
Quantified Equality Constraints∗

Manuel Bodirsky
Laboratoire d’informatique (LIX, CNRS UMR 6171),
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Universitat Pompeu Fabra, Barcelona, Spain
hubie.chen@upf.edu

September 3, 2010

Abstract

An equality template is a relational structure with infinite universe whose relations can be
defined by boolean combinations of equalities. We prove a complexity classification for quan-
tified constraint satisfaction problems (QCSPs) over equality templates: these problems are
in L (decidable in logarithmic space), NP-hard, or coNP-hard. To establish our classification
theorem we combine methods from universal algebra with concepts from model theory.

1 Introduction

The constraint satisfaction problem (CSP) is the problem of deciding the truth of a primitive
positive (pp) sentence

∃v1 . . .∃vn(R(vi1 , . . . , vik) ∧ . . .)

over a finite relational signature, relative to a relational structure over the same signature. For
a relational structure Γ, define CSP(Γ) to be the CSP where the relational structure is fixed to
be Γ. Note that the instances of CSP(Γ) are syntactic objects, namely, the pp-sentences over
the signature of Γ. When discussing problems of the form CSP(Γ), we call Γ the template. In a
now oft-cited result, Schaefer [25] studied the family of problems CSP(Γ) over templates with a
two-element universe. He proved a dichotomy theorem: every such problem CSP(Γ) is either in P,
or is NP-complete. In recent years, there has been considerable research effort directed towards
classifying the complexity of CSP(Γ) over all finite templates Γ [1, 7–10,13,15,16,19,23].

One of Schaefer’s motivations was to provide a tool for developing NP-hardness proofs; in
particular, one can show that a problem is hard by showing that it can simulate conjunctions of
atomic formulas over any template Γ such that CSP(Γ) is known to be NP-hard. Another feature
of his and subsequent work is that it places tractable cases of CSP(Γ) into a unified framework;
the tractable cases of CSP(Γ) encompassed by Schaefer’s theorem include 2-SAT and Horn SAT,
two classic tractable fragments of propositional logic.

In recent work, Bodirsky and Kára [4] gave a systematic CSP(Γ) classification result for tem-
plates Γ over an infinite universe. They studied the fundamental class of equality templates,
defined to be templates where every relation is definable from equalities (x = y) and the usual
boolean connectives. They proved a complete complexity classification on equality templates,
showing that each problem CSP(Γ) is either in P or NP-complete.

∗An extended abstract of this paper appeared in the Proceedings of LICS 2007



In this paper, we consider the quantified constraint satisfaction problem (QCSP), the natural
generalization of the CSP where universal quantification is permitted in addition to existential
quantification. We establish a complexity classification for the problems QCSP(Γ) over equality
templates, showing that each such problem is either in L (decidable in logarithmic space), NP-
complete, or coNP-hard. We believe that this classification result can, in analogy to Schaefer’s
theorem, serve as a tool for performing complexity analysis on logical formulas involving both
quantifiers. The formulas that we study can be viewed as syntactically restricted fragments of
the first-order theory of equality. In fact, for the templates Γ that we show to be NP-complete,
containment in NP follows from a result of Kozen [20] showing that positive first-order sentences
have an NP-complete validity problem. To the best of our knowledge, our algorithmic result
showing certain formulas to be decidable in logarithmic space, is new.

The classification. We now describe the classes of formulas corresponding to the three com-
plexity regimes of our classification. First, we say that a relation is negative if it can be defined by
a quantifier-free equality formula that is the conjunction of equalities and disjunctions of disequal-
ities x1 6= y1 ∨ · · · ∨ xk 6= yk. We extend this to templates by saying that a template is negative if
all of its relations are negative. We show that, for all negative templates Γ, the problem QCSP(Γ)
is in L.

Let D be (here and throughout) a set of arbitrary infinite cardinality.

Example 1.1 Let Γ1 be the relational structure (D;T,=), where T is the ternary relation

T = {(x, y, z) ∈ D3 | (x 6= y ∨ y 6= z)}.

The relation T is negative, as it may be viewed as the conjunction of a single disjunction of
disequalities. An example of an instance of QCSP(Γ1) is

∀y1∃x2∀y3∃x4∀y5∃x6

(T (x2, y5, x4) ∧ x4 = y1 ∧ T (y1, x6, y3)) .

It can be verified that the formula above is true in Γ1. Since Γ1 is negative, it follows from our
classification theorem that QCSP(Γ1) is in L.

The second type of relations we identify are positive relations. We say that a relation is positive
if it can be defined by a quantifier-free equality formula that uses only the positive connectives
AND (∧) and OR (∨). As before, we say that a template is positive if all of its relations are positive.
We show that, for all templates Γ that are positive but not negative, the problem QCSP(Γ) is
NP-complete.

Example 1.2 Let Γ2 be the relational structure (D;P ), where P is the ternary relation

P = {(x, y, z) ∈ D3 | (x = y) ∨ (y = z)}.

The relation P , and hence the constraint language Γ2, is positive. Note that Γ2 is not negative.
First, it is clear that P does not imply that some of its arguments are equal, and therefore we
only have to show that it cannot be defined by a disjunction of disequalities. But any relation
defined by a disjunction of disequalities contains the tuple where all entries are distinct, and the
relation P does not contain such a tuple. Thus, our classification theorem implies that QCSP(Γ2)
is NP-complete.

Finally, we show that the remaining templates Γ–those not falling into either of the two pre-
viously identified classes–give rise to a problem QCSP(Γ) that is coNP-hard.

