
A New Algorithm for Normal Dominance Constraints

Manuel Bodirsky∗ Denys Duchier† Joachim Niehren‡ Sebastian Miele§

November 10, 2003

Dominance constraints are logical descriptions of
trees. Efficient algorithms for the subclass of normal
dominance constraints were recently proposed. We
present a new and simpler graph algorithm solving
these constraints more efficiently, in quadratic time
per solved form. It also applies to weakly normal
dominance constraints as needed for an application
to computational linguistics. Subquadratic running
time can be achieved employing decremental graph
biconnectivity algorithms.

1 Introduction

Dominance constraints are logical descriptions of trees
[2, 10] that can talk about the mother and ancestor re-
lations between the nodes of a tree. They have numer-
ous applications, most of which belong to the area of
computational linguistics, e.g. in underspecified seman-
tics [4–6], underspecified discourse [7], and parsing with
tree adjoining grammar [12].

Satisfiability of dominance constraints was proved
NP-complete in [9]. This shed doubts on the feasibility
of dominance based applications. The doubts were
removed by Mehlhorn et al [1], who distinguished
the language of normal dominance constraints which
suffices for many applications and has a polynomial time
satisfiability problem.

The most relevant problem for normal dominance
constraints is to enumerate solved forms, i.e., all trees
satisfying a constraint. Mehlhorn et al [1] presented
an enumeration algorithm whose running time is O(n4)
per solved form. This algorithm relies on an efficient
satisfiability test. Thiel [13] improved this result to
O(n3) by faster satisfiability testing.

In this paper, we propose a novel graph algorithm
relying on graph connectivity, and inspired by [3]. It can
enumerate all solved forms of a normal dominance con-
straint in O(n2) per solved form, and thereby improves
on the best previously known algorithm in efficiency.

∗Humboldt Universität zu Berlin, Germany
†LORIA, Nancy, France
‡INRIA team Mostrare, Université de Lille, France
§Universität des Saarlandes, Germany

Subquadratic running time can be achieved employing
decremental graph biconnectivity algorithms.

Our algorithm applies to the extended language
of weakly normal dominance constraints that we intro-
duce. This improves the applicability of dominance con-
straints in the area of natural language semantics. It un-
derlies the first polynomial time algorithm for minimal
recursion semantics (MRS) [5] presented in a follow up
paper [11]. MRS is built into head driven phrase struc-
ture grammar (HPSG), one of the mainstream grammar
formalisms in computational linguistics.

2 Weakly Normal Dominance Constraints

We start with a brief exposition of dominance con-
straints [2, 10], recall the notion of normality [1], and
then introduce weak normality.

Let f, g range over the elements of some signature
of function symbols with fixed arities and a, b over con-
stants, i.e., function symbols of arity 0. A constructor
tree over this signature is a ground term τ constructed
from the function symbols, as for instance f(g(a, a)).
We identify ground terms with trees that are rooted,
ranked, edge-ordered, and node-labeled. See Fig. 1 for
a graphical representation of the tree f(g(a, a)).

f

g

a a

Figure 1: f(g(a, a))

Dominance constraints are logic formulas that de-
scribe constructor trees. They can talk about the
mother-child relation / between the nodes of a tree,
dominance /∗ which is the reflexive ancestor relation,
and inequality 6=. Let X,Y, Z range over an infinite set
of node variables. A dominance constraint φ is then a
conjunction of literals:

φ ::= X:f(Y1, . . . , Yn) | X/∗Y | X 6=Y | φ′ ∧ φ′′

A solution of a dominance constraint consists of a tree
τ and a variable assignment α to the nodes of τ . A

X:f

X1 X2

Y

Figure 2: Unsatisfiable constraint: X:f(X1, X2) ∧
X1/

∗Y ∧X2/
∗Y

labeling literal X:f(Y1, . . . , Yn) is satisfied if α(X) is
labeled by f in τ and has the children α(Y1), . . . , α(Yn)
in that order. A dominance literal X/∗Y requires that
α(X) dominates α(Y) in τ . An inequality literal X 6=Y
requires α(X) and α(Y) to be distinct.

