Countable homogeneous relational systems and categorical theories. Journal
of Symbolic Logic, 37:494–500, 1972.

12. W. Hodges. A shorter model theory. Cambridge University Press, 1997.
13. P. M. Idziak, P. Markovic, R. McKenzie, M. Valeriote, and R. Willard. Tractability and

learnability arising from algebras with few subpowers. In LICS’07, pages 213–224, 2007.
14. R. E. Ladner. On the structure of polynomial time reducibility. JACM, 22(1):155–171, 1975.
15. B. Nebel and H.-J. Bürckert. Reasoning about temporal relations: A maximal tractable

subclass of Allen’s interval algebra. JACM, 42(1):43–66, 1995.
16. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
17. G. Schwandtner. Datalog on infinite structures. Submitted dissertation, Humboldt-

Universität zu Berlin, 2008.

12

A Proofs for Section 2

Proof (of Theorem 1). We show that CSP(Γ) is equivalent to L with respect to polynomial-
time Turing reductions. We first describe an algorithm that uses an oracle for L and
decides CSP(Γ) in polynomial time. Let A be a finite relational τ -structure. If A has
an empty domain, there is a homomorphism from A to Γ , and the algorithm accepts.
Otherwise, the algorithm performs a breadth-first search (BFS) on the directed graph
(possibly with loops) defined by the relation N in A. The BFS starts with some vertex
u0, and labels u0 with 1. If in the course of the BFS the algorithm detects an edge (u, v)
where u (v, respectively) has already been labeled by i, then the vertex v (u, respectively)
gets the label i + 1 (i − 1, respectively). If v (u, respectively) was already labeled by a
distinct label in a previous step of the algorithm, there is clearly no homomorphism from
A to Γ , and the algorithm rejects. Moreover, if any vertex gets a label smaller than the
label of a vertex u ∈ S, or if any vertex gets a label larger than the label of a vertex
u ∈ T , then there is no homomorphism from A to Γ , and the algorithm rejects.

Let B be the τ -structure with vertices 1, . . . , l, for l = t − s + 1 where s is the
smallest and t the largest label assigned to vertices of A. The relation N is interpreted
by {(i, j) | j = i + 1, 1 ≤ i < l}, and a unary relation P holds on a vertex i− s + 1 in B if
there is a vertex u of A such that P holds on u in A and u is labeled with i. Observe that
the substructure A′ of A that is induced by all vertices that were labeled by the run of the
BFS that started at u0 homomorphically maps to B: the homomorphism maps vertices
u with label i to i − s + 1. Also observe that any homomorphism from A′ to Γ must
map two vertices with the same label to the same vertex in Γ . Hence, the homomorphism
described above is unique. Moreover, if there are two vertices u, u′ with the same label in
A′ such that Pa holds for u and Pb holds for u′ for a 6= b, then there is no homomorphism
from A′ to Γ . In this case, the algorithm rejects. In the following we therefore assume
that for each label there is at most one a ∈ Σ such that Pa holds on vertices with this
label.

If there is a label such that for all vertices with this label no predicate Pa for a ∈ Σ
holds, or if no vertex in A′ satisfies S, or if no vertex in A′ satisfies T , then B is in X

and therefore A′ homomorphically maps to Γ . In this case, the algorithm removes the
vertices of A′ from A, and proceeds recursively on the remaining graph. Otherwise, it can
be verified that B equals W for some word w ∈ Σ∗ (in particular, vertex 1 satisfies S
and vertex l satisfies T). The algorithm then uses the oracle to decide whether w is in L.
If the answer is yes, there is a homomorphism from A′ to the copy of W in Γ , and the
algorithm removes the vertices of A′ from A and proceeds recursively on the remaining
graph. Otherwise, the algorithms rejects.

We claim that if the algorithm rejects there is no homomorphism from A′ to Γ . Assume
otherwise. Since A′ is connected, any homomorphism from A′ to Γ must map A′ to a copy
of a structure in A, or a copy of a structure in X. Since vertex 1 satisfies S and vertex l
satisfies T , and since for each label i ∈ {s, . . . , t} there is at least one vertex labeled by
i and satisfying Pa for some a ∈ Σ, there is no homomorphism from A′ to structures in
X. So lets assume that there is a homomorphism from A′ to a structure W in A. In this
case, the structure W and the structure B described above must be isomorphic, and the
oracle must have answered yes, a contradiction. It is now obvious from the description of
the algorithm that it accepts if and only if there is a homomorphism from A to Γ .

13

Next, we show that there is a polynomial-time many-one reduction from L to CSP(Γ).
For a given word w, the reduction returns the structure W described above. It is clear that
W is efficiently computable, and that W homomorphically maps to Γ if w ∈ L. If w 6∈ L,
we claim that W does not homomorphically map to Γ . If there was a homomorphism
from W to Γ , then by construction of Γ all elements must be mapped to the same copy
of a structure W for w ∈ L or to a structure from X, because W is connected. In fact,
it can not be that W homomorphically maps to a structure from X, because then the
relation S, the relation T , or one of the relations Pa will be violated. Hence, all elements
of W must be mapped to the elements of a copy of Aw′ for some w′ ∈ L. It is easy to see
that if there is a homomorphism from W to W ′, then the word w must be equal to w′.
Hence, w ∈ L, a contradiction. ut

B Proofs for Section 3

Proof (of Lemma 2). If A has properties (1)–(4), then it is in K and hence embeds into
Γ .