Example 1.3 Let Γ3 be the relational structure (D;S), where S is the ternary relation

S = {(x, y, z) ∈ D3 | (x = y ∧ y = z)
∨ (x 6= y ∧ y 6= z ∧ x 6= z)}.
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It can be verified that S is not positive. Clearly, every positive relation contains all tuples where all
entries are equal, but S does not contain such tuples. It also does not contain the all-different tuple,
and is not negative. Hence, by our classification theorem, the problem QCSP(Γ3) is coNP-hard.

Techniques used. As we mentioned, the complexity of the CSP over equality templates has
been classified recently [4]. This result was obtained by a universal-algebraic approach originally
developed for studying CSPs over finite domains [7–10, 13, 16]. The approach rests on studying
certain closure properties, so-called polymorphisms, of a template. The set of all polymorphisms of
a template forms an algebraic object called a clone. For templates over infinite domains, this clone
is locally closed. The result in [4] exhibits two polymorphisms for equality templates that imply
polynomial-time decidability of the corresponding constraint satisfaction problems, and proves
that the constraint satisfaction problem is NP-complete in all other cases.

It is worth noting that the polymorphisms that guarantee polynomial-time tractability for the
CSP do not guarantee tractability in the QCSP. To derive our complexity classification for the
QCSP, we have to obtain deeper knowledge of the associated clones. In doing so, we develop a
number of new techniques; several of them could be of independent interest in universal algebra.
Indeed, our results reveal new information on the lattice of clones containing all permutations,
which includes all clones corresponding to equality templates. Interestingly, some of our results
utilize a mix of “relational” arguments, arguments directly on the relations of a template, and
“operational” arguments, arguments on the polymorphisms of a template; see Section 8 as an
example.

In our proof we use a surjective preservation theorem for equality templates, which concerns the
expressibility of a relation from formulas that may use conjunction and arbitrary (both universal
and existential) quantification. In particular, this theorem shows that a relation can be defined by
a first-order formula of the described form over an equality template Γ if and only if it is preserved
by all surjective polymorphisms of Γ. An analogous theorem for finite templates Γ has been shown
previously [6]. The proof that this result holds for all ω-categorical templates in the conference
version is flawed (see also Section 4), and we have to leave this as an open question.

2 Preliminaries

In this section we recall fundamental notions from logic and universal algebra; the terminology
and notation we use is standard and can be found for instance in [14,22] and [27].

Relational structures. A relational signature τ is a (in this paper always finite) set of relation
symbols Ri, each of which has an associated finite arity ki. A relational structure Γ over the
signature τ (also called τ -structure) is a set DΓ (the domain) together with a relation Ri ⊆ Dki

Γ

for each relation symbol Ri from τ . For simplicity, we use the same symbol for a relation symbol
and the corresponding relation. If necessary, we write RΓ to indicate that we are talking about
the relation R belonging to the structure Γ.

Automorphisms and Homomorphisms. Let Γ and Γ′ be τ -structures. Isomorphisms from
Γ to Γ are called automorphisms. The set of all automorphisms of a structure Γ forms a group
with respect to composition of automorphisms. An orbit of a k-tuple t in Γ is the set of all tuples
of the form (π(t1), . . . , π(tk)), where π is an automorphism of Γ.

A homomorphism from Γ to Γ′ is a function f from DΓ to DΓ′ such that for each n-ary relation
symbol R in τ and each n-tuple (a1, . . . , an), if (a1, . . . , an) ∈ RΓ, then (f(a1), . . . , f(an)) ∈ RΓ′

.
In this case we say that the map f preserves the relation R (and otherwise, that f violates R).

First-order logic. Let τ be a signature. A τ -formula is a first-order formula whose atomic
formulas are either of the form x = y or R(x1, . . . , xk) for R ∈ τ . A τ -sentence is a τ -formula
without free variables. A first-order theory (over the signature τ) is a set of first-order τ -sentences.
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If Γ is a τ -structure, then Th(Γ) denotes the first-order theory of Γ, that is, the set of all first-order
τ -sentences that are true in Γ. A τ -structure Γ is a model of a theory T is all sentences in T are
true in Γ.

Categoricity. For a cardinal κ, a first-order theory theory T is called κ-categorical if all models
of T (i.e., all structures that satisfy all sentences in T ) of cardinality κ are isomorphic, and T
is called totally categorical if T is κ-categorical for all infinite cardinals κ. If Γ is a structure of
cardinality κ, and if the first-order theory Th(Γ) is κ-categorical, we also say that Γ is κ-categorical.

Polymorphisms. Let D be a set, and let O be the set of finitary operations on D, i.e., functions
from Dk to D for finite k. We say that a k-ary operation f ∈ O preserves an m-ary relation R ⊆
Dm if whenever R(xi1, . . . , x

i
m) holds for all 1 ≤ i ≤ k in Γ, then R

(
f(x1

1, . . . , x
k
1), . . . , f(x1

m, . . . ,

xkm)
)

holds in Γ. If f preserves all relations of a relational τ -structure Γ, we say that f is
a polymorphism of Γ. Equivalently, f is a polymorphism of Γ if it is a homomorphism from
Γk = Γ× · · · × Γ to Γ, where Γ1 × Γ2 is the (direct) product of the two relational τ -structures Γ1

and Γ2 [14]; this product is also called the categorical product or the cross product [13]. Hence,
the unary bijective polymorphisms are the automorphisms of Γ. We use Pol(Γ) to denote the
polymorphisms of Γ, and sPol(Γ) to denote the surjective polymorphisms of Γ.