The constraint of Fig. 2 requires that the node
values of X1 and X2 are sisters, and ancestors of the
node value of Y . This is clearly impossible in a tree since
the subtrees rooted in two sister nodes, the values of X1

and X2, are necessarily disjoint and therefore cannot
share a common node Y .

Definition 2.1. A dominance constraint φ is normal
if it satisfies:

1. (a) each variable of φ occurs at most once in the
labeling literals of φ. A variable Yi is a hole
of φ whenever it occurs at the right of some
labeling literal X:f(Y1, . . . , Yn) of φ; else it is
a root of φ.

(b) each variable of φ occurs at least once in the
labeling literals of φ.

2. if X and Y are distinct roots in φ, X 6= Y occurs
in φ.

3. (a) if X/∗Y occurs in φ, Y is a root in φ.

(b) if X/∗Y occurs in φ, X is a hole in φ.

A dominance constraint is weakly normal if it satisfies
all above properties except for 1.(b) and 3.(b).

Dropping 3.(b) allows root-to-root dominances
which enable the applications to MRS discussed in Sec-
tion 5. Dropping condition 1.(b) adds convenience. The
unsatisfiable constraint in Fig. 2, for instance, has holes
X1 and X2 and roots X and Y . Extended by the en-
tailed inequality X 6=Y , this constraint becomes weakly
normal, but not normal as root Y violates condition
1.(b).

Compactification. Condition 1.(a) could be re-
laxed in order to support nested labelings, such as
X1:f(Y1, X2) ∧ X2:g(Y2, Y3) modeling the nested term
f(Y1, g(Y2, Y3)). We do not do so here, as nested la-
beling can always be eliminated by compactification:
The idea is to replace X1:f(Y1, X2) ∧ X2:g(Y2, Y3) by
X1:h(Y1, Y2, Y3) where h is a new function symbol. In
general, compactification preserves (un)solvability.

3 Dominance Graphs

We now shift the view from weakly normal dominance
constraints to dominance graphs. Solutions of dom-
inance constraints will correspond to solved forms of
dominance graphs.

Definition 3.1. A dominance graph (V, /∗]/) is a di-
rected graph with two kinds of directed edges, dominance
edges (X,Y) ∈ /∗ drawn as dotted arrows X Y and
tree edges (X,Y) ∈ / drawn as solid arrows X Y .
Subgraphs of the following forms are forbidden in dom-
inance graphs:

To every weakly normal dominance constraint we
assign a unique dominance graph. The nodes of the
graph of φ are the variables of the constraint φ. Label-
ing literals X:f(X1, . . . , Xn) of φ contribute tree edges
X Xi for 1 ≤ i ≤ n, and dominance literals X/∗Y
dominance edges X Y . Weak normality (Def. 2.1)
ensures the absence of forbidden subgraphs (Def. 3.1).

We frequently draw dominance constraints as dom-
inance graphs, as for instance in Fig. 2. In such draw-
ings, we may freely include node labels f and the or-
der of children in labeling literals even though these are
ignored by the formal definition of dominance graphs.
Note that inequality literals are also ignored.

The reachability relation RG of a dominance graph
(V, /∗] /) is the reflexive transitive closure of /∗] /. A
dominance graph G is less specific than G′ if:

• G and G′ differ only in their sets of dominance
edges, and

• the reachability relation is extended: RG ⊆ RG′

Definition 3.2. We call a dominance graph (V, /∗]/)
a solved form if it is a forest, i.e., a collection of rooted
trees. A solved form of a dominance graph G is a solved
form that is more specific than G. We call a dominance
graph solvable if it has a solved form.

A minimal solved form (of G) is a solved form (of
G) that is minimal with respect to specificity. Fig. 3
shows a minimal solved form and two others that are
more specific. Fig. 4 presents a dominance graph and
its two minimal solved forms.

4 Minimal Solved Forms versus Solutions.

In general, the solutions of a normal dominance con-
straint are partitioned by the minimal solved forms of
its graph. This is important, as every dominance con-
straint has infinitely many solutions but only finitely
many solved forms.