Conversely, suppose that h is a homomorphism from A to Γ . Then 6=A must be anti-
reflexive, because otherwise Γ would not be anti-reflexive, in contradiction to the fact
that all structures in K satisfy (1). By similar reasoning, A also has properties (2) and
(3).

To show that A also has property (4), suppose for contradiction that A has an induced
substructure W from C. Let W ′ be the induced substructure of Γ with domain h(DW).
Then W ′ ∈ K. We claim that the restriction h′ of h to DW is an isomorphism from W to
W ′. This implies W ′ ∈ C, which is a contradiction. To prove the claim, we first note that
h′ is one-to-one, because 6=W holds for all distinct elements in W , and 6=Γ is anti-reflexive.
Next, we observe that h′ preserves the complement of N : As W is connected by N and
h′ is a homomorphism, W ′ is also connected by N . Hence if there were a, b ∈ DW such
that (a, b) /∈ NW and (h′(a), h′(b)) ∈ NW ′

, then either NW ′
would not be antireflexive

or NW ′
would not be antisymmetric or GN (W ′) would contain a cycle, which contradicts

W ′ having property (3). Finally, h′ also preserves the complement of the relations S, T ,
and Pa for all a ∈ Σ, because each vertex of W is contained in precisely one of these
relations, and by (2) each vertex of W ′ is contained in at most one of the relations.

C Proofs for Section 4

Proof (of Lemma 3). We inductively assume that f(s− 1) ≤ f(s) for all s ≤ n, and have
to show that f(n) ≤ f(n+1). Since F has more time to simulate itself when we run it on
n + 1 instead of n, the value i computed in the first phase of F cannot become smaller.
By inductive assumption, k = f(i) cannot become smaller as well. In the second phase,
we either return k or k + 1. Hence, if k becomes larger in the first phase, the output of
F cannot become smaller. If k does not become larger, then the only difference between
the second phase of F for input n + 1 compared to input n is that there is more time for
the computations. Hence, if the machine F on input n verifies condition (1),(2),(3),(4)
for some graph G (and hence returns k + 1), then F also verifies this condition for G on
input n+1, and returns k+1 as well. Otherwise, f(n) = k, and also here f(n+1) ≥ f(n)
holds. ut

14

D Proofs for Section 5

Let M1,M2, . . . and R1, R2, . . . be effective enumerations of all polynomial-time bounded
Turing machines, and all logarithmic-space reductions, respectively. For the rest of the
proof, we fix any standard encoding of pairs of graphs by words in {0, 1}∗. Again, the
definition of C0 is by a Turing machine F that computes a function f : N → N. Let the
clique Kn (i.e., the complete graph without loops) be in C0 iff f(n) is even. The input
number n is given to the machine F in unary representation. The computation of F
proceeds in two phases. In the first phase, F simulates itself on input 1, 2, . . . , until the
number of steps in this phase exceeds n. Let k be the value f(i) for the last value i for
which the simulation was completely performed by F .

In the second phase, we distinguish whether k is even or odd. In both cases, the
machine stops if phase two takes more than n computation steps, and in this case F
returns k. If k is even, F enumerates all pairs of graphs (G, H) where G is a clique and
H is an arbitrary graph. For each pair the machine F simulates Mk/2 on the encoding
of (G, H). Moreover, F computes whether G homomorphically maps to H. Finally, F
simulates itself to find out whether f(l) is even, where l is the number of vertices of G. If

(1) Mk/2 rejects, G homomorphically maps to H, and f(l) is even, or
(2) Mk/2 accepts, G does not homomorphically map to H, and f(l) is even,

then F returns k + 1 (and f(n) = k + 1).
The other case of the second phase is that k is odd. Again F enumerates all pairs of

graphs (G, H), and simulates the computation of Rbn/2c on the encoding of (G, H). Then
F decides whether the output of Rbn/2c encodes a pair (G′,H ′) such that G′ is a clique
on l vertices, and such that G′ homomorphically maps to H; this can be done using any
exponential-time algorithm. Finally, F simulates itself on input l to test whether f(l) is
even. If

– f(l) is odd, or
– G homomorphically maps to H and

G′ does not homomorphically map to H ′, or
– G does not homomorphically map to H and

G′ homomorphically maps to H ′,

then F returns k + 1.
As in Section 4, it is straightforward to verify that f is a non-decreasing function, and

that f can not be constant for all large n unless P=NP.

Proof (of Theorem 5). The containment in NP follows directly from the containment of
the more general problem CSP(C,) in NP. The set C0 can be decided in deterministic
polynomial time, because the function f can be computed in linear time in n.

Suppose that CSP(C0,) is in P . Then for some i the machine Mi decides CSP(C0,).
By the observations above, there exists an n0 such that f(n0) = 2i. Then there must also
be an n1 > n0 such that the value k computed during the first phase of F on input n1

equals 2i. Since Mi correctly decides CSP(C0,), the machine F returns 2i for all inputs
larger than n ≥ n0, which contradicts the observation that f cannot be constant for large
n.

Finally, suppose that CSP(C0,) is NP-complete. Then for some i the machine Ri is
a valid reduction from CSP (C,) to CSP(C0,). Again, there exists an n1 such that the

15

value k computed during the first phase of F on input n1 equals 2i−1. Since the reduction
Ri is correct, the machine F returns 2i− 1 on input n1, and in fact returns 2i− 1 on all
inputs greater than n1. Again, this is a contradiction. ut

16

