
LIMIT BEHAVIOR OF LOCALLY CONSISTENT CONSTRAINT

SATISFACTION PROBLEMS

MANUEL BODIRSKY∗ AND DANIEL KRÁL’†

Abstract. An instance of a constraint satisfaction problem (CSP) is variable k-consistent if
any subinstance with at most k variables has a solution. For a fixed constraint language L, ρk(L) is
the largest ratio such that any variable k-consistent instance has a solution that satisfies at least a
fraction of ρk(L) of the constraints. We provide an expression for the limit ρ(L) := limk→∞ ρk(L),
and show that this limit coincides with the corresponding limit for constraint k-consistent instances,
i.e., instances where all subinstances with at most k constraints have a solution. We also design an
algorithm running in time polynomial in the size of input and 1/ε that for an input instance and a
given ε either computes a solution that satisfies at least a fraction of ρ(L) − ε constraints or finds
a set of inconsistent constraints whose size only depends on ǫ. Most of our results apply both to
weighted and to unweighted instances of the constraint satisfaction problem.

Key words. Constaint satisfaction problem (CSP), local consistency

AMS subject classifications. 68R05, 05D40

1. Introduction. Constraint satisfaction problems (CSPs) form an important
computational model for problems arising in many areas of computer science. This
is witnessed by an enormous interest in the computational complexity of the problem
and its variants [2, 3, 5–7, 9–11, 13, 14, 16, 17, 21, 30]. However, sometimes not all the
constraints of an input instance need to be satisfied, but it suffices to satisfy a large
fraction of them. A natural notion in this context is the notion of local consistency. A
CSP instance is constraint k-consistent if for any k constraints of the instance, there
exists an assignment of the values to the variables such that the k chosen constraints
are all satisfied. Similarly, a CSP instance is variable k-consistent if any k variables of
the instance can be assigned values in such way that no constraint that contains only
those k variables is violated by the assignment. In this paper, we focus on the effect of
local consistency on the quality of a global optimal solution with respect to the number
of constraints that can be simultaneously satisfied. There is an interesting connection
between this question and the notion of tree-duality, which has been studied in graph
theory [16] and recently in logic [24].

Let us remark that there are several other notions of local consistency that are
different from the notion that we analyze, such as the notion of k–consistency intro-
duced by Freuder [13], or the notion of relational k-consistency studied by Dechter
and van Beek [6]. However, we do not address any of these notions in this paper.

1.1. Previous Results. The notion of local consistency considered in this paper
can be traced back to the early 1980’s. Lieberherr and Specker [25, 26] studied the
corresponding problem for CNF formulas: they require that any k clauses of a given
formula can be satisfied and asked what fraction of the clauses can be satisfied. In
their papers, they settled the cases k = 1, 2, 3 and showed that the corresponding
fractions are 1/2, (

√
5 − 1)/2 and 2/3 (the values are now known for k ≥ 4). A

∗Laboratoire d’Informatique (LIX), CNRS UMR 7161, École Polytechnique, 91128 Palaiseau,
France. E-mail: bodirsky@lix.polytechnique.fr.

†Institute for Theoretical Computer Science (ITI), Faculty of Mathematics and Physics,
Charles University, Malostranské náměst́ı 25, 118 00 Prague 1, Czech Republic. E-mail:
kral@kam.mff.cuni.cz. Institute for Theoretical computer science is supported as project 1M0545
by Czech Ministry of Education.

1

2 M. BODIRSKY, D. KRÁL’

simpler proof of their results was later found by Yannakakis [31]. The case k = 4 was
settled in [22]. There is an interesting connection between this problem and Usiskin
numbers [29]. Locally consistent CNF formulas are also discussed in Chapter 20 of
the monograph [20].

The asymptotic behavior of locally consistent CNF formulas when k approaches
infinity was first addressed by Huang et al. [18] and further studied by Trevisan [28].
Trevisan [28] was the first to define the notion of local consistency with constraints
being Boolean predicates. For a set Π of Boolean constraints, i.e., the domain is not
just a two-element set but the Boolean field, let ρk(Π) be the maximum ρ such that
a fraction of at least ρ constraints can be satisfied for any k-consistent input. In this
scenario, it is often assumed that negations of the arguments of the predicates are
also allowed in the input. This changes the problem significantly, since the constraint
language is “closed” under taking negations of arguments of its predicates; this leads
to a simpler analysis without using set structures.

Let us survey the results known for the Boolean case. The limit limk→∞ ρk(Π) for
a set Π of all predicates of arity ℓ is equal 21−ℓ [28]. The ratios ρk(Π), k ≥ 1, for a set
Π consisting of a single predicate of arity at most three were determined by Dvořák
et al. [8]. The asymptotic behavior of ρk(Π) for fixed sets Π of predicates was studied
in [23], and limk→∞ ρk(Π) was expressed as the minimum of a certain functional
on a convex set of polynomials derived from Π; this expression and its derivation
is simpler than the one presented in this paper for the reason we mentioned in the
previous paragraph. Efficient algorithms for locally consistent CSPs with constraints
that are Boolean predicates were also designed [8, 23].

1.2. Our Results. In the conference version of this paper, we studied CSPs
with a single binary constraint type [1] with an arbitrary finite domain. We further
develop the methods used there to address the problem in full generality and provide
an analysis for all constraint languages. In other words, the constraint language can
now contain several types of constraints, which are not necessarily binary, and there
is no restriction on the domain as in the previous results which mostly apply to the
Boolean domain only.

We now briefly summarize our results. Formal definitions of the mentioned quan-
tities are given in Section 2, and the rigorous statements of the achieved results can
be found in the subsequent sections.

Let L be a fixed finite constraint language. Then ρv,k(L) denotes the largest value
ξv such that any variable k-consistent instance has a solution that satisfies at least
a fraction ξv of the constraints. Let ρv(L) be the limit of ρv,k(L) for k tending to
infinity. In Section 3, we introduce a parameter π(L) of the constraint language L,
and later show that ρv(L) equals π(L). Similarly, we introduce ρc,k(L) as the largest
fraction ξc such that any constraint k-consistent instance has a solution that satisfies
at least a fraction ξc of the constraints. We show that the limit of this quantity also
equals π(L). Unless the language L contains a unary constraint, the result applies to
both weighted and unweighted instances. In case that L contains a unary constraint,
our results apply only to weighted instances.

Next, we develop techniques to find solutions that satisfy many constraints of
an instance. In Section 4, we design an efficient algorithm that either constructs
a solution of an input instance that satisfies at least a fraction of ρv(L) − ε of the
constraints or finds an inconsistent set of constraints of size bounded by a function
that only depends on ε.

In Section 5, we address the difference between weighted and unweighted instances

LOCALLY CONSISTENT CSPs 3

of the CSP. Note that we do not allow repetition of the same constraint in unweighted
instances to simulate weights. We show that if the constraint language does not
contain a unary constraint, then weighted and unweighted locally consistent problems
have the same extremal behavior.

Finally, in Section 6, we use our results to derive the results obtained in the con-
ference version of this paper for constraint languages with a single binary constraint
type. Results for such constraint languages are of particular interest, since the con-
straint satisfaction problem then corresponds to the (directed) graph homomorphism
problem. In particular, we prove that ρ(L) = 1 if and only if L has tree duality. The
concept of tree-duality for (directed) graphs is well-studied in graph theory [16].