X0

X1 X2

Y

X0

X1 X2

Y
X0

X1 X2

Y

Figure 3: Three solved forms of which the left one is
least specific.

X0 Y0

X1 X2 Y1 Y2

Z

⇒

X0

X1 X2

Y0

Y1 Y2

Z

Y0

Y1 Y2

X0

X1 X2

Z

Figure 4: A dominance graph with two minimal solved
forms.

For lack of space, we do not prove this claim
here. Instead, we formalize the equivalence between
satisfiability and solvability (Prop. 4.1 below). We call
φ well-formed if it does not contain any subconstraint
of the form X:a ∧ X/∗Y . This does not restrict
generality as every constraint can be made well-formed
in a linear time: suppose that φ contains a subconstraint
X:a∧X/∗Y . If X is the same variable as Y then we can
remove X/∗Y . Otherwise, X and Y are distinct roots
of φ so that X 6=Y belongs to φ; this is unsatisfiable
since X must denote a leaf (which does not properly
dominate any other node).

Proposition 4.1. A well-formed weakly normal dom-
inance constraint is satisfiable (has a solution) if and
only if its dominance graph is solvable (has a solved
form).

Proof. From a solution of a dominance constraint, one
can easily read off a solved form of the corresponding
dominance graph. It is sufficient to ignore all nodes of
solutions that are not values of variables (together with
all adjacent edges) and all redundant dominance edges
induced by the solution. Vice versa, one can construct
a solution for a solved form of a weakly normal dom-
inance constraint inductively top down, as long as the

X0:∀u

X1:→

X2:man(u) X3

Z:love(u, v)

Y0:∃v

Y1:∧

Y2 Y3:woman(v)

Figure 5: Dominance graph for Every man loves a
woman (before compactification)

constraint is well-formed. New function symbols are to
be introduced for labeling leaf variables in order to sat-
isfy multiple outgoing dominance wishes via branching.
The complete proof for normal dominance constraints
is elaborated in [1]. We omit the details for the weakly
normal case.

5 Applications

Dominance constraints have multiple applications in
computational linguistics [10]. Here we focus on model-
ing semantic underspecification of scope in two indepen-
dent approaches: the constraint language for lambda
structures (CLLS) [6], a general framework for semantic
underspecification, and MRS [5], a less general approach
but more popular in practice, in particular in larger
scale head driven phrase structure grammars (HPSG).

The famous example every man loves a woman
illustrates the notorious problem of scope ambigu-
ity: either each man loves a possibly distinct woman
∀u(man(u) → ∃v(woman(v) ∧ love(u, v))) or there is
a woman that is loved by every man ∃v(woman(v) ∧
∀u(man(u)→ love(u, v))).

The dominance graph in Fig. 5 is derived by a CLLS
semantics construction [6]; it becomes normal by com-
pactification. The two readings of the sentence corre-
spond to the minimal solved forms of this dominance
graph. The MRS approach [5] is similar to CLLS but
differs in two respects. First, MRS semantics constructs
weakly normal dominance graphs, and second, these
graphs are understood to describe configurations rather
than minimal solved forms.

Configurations are particular solved forms, where
nodes cannot have more than one outgoing dominance
edge. ”Closed” leaves labeled by a constant have no
outgoing dominance edges. The restriction to such
configurations matters: it is NP-complete to decide
whether a solved form permits a configuration (because
of closed leaves in contrast to [13], see Section 10 of
[1]). Nevertheless, Niehren and Thater [11] distinguish
a large fragment of MRS graphs, where all minimal
solved forms are configurations. This result relies on the
algorithm presented here, and for the first time formally

treats the relationship between MRS and CLLS.

6 Weak Connectedness

We reduce solvability of dominance graphs to solvability
of weakly connected dominance graphs. The constraint
graph G = (V, /∗] /) is weakly connected if for any two
nodes X and Y there is an undirected path from X to
Y in /∗] /. A weakly connected component (wcc) of G
is a maximal weakly connected subgraph of G. Given a
set of nodes V ′ ⊆ V , we write G|V ′ for the restriction
of G to nodes in V ′ and edges in V ′ × V ′. The wccs of
G = (V, /∗] /) form a proper partition of V, /∗ and /.