Clones. An operation π is a projection if for all n-tuples, π(x1, . . . , xn) = xi for some fixed
i ∈ {1, . . . , n}. The composition of a k-ary operation f and k operations g1, . . . , gk of arity n is an
n-ary operation defined by

f(g1, . . . , gk)(x1, . . . , xn) =

f
(
g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)

)
.

A clone F is a set of operations defined on a set D (the domain of F ) that is closed under
compositions and that contains all projections. It is easy to verify that the set Pol(Γ) of all
polymorphisms of Γ is a clone with domain DΓ. Moreover, Pol(Γ) is also locally closed (see
e.g. Proposition 1.6 in [27]), a property that is defined as follows. We say that an operation
f is interpolated by a set of operations F over D if for every finite subset B of D there is some
operation g ∈ F such that f(t) = g(t) for every t ∈ Bk. The set of operations that are interpolated
by F is called the local closure of F ; if F equals its local closure, we say that F is locally closed.

In this paper we focus on clones on a countably infinite domain D that contain all permutations
of D. When clear from context, we slightly abuse terminology and say that an operation g on a
countable infinite domain D is generated by a set of operations F (by an operation f) on D if
g is contained in the smallest locally closed clone containing F (containing f) and containing all
permutations of D.

Lemma 2.1 Every operation f with infinite range generates a surjective operation g that generates
f .

Proof . Let i be a bijection between the range of f and D. We claim that the surjective operation
g := i(f) is generated by f . For each finite subset S of the domain, the restriction of i to S can
be extended to a permutation α of D, so α(f(x)) = g(x) for all x ∈ S, and by local closure we
have shown the claim. Similarly one can show that the operation g also generates f . �

An operation f is essentially unary if there is a unary operation f0 such that f(x1, . . . , xk) =
f0(xi) for some fixed i ∈ {1, . . . , k}. We say that a k-ary operation f depends on argument i if
there is no k−1-ary operation f ′ such that f(x1, . . . , xk) = f ′(x1, . . . , xi−1, xi+1, . . . , xk). We can
equivalently characterize k-ary operations that depend on the i-th argument by requiring that
there are elements x1, . . . , xk and x′i such that f(x1, . . . , xk) 6= f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk).

Hence, an essentially unary operation is an operation that depends on one argument only. More
generally, an operation that depends on at least k arguments is called essentially k-ary. We will
call an essentially k-ary operation having k ≥ 2 an essential operation, as is common in universal
algebra. Note that every operation is either essential or essentially unary.
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3 Quantified Constraint Satisfaction

A template or constraint language is simply a relational structure; we typically refer to a relational
structure Γ as a template or constraint language when we are interested in the computational prob-
lem QCSP(Γ), which is defined below. (We use the terms “template” and “constraint language”
synonymously.) Recall that signatures τ in this paper are assumed to contain finitely many sym-
bols.

A first-order τ -formula is a quantified constraint formula if it has the form

Q1v1 . . . Qnvn(ψ1 ∧ . . . ∧ ψm),

where each Qi is a quantifier from {∀,∃}, and each ψi is an atomic τ -formula (a formula x = y
or R(x1, . . . , xk) for R ∈ τ) that can contain both free variables and quantified variables from
{v1, . . . , vn}.

The quantified constraint satisfaction problem for Γ, denoted by QCSP(Γ), is the problem of
deciding, given a quantified constraint τ -formula without free variables, whether or not the formula
is true in Γ. Note that both the universal and existential quantification is understood to take place
over the entire universe of Γ.

Let R be a k-ary relation and let Γ be a τ -structure. We say that R has a ∀∃∧-definition (or is
∀∃∧-definable1.) in Γ if there exists a quantified constraint formula φ with free variables x1, . . . , xk
such that R(x1, . . . , xk) = φ(x1, . . . , xk). We say that R has a pp-definition (or is pp-definable)
in Γ if there exists a quantified constraint formula φ that uses only existential quantification with
free variables x1, . . . , xk such that R(x1, . . . , xk) = φ(x1, . . . , xk). Here, “pp” stands for “primitive
positive”. We use [Γ] to denote the expansion of Γ by all relations that are ∀∃∧-definable from Γ.

In the following, we frequently make use of the following result, which was shown in [6] for
constraint languages over a finite domain, but which is purely syntactic and holds for infinite
domain constraint languages as well.

Lemma 3.1 Let Γ1,Γ2 be constraint languages. If every relation in Γ1 has a ∀∃∧-definition in
Γ2 (that is, Γ1 ⊆ [Γ2]), then QCSP(Γ1) is logarithmic space reducible to QCSP(Γ2).

In this paper we focus on the QCSP of a fundamental class of highly symmetric ω-categorical
constraint languages, called equality constraint languages. An equality-definable relation is a re-
lation (on an infinite domain) that has a first-order definition by an equality formula, i.e., a
first-order formula where all atomic subformulas are of the form x = y. An equality constraint
language is a relational structure on a countably infinite universe such that all of its relations are
equality-definable relations.

In general, we use the symbol D to denote an infinite domain. For every constraint language Γ
over an infinite domain there exists a constraint language Γ′ over a countably infinite domain such
that Γ and Γ′ have the same QCSP; this follows from downward Löwenheim-Skolem theorem (see
for example [14]). For equality constraint languages we even have that the complexity classification
is the same for all infinite domains D. This can be seen as follows. Let D and D′ be two infinite
sets (not necessarily of the same cardinality). Suppose that φ1, . . . , φs are equality formulas. Let
R1, . . . , Rs be the relations defined by φ1, . . . , φs overD, and let R′

1, . . . , R
′
s be the relations defined

by φ1, . . . , φs over D′. Then QCSP((D;R1, . . . , Rs)) and QCSP((D′;R′
1, . . . , R

′
s)) are the same

computational problem: an instance Φ of QCSP((D;R1, . . . , Rs)) is true if and only if the first-
order sentence obtained from Φ by replacing the symbols Ri by the formula φi is true in (D; =),
which in turn is the case if and only if this sentence is true in (D′; =), and this is true if and only if
Φ is true in (D′;R′

1, . . . , R
′
s). So, for the main result it is sufficient to prove the classification only

for countable equality constraint languages, and to deduce the general case from the countable
case.