2. Notation and Definitions. A (finite) constraint language is a pair L =
(D,U) such that D is a finite domain and U = {U1, . . . , Uk} is a finite set of relations
on D, i.e., Ui ⊆ Dri for some positive integer ri. The value of ri is the arity of the
relation Ui. Relations of U are called constraint types.

An instance of a constraint satisfaction problem with the constraint language
(D,U) is a pair (X,R) such that X is the set of variables and R = {R1, . . . , Rm} is
the set of constraints. Each Ri is an ordered rj -tuple of the (not necessarily distinct)
elements of X , and Ri is associated with a constraint type U ∈ U of arity rj . Inspired
by terminology in graph theory, we say that an instance is simple if each constraint in
R contains each variable at most once. We say that a mapping ϕ : X → D satisfies
a constraint Ri = (x1, . . . , xrj) of constraint type Uj if (ϕ(x1), . . . , ϕ(xrj)) ∈ Uj .
Mappings ϕ from X to D will be called solutions of an instance; an exact solution is
a solution that satisfies all the constraints of the instance.

A weighted instance is an instance such that each constraint Ri is assigned a non-
negative weight w(Ri). The total weight w0 of an instance is the sum of the weights
of all its constraints. The weight w(ϕ) of a solution ϕ : X → D is the sum of the
weights w(Ri) of the satisfied constraints Ri, i.e., those constraints (x1, . . . , xrj) with
(ϕ(x1), . . . , ϕ(xrj)) ∈ Uj. An optimum solution is a solution of maximum weight.
Finally, if all the constraints are assigned the same weight, the instance is called
uniform; uniform instances correspond to unweighted ones.

An important class of constraint satisfaction problems are those corresponding
to graph homomorphism problems. If G and H are graphs, then a homomorphism
from G to H is a mapping ϕ : V (G) → V (H) where ϕ(u)ϕ(v) ∈ E(H) for every edge
uv ∈ E(G). The same definition applies both to undirected and directed graphs. The
problem of deciding an existence of a homomorphism to a graph H corresponds to
the constraint language (D,U) where D = V (H) and U consists of a single binary
constraint type U1 such that (u, v) ∈ U1 if and only if uv ∈ E(H). The instance (X,R)
corresponding to an input graph G consists of |V (G)| variables xv corresponding
to vertices v ∈ V (G), and R contains a binary constraint (xu, xv) for every edge
uv ∈ E(G). It is easy to see that exact solutions of the constructed instance of CSP
are in one-to-one correspondence with homomorphisms from G to H .

As in the case of graphs and graph homomorphisms, one may view general con-
straint satisfaction problems as homomorphism problems for relational structures [11,
21]. Let (X,R) and (X ′,R′) be two instances with the same constraint language L. A
mapping ψ : X → X ′ is a homomorphism from (X,R) to (X ′,R) if for every constraint
(x1, . . . , xr) = Ri ∈ R of type Ui, there is a constraint R′

i = (ψ(x1), . . . , ψ(xr)) ∈ R′

of type Ui. If such a homomorphism exists, we say that (X,R) is homomorphic to
(X ′,R). It is not hard to see that if (X,R) is homomorphic to (X ′,R′) and (X ′,R′)
has an exact solution ϕ′, then (X,R) has also an exact solution—set ϕ(x) = ϕ′(ψ(x))

4 M. BODIRSKY, D. KRÁL’

{1, 2, 3}

{2, 3}

{1, 3}

{1, 2}

{1}

{2}

{3}

Fig. 2.1. An example of the set structure of a constraint language. The domain of the language

is D = {1, 2, 3}, and the language contains two relations R1 and R2, where R1 is the unary relation

{x |x 6= 1}, and R2 is the binary relation {[x, y] |x = y + 1 (mod 3)}. The relation R1 is depicted

by dashed circles and R2 by arrows in the figure.

for every x ∈ X .

In this paper, we address locally consistent constraint satisfaction problems. An
instance (X,R) of a constraint satisfaction problem is variable k-consistent if (X ′,R′)
has an exact solution for every set X ′ of at most k elements of X and R′ containing
all the constraints of R that include only the variables of X ′. Similarly, an instance is
constraint k-consistent if (X,R′) has an exact solution for every subset R′ ⊆ R with
at most k elements.

Let L be a constraint language. We define ρwv,k(L) to be the largest ratio α such
that every variable k-consistent instance with the language L with total weight w0

has a solution of weight at least αw0. Similarly, ρwc,k(L) is the largest such ratio for
constraint k-consistent instances. Analogously, we define ratios ρv,k(L) and ρc,k(L)
for uniform instances with the language L (these ratios correspond to the unweighted
case). Finally, we define the notation for the limit values:

ρwv (L) = lim
k→∞

ρwv,k(L) .

Similarly, we use ρwc (L), ρv(L) and ρc(L).

An important notion in our considerations is the concept of the set structure for
a constraint language [5, 11]. It is the counterpart to set graphs studied in the area
of graph homomorphisms [16].

Definition 2.1. The set structure 2L of a constraint language L = (D,U) is an
instance of L with 2|D| − 1 variables xA, each corresponding to a non-empty subset
A ⊆ D. For every constraint type Ui ∈ U with arity ri, the set structure 2L contains an
ri-tuple (xA1 , . . . , xAri

) as a constraint of type Ui if and only if the following holds: for
every j, 1 ≤ j ≤ ri, and every yj ∈ Aj, there exist y1 ∈ A1, . . . , yj−1 ∈ Aj−1, yj+1 ∈
Aj+1, . . . , yri ∈ Ari such that (y1, . . . , yri) ∈ Ui.

The set structure 2L is not simple in general. An example of the set structure
of a constraint language can be found in Figure 2.1. The importance of the concept
of the set structure arises from the fact that if the set structure 2L of a language L
has an exact solution, then the CSP for L can be solved in polynomial time by the
arc-consistency procedure [16]. It is known that 2L has an exact solution if and only
if L has tree duality [11, 17].

In our proofs, we often use probabilistic arguments involving Markov’s inequality
and Chernoff’s inequality. We recall these two well-known results from probability
theory for the reader’s convenience, and refer to [15] for further details.

Proposition 2.2. Let X be a non-negative random variable with expected value

LOCALLY CONSISTENT CSPs 5

E. The following holds for every α ≥ 1:

Prob(X ≥ α) ≤ E

α
.

Proposition 2.3. Let X be a random variable for the sum of N zero-one in-
dependent random variables each of which is equal to 1 with probability p. Then the
following holds for every 0 < δ ≤ 1:

Prob(X ≥ (1 + δ)pN) ≤ e−
δ2pN

3 and Prob(X ≤ (1 − δ)pN) ≤ e−
δ2pN

2 .