Proposition 6.1. A dominance graph is solvable if
and only if all its weakly connected components are
solvable.

Proof. Let G be a dominance graph. If all wccs are
solvable then we can choose some solved form for each
component. The union of these solved forms is a solved
form of G. Conversely, if G′ is a solved form of G, and
W are the nodes of a wcc of G, then G′|W is a solved
form of G|W .

We will now prove that a solved form of a weakly
connected dominance graph is a rooted tree. This is
equivalent to the following lemma, which states the key
inductive property underlying the proofs of this paper.

Lemma 6.1. (Key) Let G = (V,E) be a dominance
graph with solved form G′. If Y, Y ′ are weakly connected
nodes in G then there exists a node Z that is a common
ancestor of Y and Y ′ in G′.

Proof. Since the vertices Y and Y ′ are weakly connected
there exists a chain (Y0, Y1, . . . , Yr) that starts at Y =
Y0, ends at Y

′ = Yr, and is linked by edges (Yi, Yi+1) ∈
E ∪ E−1. We prove by induction on r that there
exists an index j ∈ {0, . . . , r} with (Yj , Y0) ∈ RG′ and
(Yj , Yr) ∈ RG′ . If r = 0 or r = 1 then we can choose
Z to be either Y0 or Yr. Otherwise, we can apply the
induction hypothesis to the chain (Y1, . . . , Yr). Thus,
there exists Z ′ that is a common ancestor of Y1 and
Yr in G

′. If (Y0, Y1) is an inverse edge then Z
′ is also a

common ancestor of Y0 and Yr, so we can choose Z = Z ′.
Otherwise, (Y0, Y1) ∈ RG. Thus, both Y0 and Z ′ are
ancestors of Y1 in G

′. Since this digraph is a forest, it
follows that either (Y0, Z

′) ∈ RG′ or (Z ′, Y0) ∈ RG′ . In
the first case, we choose Z = Y0, and in the second one
Z = Z ′.

7 Freeness

This section prepares a solvability test for weakly con-
nected dominance graphs. The idea of the algorithm is
based on the notion of freeness.

X0 Y0

X1 X2 Y1 Y2

Z1 Z2

Figure 6: An unsatisfiable dominance graph.

Definition 7.1. A node X of a dominance graph G is
called free in G if there exists a solved form of G where
X has in-degree zero.

Proposition 7.1. A weakly connected dominance
graph without free nodes is unsolvable.

Proof. If G is weakly connected and solvable then it has
a solved form which is a tree (Lemma 6.1). The root of
this tree is free for G.

The absence of solved forms can thus be proved by
showing the absence of free nodes.

Lemma 7.1. A dominance graph G = (V, /∗] /) with
free node X satisfies:

F1 X has in-degree zero in G

F2 no distinct nodes Y, Y ′ that are linked to X by tree
edges in G are weakly connected in G|V \{X}

Proof. We assume that X is a free node of G and show
that both conditions hold. (F1) A free node cannot have
any incoming edge in G since it would have one in all
its solved forms. (F2) Let Y and Y ′ be distinct nodes
that are linked to X in G via tree edges. If Y and Y ′

are weakly connected in G|V \{X} then some node Z of
G|V \{X} must be a common ancestor of Y and Y

′ in all
solved forms of G (Lemma 6.1), yet distinct from their
mother X: therefore Z is an ancestor of X in all solved
forms of G, in contradiction with the assumption that
X is free.

Prop 7.1 and Lemma 7.1 imply the unsolvability of
the dominance graph in Fig. 6, where the roots X0 and
Y0 violate (F2) while all others (Z1 and Z2) violate (F1).