The structure (D; =) admits quantifier elimination [14]: this is, all equality formulas are logi-
cally equivalent to a quantifier-free equality formula. Therefore, equality constraint languages can

1In the conference version of the paper, motivated by latex symbol names, we wrote few-definition instead of
∀∃∧-definition
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be introduced equivalently as those relational structures where all relations can be defined by a
boolean combination of atoms of the form x = y. It is also straightforward to verify that the
first-order theory of equality constraint languages is totally categorical.

When Γ is an equality constraint language with domain D, any permutation of D is an au-
tomorphism of Γ, that is, the automorphism group of Γ is the full symmetric group on D. It is
easy to see that all injective unary operations on D are polymorphisms of an equality constraint
language Γ on D. In fact, a relational structure is an equality constraint language if and only if it
is preserved by all injective unary operations on D.

The quantified constraint satisfaction problem for equality constraint languages over an infinite
domain D is in PSPACE. This is closely related to the observation by Stockmeyer and Meyer that
the first-order logic of equality has a validity problem that is contained in PSPACE [26]. For
completeness, we sketch a proof that the problems under study are in PSPACE.

Proposition 3.2 For every equality constraint language Γ, the problem QCSP(Γ) is in PSPACE.

Proof . To solve the problem QCSP(Γ) in polynomial space, we can use a standard backtracking
algorithm which always branches on the outermost quantifier. The key point is that, when the
algorithm is about to branch on a variable v, the previous variables form an equivalence relation
(where two variables are equal simply if they were assigned the same value), and as far as satisfying
equality constraints is concerned, all that matters is whether or not v is set equal to the value of
one of the equivalence classes, or set equal to a new value. Clearly, at each branching point there
are at most linearly many choices, and so the backtrack search may be performed in polynomial
space. �

4 The Surjective Preservation Theorem

It was proved in [6] that a relation R has a ∀∃∧-definition in a finite structure Γ if and only if
R is preserved by all surjective polymorphisms of Γ. It turns out that the same characterization
holds for equality templates Γ (Theorem 4.3). In the conference version of this paper we suggested
to derive this from a corresponding model-theoretic preservation theorem by [18]. But the proof
contained a mistake: the model-theoretic preservation theorem involves taking infinitary powers
of structures, whereas we want to obtain a preservation theorem for finitary polymorphisms.

The proof of the surjective preservation theorem for equality templates rests on the following,
which holds more generally for all ω-categorical structures, not just for equality templates.

Lemma 4.1 Let Γ be an ω-categorical structure. Suppose there exists a k such that every poly-
morphism of Γ of range larger than k is generated by surjective polymorphisms of Γ. Then any
relation that is preserved by the surjective polymorphisms of Γ has a ∀∃∧-definition in Γ.

Proof . Let R be an m-ary relation preserved by the surjective polymorphisms of Γ. Consider
the relation R′ = R ×Dm+1. Let S be the smallest pp-definable relation containing R′. Since Γ
is ω-categorical, S can be characterized as the set of all tuples f(t1, . . . , tn) where t1, . . . , tn ∈ R′

and f is a polymorphism of Γ (see [5]).
We claim that R(x1, . . . , xm) is equivalent to ∀y1 . . . ym+1.S(x1, . . . , xm, y1, . . . , ym+1). Obvi-

ously, every tuple in R satisfies this formula. For the converse, suppose that t satisfies the formula.
Then the tuple (t, a1, . . . , am+1) where the ai are pairwise distinct and also different from any value
in t, is contained in S. The tuple (t, a1, . . . , am+1) is equal to f(t1, . . . , tn) as described above.
Then f must have range larger than m, and by assumption it follows that f is generated by sur-
jective polymorphisms of Γ. Since R is preserved by the surjective polymorphisms of Γ, it follows
that t ∈ R. �

To derive the surjective preservation theorem from the previous result, we need a fact from
joint work of the authors with Michael Pinsker [3], which itself uses a theorem of Haddad and
Rosenberg [12] about clones on finite domains containing all permutations; Haddad and Rosenberg
credit the proof ideas to Malt’sev [21].

6



Theorem 4.2 (From [3], Lemma 36) Let f be an essential operation on D of range k with
3 ≤ k < ω. Then f generates all operations which take at most k values.

We can now prove the surjective preservation theorem for equality templates.

Theorem 4.3 A relation R has a ∀∃∧-definition over an equality template Γ if and only if R is
preserved by all surjective polymorphisms of Γ.

Proof . First, observe that every relation R with a ∀∃∧-definition in an arbitrary Γ is preserved
by all surjective polymorphisms of Γ. This can be shown in a straightforward way by induction
on the structure of the ∀∃∧-definition of R.

For the converse, suppose that R is preserved by all surjective polymorphisms of Γ. By
Lemma 4.1, it suffices to show that there exists a k such that all polymorphisms of Γ of range
greater than k are generated by surjective polymorphisms. Suppose for contradiction that for
every k there exists a polymorphism fk of range larger than k that is not generated by a surjective
polymorphism of Γ. By Lemma 2.1, fk must have finite range. We distinguish two cases.