3. Upper Bounds on ρ. In this section, we prove upper bounds on the limits
ρwv (L), ρwc (L), ρv(L) and ρc(L). (And in the next section we will prove the matching
lower bounds.) To achieve our goal, we have to construct a locally consistent instance
with constraint language L. One way of proving that a given instance is locally
consistent is to show that it is homomorphic to 2L and that it does not have short
cycles. A cycle of an instance (X,R) is a cyclic sequence of constraints R1, . . . , Rk ∈
R, k ≥ 1, with arity at least two such that any two consecutive constraints share
at least one variable. In case that k = 1 we additionally require that at least two
variables in R1 coincide. The number k of constraints is called the length of the cycle.
Cycles of length 1 are also called loops. A cycle is minimal if no proper subset of its
constraints forms a cycle. Note that no minimal cycle can contain a unary constraint.
A CSP instance (X,R) is acyclic if it does not contain a cycle. In particular, acyclic
instances do not contain loops.

An instance is not homomorphic to the set structure if and only if the so-called arc-
consistency procedure detects an unsatisfiable set of constraints in the instance [5,12].
Together with the well-known fact that the arc-consistency procedure solves acyclic
instances of the constraint satisfaction problem (see [7, 14] for stronger results on
bounded tree-width instances), this implies the following lemma.

Lemma 3.1. Let (X,R) be an acyclic CSP instance with constraint language L.
If (X,R) is homomorphic to 2L, then (X,R) has an exact solution.

Next, we show how Lemma 3.1 can be applied to show that an instance with no
short cycles is locally consistent:

Lemma 3.2. Let (X,R) be an instance of CSP(L). If (X,R) is homomorphic to
2L and (X,R) does not have a cycle of length at most k, then (X,R) is both variable
and constraint k-consistent.

Proof. First, we show that (X,R) is constraint k-consistent. Let R1, . . . , Rk ∈ R
be k constraints from the instance. Since (X,R) does not have a cycle of length at
most k, the instance (X,R′) with R′ = {R1, . . . , Rk} is acyclic. It is easy to observe
that (X,R′) is homomorphic to 2L, since (X,R) is homomorphic to 2L, and since
R′ ⊆ R. By Lemma 3.1, there is an exact solution of (X,R′).

Next, we show that (X,R) is variable k-consistent. Let X ′ ⊆ X be any subset
of X with k variables, and let R′ ⊆ R be the set of all the constraints of (X,R)
that contain only the variables of X . If (X ′,R′) contains a cycle, it also contains a
minimal cycle. The length of a minimal cycle cannot exceed |X ′| = k. Since (X,R)
does not have a cycle of length at most k, (X ′,R′) is acyclic. Again, we know that
(X,R′) is homomorphic to 2L and it has an exact solution by Lemma 3.1.

Our bounds on ρwv (L), ρwc (L), ρv(L), and ρc(L) are given in terms of the following
parameter π(L) of a constraint language L = (D,U).

6 M. BODIRSKY, D. KRÁL’

Definition 3.3. Let L be a constraint language and 2L = (X,R) its set structure.
Let W be the set of all non-negative weight functions w : R → [0,∞) with total weight
equal to one and P the set of functions the maximum is taken over all functions
p : X ×D → [0, 1] that satisfy

∑

d∈D

p(x, d) = 1

for every variable x ∈ X of the set structure 2L. The following quantity is denoted by
π(L).

min
w∈W

max
p∈P

∑

Ri=(x1,...,xri
)∈R

w(Ri) ·
∑

(d1,...,dri
)∈U(Ri)

ri
∏

k=1

p(xk, dk) (3.1)

where U(Ri) is the constraint type of the constraint Ri.
Note that the inner quantity of the expression (3.1) equals the expected weight of

a solution ϕ : X → D of 2L = (X,R) that assigns a value d ∈ D to the variable x ∈ X
with probability p(x, d). Hence, π(L) is equal to the maximum expected weight of a
“random” solution ϕ for the “worst” constraint weights w.

It is easy to verify that both the minimum and the maximum in (3.1) are attained:
for fixed w, the sum over all constraints in the set structure in (3.1) is a continuous
function in p which is defined on a compact set. Hence, the maximum is attained.
This maximum is again a continuous function in w, and since W is also a compact
set, the minimum is attained as well.

Also observe that 2L = (X,R) for a constraint language L = (D,U) has an exact
solution if and only if π(L) = 1. Indeed, if 2L has an exact solution ϕ : X → D, then
the maximum in (3.1) is attained for

p(x, d) =

{

1 if ϕ(x) = d, and
0 otherwise,

since the product
∏ri

k=1 p(xk, dk) in the definition equals one for all the constraints
Ri ∈ R, and thus the inner part of (3.1) also equals w0 = 1. Hence, π(L) = 1. On
the other hand, if π(L) = 1, then consider the weight function w that assigns 1/m to
each constraint of R where m = |R|. Since π(L) = 1, there exists a function p in (3.1)
such that the expected weight of a solution ϕ : X → D of 2L that assigns a variable
x ∈ X a value d ∈ D with probability p(x, d) is equal to w0 = 1. It follows that 2L

has an exact solution.
We are now ready to state the main theorem of this section.
Theorem 3.4. Let L = (D,U) be a constraint language. The following holds:

ρwv (L) ≤ π(L) and ρwc (L) ≤ π(L) .

If L does not contain any unary constraint type, we also have

ρv(L) ≤ π(L) and ρc(L) ≤ π(L) .

Proof. For a fixed integer k ≥ 1 and a positive real 0 < ε < 1/10, we construct
a simple weighted instance (X,R) with total weight w0 that is both variable and
constraint k-consistent, all the non-unary constraints of R have weight one, and every

LOCALLY CONSISTENT CSPs 7

solution ϕ has weight at most (π(L) + ε)w0. The existence of such instances yields
all the statements of the theorem.

The existence of the sought instance is established in several steps. We first
describe a random procedure of constructing an instance (X,R) of L. The con-
struction will almost surely yield an instance which is neither variable nor constraint
k-consistent. However, we show that (X,R) can be pruned to be locally consistent
with removing only a small fraction of the constraints. We then show that (X,R)
contains constraints with large weight on average but does not have a solution with
large weight. Most of our arguments are based on estimating large deviations from
the expected value using Markov’s and Chernoff’s inequalities.

• Construction. Let N be a sufficiently large integer that we fix later. Let
further (X0,R0) be the set structure 2L, let wL be the weight function that
minimizes the value of (3.1). Recall that the total weight wL,0 of the con-
straints of 2L is equal to 1. The variable setX0 of 2L contains 2|D|−1 variables
xA, each corresponding to a non-empty subset A ⊆ D (see Definition 3.3).
The instance (X,R) that we are going to construct contains N ·(2|D|−1) vari-
ables xA,k for k = 1, . . . , N . If R0 contains a constraint Ri = (xA1 , . . . , xAri

)
of type Ui with arity ri ≥ 2, then we include the ri-tuple of variables
(xA1,k1 , . . . , xAri

,kri
) as a constraint of type Ui and weight one to R with

probability equal to wL(Ri)N
1+1/2k−ri ; constraints (xA1,k1 , . . . , xAri

,kri
) in-

cluded to R because of the constraint Ri are said to correspond to Ri. If
R0 contains a constraint Ri = (xA) of type Ui, then R contains a constraint
Ri = (xA,k) of type Ui and weight wL(Ri)N

1/2k with probability one, for
k = 1, . . . , N .