8 Algorithm

The idea to construct a solved form of a given weakly
connected dominance graph G = (V, /∗] /) is to
remove a node satisfying (F1) and (F2) together with its
neighborhood in /∗, and to fail if there is no such node.
We then decompose the remaining digraph of G into
weakly connected components, and recursively solve
these subgraphs. If successful it is easy to construct
a solved form of the whole graph.

sat(G) ≡
forall weakly connected components G′ = (V ′, /∗] /) of G:

choose some arbitrary node X ∈ V ′ satisfying (F1) and (F2) in G′|V ′ else fail

Let Y1, . . . , Yn ∈ V ′ be all nodes s.t. X / Yi.
sat(G|V ′−{X,Y1,...,Yn})

Figure 7: Checking solvability of dominance graphs.

Lemma 8.1. Let G be a non-empty dominance graph.
Then the following properties are equivalent:

1. The procedure sat(G) in Fig. 7 fails for some
nondeterministic choice.

2. G is not solvable.

3. The procedure sat(G) fails for all nondeterministic
choices.

Proof. (1⇒ 2) If sat(G) fails for some nondeterministic
choices, then G contains a weakly connected subgraph
G′ whose nodes all violate (F1) or (F2). By Lemma 7.1,
G′ has no free node and by Prop. 7.1 it is unsolvable.
Since any graph which has an unsolvable subgraph is
unsolvable, G must be unsolvable, too.

(2 ⇒ 3) Suppose sat(G) is successful for some
nondeterministic choices. We will prove by induction
on the size of G = (V, /] /∗) that G has a solved form.
If G is not weakly connected, then G′ is solvable by
induction hypothesis for all wcc’s G′ of G, and hence
G is solvable by Prop. 6.1. Otherwise G is weakly
connected. Since the algorithm did not fail, there exists
some node X in G that satisfies (F1) and (F2). By
induction hypothesis, the wcc’s G|V −{X,Y1,...,Yn} have
solved forms G′

1, . . . , G
′
k. For each G′

i, if G has a
dominance edge from Yj to some node in G

′
i, we attach

G′
i with a dominance edge under Yj ; otherwise, we
attach it with a dominance edge under X. Using (F1)
and (F2) and the definition of dominance graphs we
verify that (0) the resulting graph G′ is a dominance
graph, (1) G′ is a tree that (2) contains all tree edges of
G, and (3) refines dominance its wishes /∗ ⊆ RG′ . Thus
G′ is a solved form that is more specific than G.

(3⇒ 1) Clearly, if sat(G) fails for all nondetermin-
istic choices then it also fails for some nondeterministic
choice.

The algorithm contains a nondeterministic choice
statement. We will now show that if we consider all
different possibilities at this point, we can enumerate
all minimal solved forms of a given dominance graph.
The enumeration algorithm is given in Figure 9.

An example for a run of the algorithm is given
in Figure 8. Procedure solved form applied to the

graph on the left first computes the weakly connected
components - there is only one. It then applies solve to
this component. The only node satisfying (F1) and (F2)
in the graph on the left is X3. Note in particular that
X0 violates (F2). The algorithm thus removes the tree
fragment of X3, i.e., nodes X3, X4, X5. The resulting
graph, drawn in the middle of Figure 8, has only one
connected component, and we again apply solve. After
several steps, a single solved form is returned (it equals
the graph in the middle again). For the final result, the
algorithm adds the previously removed tree fragment of
X0 on top of this graph. A dominance edge from X4 to
X0 is inserted since X4 dominates X6 in G, and since
X6 belongs to the same component as X0 in the middle.

Theorem 8.1. The algorithm solved form of Figure 9
applied to a dominance graph G produces all and only
the minimal solved-forms of G.

Proof. The algorithm reflects the construction of a
solved form in the proof of Lemma 8.1. By its recursive
structure, the dominance graphs returned by solve(G)
are rooted trees, and therefore solved form(G) is a
forest. It is also easy to see that it is more specific
than G and thus the algorithm only produces solved
forms of G. Different choices of free nodes lead to
different solved forms, and thus each solved form is
produced at most once. We only have to prove that
the algorithm produces all minimal solved forms of G.
Since at each recursive step in solve we process a weakly-
connected graph, by Lemma 6.1 the algorithm must
return a solved-form that is a tree; therefore some node
X must be chosen to be top-most. If we want to make
this node the root of our solved form, we must insert the
dominance edges added in the last or next to last line of
the algorithm. Therefore, we only enumerate minimal
solved forms of G. The node X is by definition free, and
thus the algorithm will eventually choose it. Thus we
enumerate all minimal solved forms of G.