• For infinitely many k, the operation fk is essentially unary. These essentially unary fk
cannot be injective with respect to the corresponding unary operations, for then these fk
would be generated by permutations. It follows by local closure that these fk generate a
unary surjective non-injective operation, which in turn generates all unary operations; this
contradicts our assumption.

• For infinitely many k, the operation fk is essential. Hence, Γ has for arbitrarily large k
an essential polymorphism of finite range larger than k, which by Theorem 4.2 generates
all operations of range k. By local closure, Γ is preserved by all operations. Since for
every operation there is a surjective operation that generates it, Γ therefore has surjective
polymorphisms that generate fk (for all k), a contradiction to the choice of fk.

�

Corollary 4.4 Let Γ1,Γ2 be equality constraint languages over the same infinite domain D. If
sPol(Γ2) ⊆ sPol(Γ1), then QCSP(Γ1) is logarithmic space reducible to QCSP(Γ2).

Proof . Directly from Lemma 3.1 and Theorem 4.3. �

5 Classification Theorem

This section presents the statement of our classification theorem for equality constraint languages.
We first identify two subclasses of equality constraint languages that will be needed to state the
theorem.

Definition 5.1 An equality-definable relation R is called negative if it is definable by a quantifier-
free conjunction of equalities and disjunctions of disequalities. An equality constraint language Γ
is negative if every one of its relations is negative.

Example 5.2 Let S ⊆ D7 be the relation defined by S(x1, x2, x3, x4, x5, x6, x7) ≡ (x1 6= x2∨x2 6=
x3) ∧ (x5 6= x4 ∨ x4 6= x3) ∧ (x1 = x6) ∧ (x3 = x7). From the form of the definition, we can see
that S is negative.

The second subclass is the class of all positive equality-definable relations.

Definition 5.3 An equality-definable relation R is positive if it is definable by a formula consisting
of equalities and the connectives ∧ and ∨. An equality constraint language Γ is positive if every
one of its relations is positive.
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Example 5.4 Let S ⊆ D4 be the relation defined by S(x1, x2, x3, x4) ≡ (x1 = x2)∨(x2 = x3∧x3 =
x4). The relation S is positive.

The following is the statement of our classification theorem.

Theorem 5.5 (Classification theorem) Let Γ be an equality constraint language.

• If Γ is negative, then the problem QCSP(Γ) is decidable in logarithmic space.

• Else (i.e., if Γ is not negative), and if Γ is positive, then the problem QCSP(Γ) is NP-
complete.

• Else (i.e., if Γ is neither negative nor positive), the problem QCSP(Γ) is coNP-hard.

In the second and third cases, the problem QCSP(Γ) is complete for the respective complexity class
under logarithmic space reducibility.

We now give a proof of the classification theorem which contains forward references to the
needed results presented in the subsequent sections. This proof may well serve as a road map for
the next four sections of the paper, which together establish the classification theorem. For ease of
readability, in each of these sections, the main result of the section is stated as the first theorem.
Our proof of the classification theorem only refers to these “first theorems”.

Proof . If the constraint language Γ is negative, then Theorem 6.1 of Section 6 shows that
QCSP(Γ) is decidable in logarithmic space. If the constraint language Γ is not negative but
is positive, then Theorem 7.1 shows that QCSP(Γ) is NP-complete. Otherwise (that is, if the
constraint language is neither negative nor positive), Theorem 8.1 shows that [Γ] contains the
relation I ⊆ D3 (defined in Section 8). By Theorem 9.1, we have that QCSP((D; I)) is coNP-
hard; QCSP((D; I)) reduces to QCSP(Γ) by Lemma 3.1. �

6 Negative Languages

In this section, we present an algorithmic result for negative constraint languages.

Theorem 6.1 If Γ is a negative constraint language, then QCSP(Γ) is decidable in logarithmic
space.

Let Γ be negative, and let Φ be an instance of QCSP(Γ) with variables X = {x1, . . . , xn}.
If R(v1, . . . , vk) is a constraint in Φ, we use φR(v1,...,vk) to denote the formula with variables
v1, . . . , vk that defines R as a conjunction of equalities and disjunctions of disequalities. We say
that a disjunction of disequalities ψ appears in Φ if it is a member of one of the conjunctions φR(v)

with R(v) a constraint of Φ. We will make use of the following graphs.

• The undirected graph G=
Φ has vertex set X, and for each pair {x, y} ⊆ X, the edge {x, y} is

present if and only if there exists a constraint R(v) in Φ such that φR(v) contains x = y.

• Let ψ be a disjunction of disequalities appearing in Φ. The undirected graph GψΦ is defined
to have vertex set X, and contains all edges of G=

Φ as edges; in addition, the edge {x, y} is
present if the disequality x 6= y is part of the disjunction ψ.

Our logarithmic space decision procedure is based on the following characterization of true
instances. This characterization is given by “forbidden paths”: an instance is true if and only if
the graphs G=

Φ and GψΦ omit paths of certain types.
For the correctness proof of the following algorithm, but also for some arguments in Section 9, it

will be convenient to view an instance Q1v1 . . . QnvnΨ of the QCSP as a two-player game between
a (female) universal and a (male) existential player. The game proceeds in rounds; in round i,
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the players assign a value from D to the variable vi. If Qi is existential, the existential player
chooses the value for vi, and otherwise the universal player chooses the value. The existential
player wins the game if after round n the constructed assignment satisfies all the constraints in Ψ,
and otherwise the universal player wins. It is straightforward to verify that an instance of QCSP
is true if and only if the existential player has a winning strategy in the corresponding game. A
variable vi is called earlier (later) than variable vj in an instance Q1v1 . . . QnvnΨ of the QCSP if
i < j (i > j).