• Removing short cyles. We next show that, with high probability, it is
possibly to remove all cycles of length at most k from the instance (X,R)
without significantly decreasing the total weight of all the constraints. Ob-
serve now that the instance (X,R) is homomorphic to (X0,R0) through the
homomorphism ψ : X → X0 defined as ψ(xA,i) = xA. Hence, the image of a
cycle of (X,R) through ψ is a cycle of (X0,R0) which is of the same length
if we allow repeated constraints.
Fix a cycle R1, . . . , Rℓ of (X0,R0) of length ℓ ≤ k. Since Ri and Ri+1 share
at least one variable, the number of possible preimages R′

1, . . . , R
′
ℓ of the cycle

R1, . . . , Rℓ is at most N
Pℓ

i=1 ri−ℓ where ri is the arity of Ri. The probability
of including R′

i to (X,R) is

wL(Ri)N
1+1/2k−ri ≤ wL,0N

1+1/2k−ri .

Hence, the expected number of cycles of (X,R) that are preimages of the
cycle R1, . . . , Rℓ is at most

N
Pℓ

i=1 ri−ℓ ·
ℓ

∏

i=1

wL,0N
1+1/2k−ri = wℓL,0N

ℓ/2k ≤ wℓL,0N
1/2 .

If M is the number of constraints of R0, then the number of cycles of (X0,R0)
of length at most k does not exceed Mk and the expected number of cycles
of (X,R) is thus at most

MkwkL,0N
1/2 .

8 M. BODIRSKY, D. KRÁL’

Hence, Markov’s inequality (Proposition 2.2) implies that the total weight of
constraints of (X,R) contained in a cycle of length at most k is at most (if
N is sufficiently large)

2kMkwk+1
L,0 N

1/2 (3.2)

with probability at least 1/2. The expression (3.2) is at most

ε

4
wL,0N

1+1/2k

for N sufficiently large since k, M , wL,0 and ǫ do not depend on N .
The instance (X,R) without the constraints contained in a cycle of length at
most k will be called pruned and denoted by (X ′,R′).

• Claim: If N is sufficiently large, then

Prob(w0 ≥ (1 − ε/4)wL,0N
1+1/2k) ≥ 7/8

wher w0 is the weight of the constraints of the instance (X,R).
We apply Chernoff’s inequality (Proposition 2.3) separately to every set of
constraints of (X,R) corresponding to the same constraint Ri ∈ R0 of 2L. If
ri ≥ 2 is the arity of Ri, then there areN ri constraints that can be included to
R and each of them is included with probability wL(Ri)N

1+1/2k−ri . Hence,
the probability that the total weight of such constraints is less then (1 −
ε/4)wL(Ri)N

1+1/2k is at most

e−
ε2wL(Ri)N

1+1/2k

32 .

Since there are finitely many constraints Ri ∈ R0, there is with probability
at least 7/8 no constraint Ri ∈ R0 such that the weight of constraints corre-
sponding to Ri is less than (1−ε/4)wL(Ri)N

1+1/2k (if N is sufficiently large).
Since wL,0 =

∑

Ri∈R0
wL(Ri), the total weight w0 of all the constraints of

(X,R) is at least (1 − ε/4)wL,0N
1+1/2k with probability at least 7/8. An

analogous argument applies to unary constraint types.
• Claim: With probability at least 7/8, every solution ϕ of (X,R) has weight

at most (π(L) + ε/4)wL,0N
1+1/2k.

For simplicity, we first assume that L does not have unary constraint types.
Let us fix a solution ϕ : X → D for the rest of this paragraph. We define
a function p : X0 × D → [0, 1] as follows: the value p(xA, d) is equal to the
number of variables xA,k with ϕ(xA,k) = d divided by N . We infer from the
construction of (X,R) that for every constraint Ri = (xA1 , . . . , xAri

) ∈ R0

of type Ui ∈ U with arity ri ≥ 2, there are

N ri

∑

(d1,...,dri
)∈Ui

ri
∏

k=1

p(xAk
, dk)

constraints satisfied by ϕ that can be included to (X,R). We will call such
constraints good. Moreover, we additionally mark επ(L)N ri/8 constraints
corresponding to Ri to be good (if there are not enough additional constraints,
mark all constraints corresponding to Ri as good—we will point out the case
where this exceptional case is handled through the course of our arguments).

LOCALLY CONSISTENT CSPs 9

Since each good constraint is included to (X,R) with probability equal to
wL(Ri)N

1+1/2k−ri , the expected number of good constraints corresponding
to Ri is

wL(Ri)N
1+1/2k

επ(L)

8
+

∑

(d1,...,dri
)∈Ui

ri
∏

k=1

p(xAk
, dk)

 .

Hence, the probability that the number of good constraints corresponding to
Ri is greater than

(1 + ε/8)wL(Ri)N
1+1/2k

επ(L)

8
+

∑

(d1,...,dri
)∈Ui

ri
∏

k=1

p(xAk
, dk)

 (3.3)

is at most

e−
ε2wL(Ri)N

1+1/2k
„

επ(L)/8+
P

(d1,...,dri
)∈Ui

Qri
k=1

p(xAk
,dk)

«

192 ≤ e−
ε3π(L)wL(Ri)N

1+1/2k

1536

(3.4)
by Chernoff’s inequality (Proposition 2.3). In case that there were not ad-
ditional επ(L)N ri/8 constraints to be marked as good, the total number of
constraints corresponding to Ri is at most

επ(L)

8
+

∑

(d1,...,dri
)∈Ui

ri
∏

k=1

p(xAk
, dk)

N ri

and the claim follows from the fact that the total weight of all constraints
corresponding to Ri is greater than (3.3) with probability at most (3.4).
Since the weight function wL is fixed, the value of π(L) is constant inde-
pendent from the instance, and there are only finitely many constraints in
R0, the probability that there exists Ri ∈ R0 such that the number of good
constraints corresponding to Ri is greater than (3.3) is exponentially small in
N1+1/2k.
Since there are at most |D|(2|D|−1)·N = eO(N) choices of ϕ, there exists a
sufficiently large N such that the number of good constraints corresponding
to each Ri ∈ R0 is with probability at least 7/8 (or any other constant smaller
than one) bounded from above by (3.3) for all solutions ϕ. Summation over
all Ri ∈ R0 yields that the total number of satisfied constraints is at most

(1 + ε/8)N1+1/2k
∑

Ri=(x1,...,xri
)∈R0

wL(Ri) ·
∑

(d1,...,dri
)∈Uj

ri
∏

k=1

p(xAk
, dk)

+ (1 + ε/8)
επ(L)

8
N1+1/2k

∑

Ri∈R0

wL(Ri)

with probability at least 7/8. The definition of π(L) and the choice of wL

yield that

∑

Ri=(x1,...,xri
)∈R0

wL(Ri) ·
∑

(d1,...,dri
)∈Uj

ri
∏

k=1

p(xAk
, dk) ≤ π(L)wL,0

10 M. BODIRSKY, D. KRÁL’

which implies that the number of satisfied constraints is at most

(1 + 2ε/8 + ε2/64)N1+1/2kπ(L)wL,0 ≤ (1 + 3ε/8)N1+1/2kπ(L)wL,0

with probability at least 7/8. An analogous conclusion can be obtained if the
language L might contain unary constraint types.