Corollary 8.1. For a node of a solvable dominance
graph, (F1) and (F2) are necessary and sufficient condi-
tions for freeness.

Proof. Free nodes satisfy (F1) and (F2) by Lemma
7.1. Conversely, let X be a node of a dominance

X0

X1 X2

X3

X4 X5

X6 X7

chooseX3⇒

X0

X1 X2

X6 X7

return
⇒

X3

X4 X5

X0

X1 X2

X6 X7

Figure 8: The algorithm in action.

graph G satisfying (F1) and (F2). Then algorithm
solved form(G) calls solve(G) for the weakly connected
component G′ of X, and in solve(G) the node X can be
chosen to construct a solved form of G′. It will never fail
since G is solvable (Lemma 8.1) and finally produces a
solved form of G′ (Theorem 8.1), which is a tree rooted
at X.

In Section 9 we will describe how to compute all
nodes satisfying (F1) and (F2) in time O(n+m) where
n is the number of nodes and m the number of edges in
a dominance graph G. This will prove:

Theorem 8.2. The overall running time of the enu-
meration algorithm for dominance graphs in Figure 9 is
in O(n · (n+m)) per solved-form.

9 Testing Freeness Conditions

We now want to efficiently compute the set of nodes that
satisfy the freeness conditions (F1) and (F2). We have to
check for each node u with indegree zero whether it has
a pair of children (linked to u by outgoing tree edges)
that are weakly connected in the dominance graph of
the constraint without u. Thus the naive way would be
to compute for all these nodes u the weakly-connected
components of the constraint graph without node u.
This takes quadratic time per node, and thus cubic time
to compute all free nodes.

We now show how to compute the set of free nodes
in linear time. A (vertex-)biconnected component of a
graph is a maximal subgraph that remains connected
when one of its nodes is deleted. Biconnected compo-
nents form a proper partition of the graph edges.

Proposition 9.1. A node X in a dominance graph G
satisfies (F2) if and only if all different tree edges (X,Y)
and (X,Y ′) of G lie in different biconnected components
of G.

Proof. If X does not have any children there is nothing
to show. So first assume that Y and Y ′ are in
the same weakly connected component of G|VG\{X}.

Then there is a path between Y and Y ′ not using
X and thus the edges (X,Y) and (X,Y ′) must be in
the same biconnected component. Conversely, assume
that (X,Y) and (X,Y ′) are in the same biconnected
component. Then there is a path from Y to Y ′ not
using X and therefore there still must be a path from
Y to Y ′ after removing X.

A linear time algorithm that given a graph com-
putes a mapping from each edge to a unique repre-
sentant of its biconnected component can be found in
any textbook that covers graph algorithms. To com-
pute the set of free nodes, we use a control bit for
each biconnected component. When processing a can-
didate X, we can use the bit to check for each edge
(X,Y) ∈ /∗ whether we already encountered another
edge (X,Y ′) ∈ /∗ in the same biconnected component.
Since we spend only constant time on every tree edge,
we have a linear time procedure that finds the free roots.

In each step, the algorithm computes the weakly
connected components and biconnected components
from scratch again. It is possible to further improve
the running time and to avoid these redundant compu-
tations using dynamic graph connectivity algorithms,
that allow to answer weak connectivity and biconnec-
tivity queries in amortized sublinear time [8].