Theorem 6.2 Let Φ be an instance QCSP(Γ) where Γ is negative. The formula Φ is false if and
only if one of the following two conditions hold:

1. There exists a universally quantified variable that is connected in G=
Φ to an earlier variable.

2. There exists a disjunction of disequalities ψ(z1, . . . , zk) appearing in Φ such that for all
existentially quantified variables x ∈ {z1, . . . , zk}, either

(a) x is connected in G=
Φ to an earlier variable from {z1, . . . , zk}, or

(b) x is the earliest variable among the variables in {z1, . . . , zk} connected to x in GψΦ.

Proof . We first show that if one of these two conditions hold, the formula is false, by proving that
the universal player has a winning strategy. If Condition 1 applies, she can play a fresh value, i.e.,
a value that has not been selected by any player previously in the game, at the universal variable
that is connected in G=

Φ to a previous variable, and clearly wins.
Now, suppose that Condition 2 applies to a disjunction of disequalities ψ appearing in Φ. For z

from z1, . . . , zk, let Cψ(z) be the connected component of z in GψΦ, and let C=(z) be the connected
component of z in G=

Φ . Then we have: for all existential variables x ∈ {z1, . . . , zk}, either the
earliest variable in C=(x) is the same as the earliest variable in Cψ(x), or the earliest variable in
C=(x) is a universally quantified variable. If both these conditions are violated, then the earliest
variable in C=(x) is existential and not the earliest variable in Cψ(x). Thus, this earliest variable
violates both (a) and (b) in Condition 2, a contradiction. Now, if the universal player has to play
a value for a universally quantified variable y from z1, . . . , zk, she plays the value of the earliest
variable in Cψ(y) if the earliest variable has already been set; otherwise, y is the earliest variable
in Cψ(y) and can be set arbitrarily. For all other variables she can play arbitrarily.

Suppose that there is a strategy for the existential player that wins against the above strategy
for the universal player. Consider a connected component C in GψΦ. The universal variables in C
will all be set to the value a of the earliest variable in C. Let x be an existential variable in C.
If existential player wins, all variables in C=(x) must have the same value. Consider the earliest
variable z in C=(x). By the observation of the last paragraph, z is the earliest variable in C or is
universal. In the first case, we know that a is assigned to z. If z is universal, then the strategy for
the universal player also assigned a to z. Hence, all values in C are mapped to a. Since this holds
for all connected components C in GψΦ, the disjunction of disequalities is falsified, contradicting
the assumption that existential player wins.

If Conditions 1 and 2 do not apply, then the existential player has the following winning
strategy. If he has to play a value for x, and x is connected in G=

Φ to an earlier variable, he plays
the value of this earlier variable. Otherwise, he picks a fresh value. We have to show that this
strategy wins against any strategy for the universal player. We first show that the constraints
of the form x = y in Φ are satisfied in that way. Since condition 1 does not apply, for each
component of G=

Φ , all variables–except possibly the earliest–are existentially quantified. Hence,
the given existential strategy satisfies all equality constraints x = y.

Next, consider a disjunction of disequalities ψ appearing in Φ. Since condition (2) does not
hold, there exists an existentially quantified variable x of ψ such that neither (2a) nor (2b) holds.
Since (2a) fails, x is (by the described strategy) set to a value different from all variables earlier
than x; but, since (2b) fails, x is connected to an earlier variable z in GψΦ. Since x and z are set
to different values, there exists an edge on the path from x to z that must have vertices set to
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different values. We claim that this edge does not correspond to an equality edge in GψΦ. Due
to condition (1), the later variable (of the edge) cannot be universal; but if the later variable is
existential and the edge is in GψΦ, the existential player would have set its value to the value of
the earlier variable. Therefore, the edge corresponds to a disequality in ψ, and this disequality is
satisfied. �

Proof . (Theorem 6.1) Conditions 1 and 2 can be verified in logarithmic space, due to the result
that undirected graph reachability, USTCON, is in L [24]. We have to test whether two specified
vertices are connected in G=

Φ or in GψΦ, for a disjunction of disequalities ψ. These graphs can
be constructed with logarithmic work-space. The first condition needs to be tested for all pairs
of variables, and the second condition for all disjunctions of disequalities, and all pairs of vari-
ables. Hence, the only non-constant additional space is needed for storing the next variables and
constraints that will be tested, which is possible in logarithmic space. �

Negative languages can also be characterized in terms of polymorphisms. We say that an n-ary
operation f ∈ O is injective in the i-th argument if for all a, b ∈ Dn we have f(a) 6= f(b) whenever
ai 6= bi.

Theorem 6.3 (Proposition 68 in [3]) Let Γ be an equality constraint language. Then Γ is
negative if and only if it is preserved by all operations that are injective in one argument.

7 Positive Languages

This section is devoted to the proof of the following.

Theorem 7.1 Let Γ be a positive constraint language that is not negative. Then QCSP(Γ) is
NP-complete.

We begin by presenting a number of useful characterizations of positivity of constraint lan-
guages.

Definition 7.2 We say that a formula φ in conjunctive normal form is reduced, if removing a
literal or a clause from φ results in a formula that is not equivalent to φ.

Clearly, every formula is equivalent to a formula in reduced form.

Proposition 7.3 Let Γ be an equality constraint language over domain D. The following are
equivalent:

1. Γ is positive, i.e., every relation in Γ is definable by a formula consisting of equalities and
the connectives ∧ and ∨.