• Summary. Our previous arguments yield that with probability at least 1/4,
the weight of the optimum solution of (X,R) is at most

(1 + 3ε/8)N1+1/2kπ(L)wL,0 ,

the total weight w0 of the constraints of (X,R) is at least

(1 − ε/4)N1+1/2kwL,0 ,

and the total weight of constraints removed because of their containment in
cycles of length at most k is at most

ε

4
wL,0N

1+1/2k

which implies that the weight w′
0 of the pruned instance (X ′,R′) is at least

(1 − ε/2)N1+1/2kwL,0 .

Hence, with probability at least 1/4, the weight of an optimum solution of
(X ′,R′) is at most

1 + 3ε/8

1 − ε/2
π(L)w′

0 ≤ (1 + ε)π(L)w′
0 .

This inequality holds since we have assumed that ε < 1/10. Because the
instance (X ′,R′) does not contain a cycle of length at most k and is homo-
morphic to 2L, it is vertex and constraint k-consistent by Lemma 3.2.

4. Algorithmic Results. In this section, we design our linear-time algorithm
for a fixed constraint language L, and prove the lower bounds on the limits.

Theorem 4.1. Let L = (D,U) be a fixed constraint language. There exists an
algorithm that for an input instance (X,R) with total weight w0 and a given real
number ε > 0,

• either constructs a solution ϕ of weight (π(L) − ε)w0, or
• finds a set of at most f(ε) constraints of R that cannot be simultaneously

satisfied
where f(ε) is a function that only depends on L and ε. The running time of the
algorithm is linear in |X |+ |R| and polynomial in 1/ε (for a fixed constraint language
L).

Proof. Let us briefly describe the main steps of the algorithm and then focus on
each step separately. The parameter r used in the description of the algorithm is the
maximum arity of a constraint of R.

1. First, we construct sets Ri ⊆ R, i = 1, . . . , 2|D|r/ε, such that the instance
(X,R \Ri) is homomorphic to 2L for every i.

2. If the algorithm fails to construct the sets, then it exhibits a set of at most
f(ε) inconsistent constraints.

LOCALLY CONSISTENT CSPs 11

3. If the algorithm does not fail to construct the sets Ri, we remove the set Ri

with the least weight from the input instance. We show that this decreases
the total weight of the instance by at most εw0/2.

4. We next compute a function p : X×D → [0, 1] such that if x ∈ X is assigned
a value d ∈ D with probability p(x, d), then the expected weight of satisfied
constraints is at least (π(L) − ε)w0.

5. Finally, using standard derandomization techniques, we find a solution ϕ :
X → D of weight at least (π(L) − ε)w0.

Here and hereafter, we assume for simplicity that ε is the inverse of an integer.
We now proceed with the description of the algorithm.
1. Construction of the sets Ri. In addition to the sets Ri ⊆ R, we construct

functions ψi : X → 2D such that the mapping that assigns x ∈ X the variable
xψi(x) of 2L is a homomorphism from (X,R \ Ri) to 2L. Together with the
mapping ψi+1 we construct a mapping Ψi : X → 2R which assigns to a
variable x a subset of the input contraints forcing its value to be one of those
contained in ψi(x). The mapping ψi+1 and Ψi+1 will be constructed at the
stage when the set Ri is constructed.
Initially, ψ1(x) = D and Ψ1(x) = ∅ for every x ∈ X . Assume that the sets
R1, . . . ,Ri−1 and mappings ψ1, . . . , ψi and Ψ1, . . . ,Ψi have been constructed.
We now construct the set Ri and the mappings ψi+1 and Ψi+1.

• Set ψi+1(x) to ψi(x) and Ψi+1(x) to Ψi(x) for every x ∈ X .
• As long as there exists a constraint (x1, . . . , xk) in R with type Uj ∈ U ,

an index j′ and a value dj′ ∈ ψi+1(xj′) such that

ψi(x1) × · · · × ψi(xj′−1) × {dj′} × ψi(xj+1) × · · · × ψi(xk) ∩ Uj = ∅ ,

i.e., there is no choice of dj′′ ∈ ψi(xj′′) for j′′ = 1, . . . , j′−1, j′+1, . . . , k
with (d1, . . . , dk) ∈ Uj, proceed as follows:

– remove dj′ from ψi+1(xj′) and
– add to Ψi+1(xj′) the union

{(x1, . . . , xk)} ∪
⋃

1≤m≤k, m 6=j′

Ψi(xm)

where the type of the constraint (x1, . . . , xk) is Uj .
• Set Ri to be the set of constraints that are not mapped by ψi to a

constraint of 2L.
Clearly, ψi is a homomorphism from (X,R \ Ri) to 2L unless ψi(x) = ∅ for
some x. Note that if a constraint (x1, . . . , xk) of type Uj is contained in Ri,
then there exists index j′ and a value dj′ ∈ ψi(xj′) with the properties given
above. In particular, dj′ 6∈ ψi+1(xj′) but the removal of dj′ from ψi+1(xj′)
could be caused by a different constraint which also forbids dj′ from being
assigned to xj′ .
We now show that the constraints contained in Ψi(xj) force the value of a
variable xj to be one of the values contained in ψi(xj), i.e., any exact so-
lution of the instance (X,Ψi(xj)) assigns xj a value contained in ψi(xj).
The proof is by induction on i. If i = 1, there is nothing to prove since
ψ1(xj) = D. For i > 1, if ψi(xj) = ψi−1(xj), then Ψi(xj) = Ψi−1(xj)
and the claim follows by induction. If ψi(xj) ⊂ ψi−1(xj), then for ev-
ery dj ∈ ψi−1(xj) \ ψi(xj), there is a constraint (x1, . . . , xk) ∈ R that
caused the value dj to be removed. The constraints contained in the sets

12 M. BODIRSKY, D. KRÁL’

Ψi−1(x1), . . . ,Ψi−1(xj−1),Ψi−1(xj+1), . . . ,Ψi−1(xk) force the values of the
variables x1, . . . , xj−1, xj+1, . . . , xk to be only those contained in ψi−1(x1),
. . ., ψi−1(xj−1), ψi−1(xj+1), . . ., ψi−1(xk). Since this is incompatible with
assigning the value dj to xj , the constraints contained in Ψi−1(x1) ∪ · · · ∪
Ψi−1(xj−1) ∪ Ψi−1(xj+1) ∪ · · · ∪ Ψi−1(xk) and the constraint (x1, . . . , xk)
forces that xj cannot be assigned dj .

2. Identifying an inconsistent set of constraints.

If there exist i and x such that ψi(x) = ∅, then the constraints contained
in Ψi(x) restrict the values of x to those of ψi(x) = ∅, i.e., the subinstance
(X,Ψi(x)) has no exact solution. The algorithm returns the set Ψi(x) of
inconsistent constraints—next, we bound its size.
We prove that a set Ψi(x) contains at most (|D|r+1)i constraints by induction
on i. The bound clearly holds for i = 1 since the sets Ψ1(x) are empty. Each
set Ψi(x) is a union of at most |D|r different sets Ψi−1(x

′) with at most |D|
additional constraints, i.e., its size does not exceed

|Ψi(x)| ≤ |D| + |D|r(|D|r + 1)i−1 ≤ (|D|r + 1)i .