10 Implementation and Evaluation

We implemented the New algorithm (without using the
mentioned decremental graph connectivity algorithms)
and compared it to the best known previous implemen-
tations of Mehlhorn [1] and Thiel [13]. All implemen-
tations are done with C++/LEDA and were run on a
Pentium-IV 2GHz. The software and the instances for
experimentation are available at http://ps.uni-sb.

de/~smiele/dom-solving.
Table 1 and Figure 10 report on comparative bench-

marks for a collection of prototypical examples in the
application to scope underspecification. Chain k is a
dominance constraint that models a natural language
sentence with k quantifiers. Furthermore, we consider

solved form(G) ≡
Let G1, . . . , Gk be the wcc’s of G = (V, /

∗] /)
Let (Vi, /

∗
i] /i) be the result of solve(Gi)

return (V, ∪k
i=1 /

∗
i] /)

solve(G) ≡
precond: G = (V, /∗] /) is weakly connected
choose a node X satisfying (F1) and (F2) in G else fail

Let Y1, . . . , Yn be all nodes s.t. X / Yi

Let G1, . . . , Gk be the weakly connected components of G|V −{X,Y1,...,Yn}

Let (Wj , /
∗
j] /j) be the result of solve(Gj), and Xj ∈Wj its root

return (V, ∪k
j=1 /

∗
j ∪ /

∗
1 ∪ /

∗
2] /), where

/∗1 =
{

(Yi, Xj) | ∃X
′ : (Yi, X

′) ∈ /∗ ∧X ′ ∈Wj

}

,
/∗2 =

{

(X,Xj) | ¬∃X
′ : (Yi, X

′) ∈ /∗ ∧X ′ ∈Wj

}

Figure 9: Algorithm enumerating the solved-forms of a dominance graph.

2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0

length of chain

tim
e

pe
r

so
lv

ed
 fo

rm
 (

m
se

c)

Average times in milliseconds per solved form, for
chains of increasing lengths. Mehlhorn highest curve,
Thiel middle, New lowest

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

length of chain

ra
tio

 to
 N

ew

Ratios of Mehlhorn and Thiel to our New algorithm.
Mehlhorn/New higher curve, Thiel/New lower curve

Figure 10: Benchmarks

Problem Mehlhorn Thiel New n m N
Chain 2 0.128 0.055 0.0435 8 8 2
Chain 3 0.2136 0.0818 0.0422 12 13 5
Chain 4 0.292857 0.104286 0.040714 16 18 14
Chain 5 0.369524 0.131429 0.04 20 23 42
Chain 6 0.435379 0.149545 0.038409 24 28 132
Chain 7 0.498834 0.164336 0.036596 28 33 429
Chain 8 0.561818 0.18042 0.036363 32 38 1430
Chain 9 0.641094 0.214109 0.034348 36 43 4862
Chain 10 0.713027 0.234996 0.030304 40 48 16796
Chain 11 0.77379 0.249430 0.027268 44 53 58786
Chain 12 0.837788 0.263831 0.023364 48 58 208012
Chain 13 0.896218 0.277453 0.020016 52 63 742900
Chain 14 0.944325 0.292304 0.017992 56 68 2674440
Chain 15 0.307242 0.015540 60 73 9694845
H&S 0.342262 0.117262 0.03869 19 20 168
MRS n/a n/a 0.045 9 8 2

Table 1: Average time in milliseconds per solved form, for constraint graphs with n nodes, m edges, and N solved
forms

a famous example of Hobbs and Shieber (H&S) and
the MRS example of Fig. 5. The latter has a con-
straint graph that is not normal, but only weakly nor-
mal. Therefore it is beyond the reach of the Mehlhorn
and Thiel algorithms, hence the n/a entries in Table 1.

11 Disjointness Constraints

The algorithm described here is fundamentally different
from the one presented in [1] where satisfiability was
characterized by the absence of so-called hypernormal
cycles in the dominance graph. The difference can be
further demonstrated with a natural extension of our
constraint language by means of disjointness literals.
These are part of various tree description languages
[2, 3, 6].

A disjointness literals X⊥Y is satisfied by a solu-
tion (τ, α) if neither α(X) dominates α(Y) nor α(Y)
dominates α(X). Consider Figure 11. We draw disjoint-
ness constraints in the constraint graph with dashed
lines. This graph is unsatisfiable, since it does not con-
tain a free node. The approach of [1], which tests for the
presence of certain kinds of ‘bad cycles’ in the constraint
graph, does not naturally extend to graphs also contain-
ing disjointness edges. Observe that after deleting any
edge in Figure 11 the constraint is satisfiable.