2. Pol(Γ) contains all unary operations on D.

3. Pol(Γ) contains a non-injective unary operation having infinite image.

4. Pol(Γ) contains for every k a unary operation having a range of size k.

5. If φ is a reduced formula that defines a relation from Γ, then φ does not contain a disequality.

Proof . (1) ⇒ (2): Suppose that Γ is positive. Let f : D → D be any unary operation. We want
to show that any relation R of Γ is preserved by f . Let t ∈ R be any tuple. Observe that, for any
two coordinates i, j, if ti = tj then f(ti) = f(tj). Thus, any equalities that hold in t also hold in
f(t), and since R has a definition that is positive in equalities, we have f(t) ∈ R.

(2) ⇒ (3): Trivial.
(3) ⇒ (4): A straightforward local closure argument.
(4) ⇒ (5): Let R be an m-ary relation of Γ. Let φ be any reduced formula that defines R;

we claim that φ is positive. Assume for contradiction that φ contains a clause ψ with a negative
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literal xi 6= xj . Since φ is reduced, there exists an m-tuple t such that φ(t) holds and such that
xi 6= xj is the only literal that is satisfied by t in the clause ψ. Let k be the number of distinct
entries of t, and let f be a unary polymorphism of Γ of range k. Then there exists a permutation
α of the elements of Γ such that f(α) maps ti and tj to the same value and all other elements to
distinct values. Then f(α(t)) does not satisfy the literal xi 6= xj , and clearly also does not satisfy
any other literal in ψ. Hence, φ is not preserved under f , a contradiction.

(5) ⇒ (1): Trivial. �

The following known result gives the complexity upper bound on positive constraint languages.

Theorem 7.4 (follows from [20]) For any positive constraint language Γ, the problem QCSP(Γ)
is in NP.

We mention that there is also an alternative, polymorphism-based proof of Theorem 7.4 [2].
We now show for one particular positive constraint language Γ that CSP(Γ) is NP-complete.

Let P3 be the ternary relation defined by P3(x, y, z) ≡ (x = y) ∨ (y = z). Clearly, P3 is positive.

Proposition 7.5 The problem QCSP((D;P3)) is NP-hard.

Proof . Let L be the relation P3 applied to the two-element domain {0, 1} for some 0, 1 ∈
D, that is, define L = {(a, b, c) ∈ {0, 1}3 : (a = b) ∨ (b = c)}. We show that the CSP over
constraint language Γ = (D;L, {0}, {1}) reduces to QCSP((D;P3)). Take an instance P of this
CSP with variables {x1, . . . , xn}. We create an instance P ′ of the QCSP with quantifier prefix
∀y0∀y1∃x′1 . . .∃x′n with the following constraints:

• for each constraint L(xi, xj , xk) in P , we create a constraint P3(x′i, x
′
j , x

′
k),

• for each constraint {0}(xi) in P , we create a constraint y0 = x′i,

• for each constraint {1}(xi) in P , we create a constraint y1 = x′i,

• for each variable xi ∈ {x1, . . . , xn} in P , we create a constraint P3(y0, x′i, y1).

Notice that the instance P ′ may have constraints of the form ya = x′i, and so might not be
an instance of QCSP((D;P3)). However, we can easily compute an equivalent instance P ′′ of
QCSP((D;P3)) from P ′, where constraints ya = x′i are removed simply by 1) replacing all instances
of x′i in constraints with ya, and 2) removing x′i from the quantifier prefix.

We now argue that P ′ is true if and only if P is satisfiable. Suppose that P ′ is true. Let a0, a1

be two values of the domain that are not equal, and set y0 = a0 and y1 = a1. Since P ′ is true,
there exists an assignment f ′ to the x′i that make all constraints of P ′ true. By the last group
of constraints in P ′, every single variable x′i is equal to either a0 or a1. It is straightforward to
verify that the mapping f : {x1, . . . , xn} → {0, 1} where f(xi) = 0 if f ′(x′i) = a0, and f(xi) = 1
if f ′(x′i) = a1, is a satisfying assignment for P . Conversely, suppose that P is satisfiable by the
assignment f : {x1, . . . , xn} → {0, 1}. Then, for any assignment to the universal variables y0, y1,
the assignment to the x′i that sets x′i to yf(xi) satisfies the constraints of P ′.

Finally, we wish to show that the CSP over Γ is NP-hard. By [17], it suffices to show that Γ does
not have as polymorphism one of the operations {0, 1,∧,∨,m, a} where 0 and 1 are the constant
operations, ∧ and ∨ are the boolean AND and OR operations, respectively, m : {0, 1}3 → {0, 1}
is the majority operation m(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z), and a : {0, 1}3 → {0, 1} is
the affine operation a(x, y, z) = x ⊕ y ⊕ z. Clearly, Γ does not have either of the constants
0, 1 as polymorphism: 1 does not preserve {0}, and 0 does not preserve {1}. The opera-
tion ∧ does not preserve P3 because (1, 1, 0) ∧ (0, 1, 1) = (0, 1, 0). The operation ∨ does not
preserve P3 because (0, 0, 1) ∨ (1, 0, 0) = (1, 0, 1). The operation m does not preserve P3 be-
cause m((1, 1, 0), (0, 1, 1), (0, 0, 0)) = (0, 1, 0). And, the operation a does not preserve P3 because
a((1, 1, 0), (0, 1, 1), (0, 0, 0)) = (1, 0, 1). �

Theorem 7.6 (From [3], Proposition 37) Let f be an essential operation with infinite image.
Then f preserves 6=, or it generates all operations.
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We can now prove Theorem 7.1.