Hence, the size of the set of inconsistent constraints returned by the algorithm
does not exceed (|D|r + 1)2|D|r/ε, which is a function that only depends on
ε (recall that the constraint language L is fixed). Let us remark that the
bound on the size of the sets of inconsistent constraints can be substantially
decreased by a finer analysis. In the actual implementation of this step of
the algorithm, we do not have to compute the sets Ψi(x) explicitly, however,
for each removal of a value d ∈ D from ψi(x), we mark which of the input
constraints caused the removal of d and compute the set Ψi(x) (in linear time
in the input size) only when the set is supposed to be output.

3. Finding a small set of constraints to be removed from the input

instance.

Suppose now that the algorithm does not output an unsatisfiable set of con-
straints, i.e., ψi(x) 6= ∅ for all i = 1, . . . , 2|D|r/ε and x ∈ X . Observe that
each constraint Rj ∈ R is contained in at most |D|r sets Ri: each time a
constraint Rj is included into a set Ri, the cardinality of the set ψi(x) of one
of the variables x contained in Rj is decreased by one. Since Rj contains at
most r variables and the sets ψ1(x) contain |D| elements each, Rj is included
in at most |D|r sets Rj . Hence, the total sum of weights of constraints con-
tained in all the sets Ri is at most |D|rw0. Since there are 2|D|r/ε sets Ri,
there exists a set Ri0 such that the sum of the weights of the constraints
contained in Ri0 is at most εw0/2. Fix such an index i0 for the rest of the
proof.

4. Computing a good probability destribution.

By the construction, the instance (X,R \ Ri0) is homomorphic to 2L and
the homomorphism maps a variable x ∈ X to xA for A = ψi0(x). Next,
we define values p(A, d) for non-empty subsets A ⊆ D and d ∈ D such that
∑

d∈D p(A, d) = 1 for every A. Let E(p) be the expected weight of the satis-
fied constraints if each variable x ∈ X is assigned randomly and independently
a value d ∈ D with probability p(ψi0(x), d). Let E0 be the maximum value of
E under the restrictions that 0 ≤ p(A, d) ≤ 1 and

∑

d∈D p(A, d) = 1. Since
the number of variables on which the function E(p(A, d)) depends is finite, it
is possible to find, in time polynomial in 1/ε, a function p0 such that E(p0)

LOCALLY CONSISTENT CSPs 13

is at least (1− ε/2)E0. By the definition of π(L), we have that E0 ≥ π(L)w′
0

where w′
0 is the total weight of constraints of (X,R \Ri0). Hence, the value

of E(p0) is at least

(1 − ε/2)π(L)w′
0 ≥ (1 − ε/2)2π(L)w0 ≥ (1 − ε)π(L)w0 ≥ (π(L) − ε)w0 .

In particular, if the value of each variable x ∈ X is set to be d ∈ D with
probability p0(ψi0 (x), d), then the expected weight of satisfied constraints is
at least (π(L) − ε)w0.

5. Derandomization.

The final stage of the algorithm (once the function p0 has been constructed)
lies in derandomizing the choices of values of the variables x ∈ X . A standard
technique of derandomization using conditional expectations can be applied
in this scenario. We are not going to describe the details of the entire deran-
domization process and refer to standard literature on the subject, e.g., [27].
Let us just remark that the derandomization can be done in time linear in
the size of the input.

There is an immediate corollary of Theorems 3.4 and 4.1.
Corollary 4.2. Let L = (D,U) be a constraint language. Then the following

equalities hold.

ρwv (L) = ρwc (L) = π(L)

If L does not contain unary constraint types, then

ρv(L) = ρc(L) = π(L) .

5. Unweighted and Weighted Instances. We have seen that ρwv (L) = ρv(L)
and ρwc (L) = ρc(L) if the constraint language L does not contain unary constraint
types. It turns out that this is not just a coincidence, but the following stronger
statement holds. The same idea that we use in the following proof has been used before
in the paper of Crescenzi, Silvestri and Trevisan [4] to design reductions between
weighted and unweighted versions of several optimization problems.

Theorem 5.1. Let L = (D,U) be a fixed constraint language without unary
constraint types. For every k ≥ 1, the following holds:

ρwv,k(L) = ρv,k(L) and ρwc,k(L) = ρc,k(L) .

Proof. We focus on proving that ρwv,k(L) = ρv,k(L); the proof for the constraint
k-consistent instances is analogous. Since it is obvious that ρwv,k(L) ≤ ρv,k(L), we have
to show that ρwv,k(L) ≥ ρv,k(L). Fix ε > 0. By the definition of ρwv,k(L), there exists
a weighted variable k-consistent instance (X0,R0) with the weight function w that
does not have solution of weight greater than (ρwv,k(L) + ε/2)w0 where w0 is the total
weight of the constraints of (X0,R0). Our goal is to construct an unweighted instance
(X,R) with some number m of constraints that does not have a solution satisfying
more than (ρwv,k(L) − ε)m of its constraints. Since the construction is similar to the
one presented in the proof of Theorem 3.4, we decided to provide all the details only
where the two proofs differ, and sketch the arguments where they are analogous.

14 M. BODIRSKY, D. KRÁL’

Let X0 = {x1, . . . , xn} and let N be a sufficiently large integer. The instance
(X,R) contains n ·N variables xi,j , 1 ≤ i ≤ n and 1 ≤ j ≤ N . For every constraint
Rk = (xi1 , . . . , xir) ∈ R of type Uk with r′ ≤ r distinct variables, a constraint
(xi1,j1 , . . . , xir ,jr) is included to R with probability w(Rk)N

2−r′ ; we require that if
a single variable, e.g., xi1 appears several times in Rk, then all its occurrences are
replaced by the same variable xi1,j1 .

Observe that the constructed instance (X,R) is homomorphic to the original
instance (X0,R0) (just map a variable xi,j ∈ X to xi ∈ X0). Hence, if X ′ ⊆ X
is a set of at most k variables of X , the subinstance (X ′,R′) of (X,R) where R′

are those constraints of R that contain only the variables of X ′, is homomorphic
to a subinstance of (X0,R0) with at most k variables. Since the subinstance of
(X0,R0) has an exact solution, the subinstance (X ′,R′) has also an exact solution.
In particular, the instance (X,R) is variable k-consistent.

An application of Chernoff’s bound (Proposition 2.3) yields that with probability
at least 3/4 the number of constraints of (X,R) is at least (1 − ε/8)w0 · N2. The
details of the proof are analogous to the proof of Theorem 3.4.

Fix one out of the |D|nN possible solutions ϕ : X → D of (X,R). Let p(xi, d) for
xi ∈ X0 and d ∈ D be the size ϕ−1(d) ∩ {xi,1, . . . , xi,N} divided by N . By the choice
of (X0,R0), the expected weight of constraints of R0 that are satisfied when each
variable xi ∈ X0 is assigned randomly (and independently of other variables of X0) a
value d ∈ D with probability p(xi, d) is at most the weight of an optimum solution,
which is at most (ρwv,k(L) + ε/2)w0. If p is the probability that a constraint Rk ∈ R0

is satisfied, there are pN r′ constraints R corresponding to Rk that can be included to
R and that are satisfied by ϕ.