In contrast, our algorithm can easily be adapted to
deal with this extended constraint language. We now
have the following additional property of a free node X:

F3 X has no incident disjointness edge:
∀Y ∈V : (X⊥Y) /∈ φ

Z1 Z2 Z3 Z4

Y1 Y2 Y3

Figure 11: A dominance graph with disjointness edges.

The proofs can readily be adapted to show that, for
satisfiable constraints, (F1), (F2) and (F3) are again
necessary and sufficient conditions for freeness.

12 Conclusion

We described an algorithm that enumerates the mini-
mal solved forms of a normal dominance constraint in
quadratic time per solved form. We thereby improved
on the best previously known algorithm [13], which re-
quired cubic time per solved form. Subquadratic run-
ning time could be achieved by employing decremental
graph biconnectivity algorithms.

Our approach is not only more efficient, but it
is also more general than earlier approaches [1, 13]:
firstly, it also applies to the language of weakly normal
dominance constraints, which improves the applicability
of dominance constraints in the area of natural language
semantics. Secondly, it extends simply to a language
admitting disjointness literals.

These results are especially significant for applica-
tions in computational linguistics. In particular, they
underlie the first polynomial time algorithm for mini-
mal recursion semantics (MRS) [5, 11].

References

[1] E. Althaus, D. Duchier, A. Koller, K. Mehlhorn,
J. Niehren, and S. Thiel. An efficient graph algorithm
for dominance constraints. Journal of Algorithms,
48(1):194–219, May 2003. Special Issue of SODA 2001.

[2] R. Backofen, J. Rogers, and K. Vijay-Shanker. A
first-order axiomatization of the theory of finite trees.
Journal of Logic, Language, and Information, 4:5–39,
1995.

[3] M. Bodirsky and M. Kutz. Pure dominance con-
straints. In 19th Annual Symposium on Theoretical As-
pects of Computer Science (STACS’02), LNCS 2285,
pages 287–298, 2002.

[4] J. Bos. Predicate logic unplugged. In Proceedings of
the 10th Amsterdam Colloquium, pages 133–143, 1996.

[5] A. Copestake, D. Flickinger, I. Sag, and C. Pollard.
Minimal recursion semantics: An introduction. CSLI
Draft, Sept. 1999.

[6] M. Egg, A. Koller, and J. Niehren. The constraint
language for lambda structures. Journal of Logic,
Language, and Information, 10:457–485, 2001.

[7] C. Gardent and B. Webber. Describing discourse
semantics. In Proceedings of the 4th TAG+ Workshop,
Philadelphia, 1998. University of Pennsylvania.

[8] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-
logarithmic deterministic fully-dynamic algorithms for
connectivity, minimum spanning tree, 2-edge, and
biconnectivity. In 30th Annu. ACM Sympos. Theory
Comput., pages 79–89, 1998.

[9] A. Koller, J. Niehren, and R. Treinen. Dominance
constraints: Algorithms and complexity. In Logical
Aspects of Computational Linguistics, volume 2014 of
LNAI, pages 106–125, 2001.

[10] M. P. Marcus, D. Hindle, and M. M. Fleck. D-theory:
Talking about talking about trees. In 21st Annu.
Meeting of the Ass. of Comp. Ling., pages 129–136,
1983.

[11] J. Niehren and S. Thater. Bridging the gap between
underspecification formalisms: Minimal recursion se-
mantics as dominance constraints. In 41st Meeting
of the Association of Computational Linguistics, pages
367–374, July 2003.

[12] J. Rogers and K. Vijay-Shanker. Obtaining trees from
their descriptions: An application to tree-adjoining
grammars. Computational Intelligence, 10:401–421,
1994.

[13] S. Thiel. A linear time algorithm for the configuration
problem of dominance graphs. Submitted, 2004. Max-
Planck Institut, Saarbrücken.