Another application of Chernoff’s bound yields that with probability at most
e−Θ(N2), the number of constraints corresponding to Rk that are satisfied by ϕ and
included to R is greater than (1 + ε/8)pw(Rk)N

2. Hence, the total number of con-
straints satisfied by ϕ is greater than (1 + ε/8)(ρwv,k(L) + ε/2)w0N

2 with probability

at most e−Θ(N2). Since there are |D|nN choices of ϕ, the total number of constraints
satisfied by any solution ϕ, is at most (1 + ε/8)(ρwv,k + ε/2)w0N

2 with probability at
most 7/8 if N is sufficiently large.

We conclude that there exists a variable k-consistent instance (X,R) with at least
(1 − ε/8)w0N

2 constraints and the number of constraints that can be satisfied by a
solution ϕ is at most

(1 + ε/8)(ρwv,k + ε/2)w0N
2 ≤ (ρwv,k + ε)m

where m is the number of constraints of (X,R). Since such an instance exists for
every ε > 0, it follows that ρv,k ≤ ρwv,k.

Let us comment on one difference between the proof of Theorem 3.4 and the proof
of Theorem 5.1: in the former proof, we needed to prune the random instance to re-
move constraints that contain the same variable several times. Such constraints could
spoil the acyclicity of the constructed instance and thus its consistency. However, in
the latter proof, the constructed instance is always homomorphic to a locally consis-
tent instance (X0,R0) and thus locally consistent, too. Such an argument cannot be
used in the former proof, since 2L need not be locally consistent.

6. Graph Homomorphisms. In this section, we discuss how our results on
general CSPs relate to the results obtained in our conference paper [1] on CSPs
corresponding to graph homomorphisms. In the following, we state all the results

LOCALLY CONSISTENT CSPs 15

for directed graphs. Analogous results for undirected graphs follow directly from the
results on directed graphs. As discussed in Section 2, the corresponding CSPs have
a constraint language that contains a single binary constraint type. Throughout this
section, LH stands for the constraint language obtained from a (directed) graph H
through the construction described in Section 2.

One of the results in [1] is that ρv(LH) = ρc(LH) = 1 if and only if the graph
H has tree duality. A graph H has tree duality iff a graph G is homomorphic to H
when every directed tree homomorphic to G is also homomorphic to H . Examples
of graphs with tree duality include orientations of paths or acyclic tournaments. The
set structure 2H of a graph H is again a graph, and is called the set graph of H . An
equivalent characterization of tree duality asserts that a directed graph H has tree
duality if and only if its set graph 2H is homomorphic to H [5, 11].

The following is then an immediate consequence of Corollary 4.2.

Theorem 6.1. Let H be a directed graph. The equalities

ρv(LH) = 1 and ρc(LH) = 1

hold if and only if H has tree duality.

The other types of CSP problems addressed in [1] were those corresponding to
graphs H with a directed cycle. For such a constraint language LH , we relate π(LH)
the quantity called fractional relative density. The fractional relative density δ′rel(H)
of H is defined as

δ′rel(H) = max
p:V (H)→[0,1]

∑

uv∈E(H)

p(u) · p(v) (6.1)

where the maximum is taken over all functions p : V (H) → [0, 1] such that the sum
of p(v) is equal to one. Let us state the relation between LH and δ′rel(H) formally:

Proposition 6.2. Let H be a directed graph containing a directed cycle and
let LH be the corresponding constraint language. The quantity π(LH) is equal to the
fractional relative density δ′rel(H) of H.

Proof. Let W be the vertex set of a directed cycle of H . Observe that the set
instance 2LH contains a constraint (xW , xW) (in a graph theory notation, the set
graph 2H contains a loop at the vertex xW), and consider the weight function w that
assigns weight one to (xW , xW) and zero weight to the remaining constraints of 2LH .
For the weight function w, the expression that is maximized in (3.1) is equal δ′rel(H).
This implies that π(LH) ≤ δ′rel(H).

For the other inequality, consider a weight function w minimizing (3.1). Let p0

be the function maximizing (6.1) and p(x, v) = p0(v) for every variable x of 2LH and
every vertex v of H . By the choice of p0 and p, the inner sum in (3.1) for p is equal to
(6.1), i.e., to δ′rel(H), for every constraint of 2LH . Since the total weight of w is equal
to one, the whole sum in (3.1) is equal to δ′rel(H). We conclude that π(LH) ≥ δ′rel(H)
which finishes the proof.

The following result from [1] now follows from Proposition 6.2 and Corollary 4.2:
Theorem 6.3. If H is a directed graph that contains at least one directed cycle,

then

ρv(LH) = ρc(LH) = δ′rel(H) .

16 M. BODIRSKY, D. KRÁL’

If the constraint language LH consists of a single symmetric binary relation, i.e.,
the graph H contains an arc uv for every arc vu and vice versa, then the following
holds (note that such languages correspond to undirected graphs).

Corollary 6.4. If H is a symmetric directed graph, then

ρv(LH) = ρc(LH) = 1

if H contains a loop, and otherwise

ρv(LH) = ρc(LH) = 1 − 1/ω

where ω is the order of the largest clique of H.
Proof. By Theorem 6.3, it is enough to show that δ′rel(H) = 1 if H has a loop and

δ′rel(H) = 1−1/ω, otherwise. Clearly, δ′rel(H) ≤ 1. If H has a loop at a vertex v, then
the function p that is equal to 1 for v and 0 otherwise witnesses that δ′rel(H) = 1.

We now assume that H is loopless. Let p be the function that maximizes (6.1) and
among all such functions the one with minimal support. If the support of p induces
a clique of order ω, then (6.1) is maximized if p is equal to 1/ω for the vertices of
the clique. If the support of p does not induce a clique, then there are two non-
adjacent vertices u and v with p(u) > 0 and p(v) > 0. Let Pu =

∑

uw∈E(H) p(w) and

Pv =
∑

uw∈E(H) p(w). By symmetry, we can assume that Pu ≤ Pv. Consider the

following function p′:

p′(w) =

p(u) − min{p(u), p(v)} if w = u,
p(v) + min{p(u), p(v)} if w = v, and

p(w) otherwise.

Since the vertices u and v are non-adjacent in H , the following holds:

∑

uv∈E(H)

p′(u) · p′(v) −
∑

uv∈E(H)

p(u) · p(v) = 2(Pv − Pu)min{p(u), p(v)}.

The choice of p implies that Pu = Pv and δ′rel(H) =
∑

uv∈E(H) p
′(u) · p′(v). Since

Pu = Pv, the configuration is again symmetric with respect to u and v and we may
assume that p(u) < p(v). Consequently, p′(u) = 0 which contradicts the choice of p
as the function maximizing (6.1) that has minimal support.

7. Concluding Remarks. It is natural to ask whether Expression (3.1) in Def-
inition 3.3 can be simplified. It does not seem to be the case. The maximization over
all functions p, the innermost sum and the product correspond to the maximization,
the sum and the product in Expression (6.1) of relative density, respectively. In [1], we
discussed that the definition of relative density does not seem to be replaceable by a
simpler concept (e.g., by the relative density as defined in [19]). It also seems that the
weight function w cannot be avoided, because this function allows us to distinguish
the relevant part of the set structure 2L.

An issue that we were not able to settle is whether the equalities ρv(L) = ρwv (L)
and ρc(L) = ρwc (L) also hold for constraint languages that contain unary constraints.
Under the assumption that no repetitions of constraints in instances are allowed
(which is a reasonable assumption since otherwise we can simulate the constraint
weights by including the same constraint into an instance several times), we are
not aware of any partial result in this direction. We conjecture that the equalities
ρwv (L) = ρv(L) and ρwc (L) = ρc(L) do not hold in general.

LOCALLY CONSISTENT CSPs 17

We would also like to make a few remarks on constraint languages with an in-
finite number of constraint types (but a finite domain). Such constraint languages
include in particular CNF formulas with unbounded clause size (clauses are viewed
as constraints). Theorems 3.4 and 5.1 translate smoothly to this setting. In (3.1),
we replace the minimum with the infimum and require the weight function w to be
non-zero for only a finite number of constraints of R. Note that the maximum in
(3.1) is always attained. If π(L) is defined in this way, the proofs of Theorems 3.4
and 5.1 can be altered as follows. We consider the weight function wL that is ε-close
to π(L) instead of that which minimizes (3.1), and construct a k-consistent instance
with weight w′

0 and with an optimum solution of weight at most (1+ε)2π(L)w′
0. This

yields the statements of both Theorems 3.4 and 5.1. On the other hand, we do not
know whether Theorem 4.1 holds in this setting, too. The main obstacle is that the
bound on the size of a set of inconsistent constraints involves the maximum arity of
a constraint of an input instance, which may not be bounded.

Acknowledgments.. The authors would like to thank Pavol Hell for his comments
on tree duality and related notions. The authors would also like to thank both the
referees for their valuable comments which resulted to a significant improvement of
the presentation of the results contained in the paper.

REFERENCES

[1] M. Bodirsky, D. Král’: Locally Consistent Constraint Satisfaction Problems with Binary Con-
straints, In: Proc. 31th Workshop on Graph-Theoretic Concepts in Computer Science
(WG’05), LNCS vol. 3787, Springer-Verlag Berlin (2005), 295–306.

[2] A. Bulatov, A. Krokhin, P. G. Jeavons: Classifying the complexity of constraints using finite
algebras. SIAM Journal on Computing 34 (2005), 720–742.

[3] S. Cook, D. Mitchell: Finding Hard Instances of the Satisfiability Problem: A Survey. In: The
Satisfiability Problem: Theory and Applications. DIMACS Series in DMTCS Vol. 35 AMS
(1997).

[4] P. Crescenzi, R. Silvestri, L. Trevisan: On Weighted vs Unweighted Versions of Combinatorial
Optimization Problems. Inf. Comput. 167(1) (2001), 10–26.

[5] V. Dalmau, J. Pearson: Closure Functions and Width 1 Problems. In: Proc. 5th International
Conferences on Principles and Practice of Constraint Programming (CP), LNCS Vol. 1713,
Springer-Verlag Berlin (1999) 159–173.

[6] R. Dechter, P. van Beek: Local and Global Relational Consistency. Theor. Comput. Sci. 173
(1997) 283–308.

[7] Rina Dechter, Judea Pearl: Tree Clustering for Constraint Networks. Artif. Intell. 38(3) (1989)
353–366.

[8] Z. Dvořák, D. Král’, O. Pangrác: Locally Consistent Constraint Satisfaction Problems, Theor.
Comput. Sci 348 (2005), 187–206. A preliminary version appeared in: Proc. 31st Interna-
tional Colloquium on Automata, Languages and Programming (ICALP), LNCS Vol. 3142,
Springer-Verlag Berlin (2004), 469–480.

[9] D. Eppstein: Improved Algorithms for 3-coloring, 3-edge-coloring and Constraint Satisfaction.
In: Proc. 12th ACM-SIAM Symposium on Discrete Algorithms, SODA (2001) 329–337.

[10] T. Feder, R. Motwani: Worst-case Time Bounds for Coloring and Satisfiability Problems. J.
Algorithms 45(2) (2002) 192–201.

[11] T. Feder, M. Vardi: Monotone monadic SNP and constraint satisfaction. In: Proc. 25th Sym-
posium on the Theory of Computation, STOC (1993) 612–622.

[12] T. Feder, M. Vardi: The computational structure of monotone monadic SNP and constraint
satisfaction: A study through Datalog and group theory, SIAM Journal on Computing 28
(1999), 57–104.

[13] E. C. Freuder: A sufficient condition for backtrack-free search. J. ACM 29 (1982) 24–32.
[14] Eugene C. Freuder: Complexity of K-Tree Structured Constraint Satisfaction Problems. AAAI

1990: 4–9.
[15] T. Hagerup, Ch. Rüb: A guided tour Chernoff bounds. Inform. Process. Letters 33 (1989)

305–308
[16] P. Hell, J. Nešeťril: Graphs and Homomorphisms. Oxford University Press, 2004.

18 M. BODIRSKY, D. KRÁL’

[17] P. Hell, J. Nešeťril, X. Zhu: Duality and polynomial testing of tree homomorphisms. Trans.
Amer. Math. Soc. 348(4) (1996) 1281–1297.

[18] M. A. Huang, K. Lieberherr: Implications of Forbidden Structures for Extremal Algorithmic
Problems. Theor. Comput. Sci. 40 (1985) 195–210.

[19] S. Janson, T. Luczak, A. Ruciński: Random Graphs. Wiley & Sons, New York (2000).
[20] S. Jukna: Extremal Combinatorics with Applications in Computer Science. Springer, Heidel-

berg (2001).
[21] Ph. G. Kolaitis, M. Y. Vardi: Conjunctive-query containment and constraint satisfaction. In:

Proc. of PODS’98 205-213.
[22] D. Král’: Locally Satisfiable Formulas. In: Proc. of SODA’04 323–332.
[23] D. Král’, O. Pangrác: An Asymptotically Optimal Linear-Time Algorithm for Locally Con-

sistent Constraint Satisfaction Problems, Theoret. Comput. Sci. 348 (2005), 187–206. A
preliminary version appeared: Proc. 30st International Symposium Mathematical Foun-
dations of COmputer Science (MFCS), LNCS Vol. 3618, Springer-Verlag Berlin (2005),
603–614.

[24] B. Larose, C. Loten, C. Tardif: A characterisation of first-order constraint satisfaction problems,
Logical Methods Comput. Sci. 3 (2007), 22pp.

[25] K. Lieberherr, E. Specker: Complexity of Partial Satisfaction. J. of the ACM, 28(2) (1981)
411–422.

[26] K. Lieberherr, E. Specker: Complexity of Partial Satisfaction II. Technical Report 293, Dept.
of EECS, Princeton University (1982).

[27] R. Motwani, P. Raghavan: Randomized Algorithms. Cambridge University Press, 1995.
[28] L. Trevisan: On Local versus Global Satisfiability, SIAM J. Disc. Math. 17 (2004), 541–547.
[29] Z. Usiskin: Max-min Probabilities in the Voting Paradox. Ann. Math. Stat. 35 (1963) 857–862.
[30] G. J. Woeginger: Exact Algorithms for NP-hard Problems: A Survey. In: Proc. 5th Inter-

national Workshop Combinatorial Optimization—Eureka, You Shrink. LNCS Vol. 2570.
Springer-Verlag Berlin (2003) 185–207.

[31] M. Yannakakis: On the Approximation of Maximum Satisfiability. J. Algorithms 17 (1994)
475–502. A preliminary version appeared in Proc. 3rd Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA (1992) 1–9.