Proof . The containment of QCSP(Γ) in NP is given by Theorem 7.4. If sPol(Γ) contains an
essential operation, then Γ is preserved by all operations by Theorem 7.6. In particular, every
relation in Γ is negative, by Theorem 6.3, in contradiction to our assumptions.

So we can assume that all operations in sPol(Γ) are essentially unary. We prove NP-hardness
of QCSP(Γ) as follows. Essentially unary operations clearly preserve the relation P3 ≡ (x =
y)∨ (y = z). Corollary 4.4 then shows that P3 is ∀∃∧-definable in Γ. By Lemma 3.1, the problem
QCSP((D,P3)), which is NP-hard by Proposition 7.5, reduces to QCSP(Γ). �

8 Analysis of Non-Positive Languages

We have already proved the classification theorem for positive languages. We now show that if a
language is not positive, then it is either negative or it can ∀∃∧-define the relation I defined by

I(x, y, z) ≡ ((x = y) ⇒ (y = z)) .

In Section 9, we finally show the QCSP for the relation I is coNP-hard.

Theorem 8.1 Let Γ be a constraint language that is neither positive nor negative. Then [Γ]
contains I.

We will use the following results from [3] and from [4].

Theorem 8.2 (Lemma 38 in [3]) Any operation with infinite range that violates 6= generates a
unary non-injective function with infinite range.

Theorem 8.3 (of [4]) Let g be an essential operation. If g preserves 6=, then it generates all
injective operations.

It was shown in [4] that if Γ is preserved by all injective operations, then all relations of Γ
can be defined by (quantifier-free) Horn formulas over (D; =), i.e., by quantifier-free formulas in
conjunctive normal form where each clause contains at most one positive literal. It will later be
convenient to have the following slight strengthening of this result.

Proposition 8.4 If φ is a reduced definition of a relation preserved by a binary injective operation
g, then φ is a Horn formula.

Proof . Let φ be a reduced formula that defines R (Definition 7.2). We show that no clause in
φ contains two equalities. Assume otherwise that there exists a clause ψ of φ which contains two
equalities xs = xt and xi = xj . Construct φ′ from φ by removing the equation xs = xt, and φ′′

by removing xi = xj . There exist a, b ∈ Dn such that φ(a) but not φ′(a), and φ(b) but not φ′′(b).
Clearly, as = at, ai 6= aj , bs 6= bt, and bi = bj . Because R is preserved by g, it contains a tuple
c = g(a, b) where cs 6= ct and ci 6= cj . But then φ(c) does not hold, a contradiction. �

It will be helpful to consider the relation

S = {(x, y, z) | (x = y ∧ y = z) ∨ (x 6= y ∧ y 6= z ∧ x 6= z)}

containing all tuples whose values are either all equal, or all different, and the relation

T = {(a, b, c, d) | a = b 6= c = d or the values a, b, c, d are pairwise distinct} .

Note that both relations consist of exactly two orbits of tuples. This will be relevant due to the
following general lemma (which holds for arbitrary structures).

Lemma 8.5 Let R be a k-ary relation that consists of m orbits of k-tuples. Then every operation
f that violates R generates an at most m-ary operation that violates R.
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Proof . Let f ′ be an operation of smallest arity l that is generated by f and that violates R.
Then there are k-tuples t1, . . . , tl ∈ R such that f ′(t1, . . . , tl) /∈ R. For l > m there are two
tuples ti and tj that lie in the same orbit of k-tuples, and therefore there is a permutation h
such that h(tj) = ti. By permuting the arguments of f ′, we can assume that i = 1 and j = 2.
Then the (l− 1)-ary operation g defined as g(x2, . . . , xl) := f ′(h(x2), x2, . . . , xl) also violates R, a
contradiction. Hence, l ≤ m. �

Lemma 8.6 The relation S can pp-define the relation I.

Proof .
I(u, v, w) ≡ ∃x∃x′(S(u, v, x) ∧ S(u, v, x′) ∧ S(x, x′, w))

is a pp-definition of I.
We verify this as follows. Consider the pp-definition. If u and v are equal, then by the

predicates S(u, v, x) and S(u, v, x′), we must have that u = v = x = x′, and then by the predicate
S(x, x′, w), it must hold that u = v = w. Moreover, if u, v, w are all equal, then setting x and x′

to the same value as that of u, v, w, we have that all three predicates are satisfied.
If u and v are not equal, then for any assignment to w, if x and x′ are set to values that are

pairwise distinct from each other and from each of u, v, w, then all three of the predicates are
satisfied. �

Lemma 8.7 The relation T can pp-define the relation I.

Proof . By Lemma 8.6, it suffices to show that T expresses the relation S of Lemma 8.6. We
claim that S has the following pp-definition.

S(u, v, x) ≡ ∃y∃z(T (u, v, y, z) ∧ T (v, x, y, z) ∧ T (u, x, y, z)) .

We verify this as follows. If u = v = x all have the same value then setting y = z to be a distinct
value results in all of the predicates being satisfied. If u, v, and x have pairwise distinct values
then setting y and z to have values pairwise distinct from each other and from the values of u, v, x,
also results in both of the predicates being satisfied.

We now prove that all other tuples do not satisfy the given pp-formula. Suppose that u = v.
Then it must hold, by the first predicate T (u, v, y, z), that y = z. This in turn implies, by the
second predicate T (v, x, y, z), that v = x. Thus u = v = x. Next, suppose that u 6= v. By the
first predicate, it must hold that u, v, y, z are all pairwise distinct, and then the second predicate
implies that v, x, y, z are all pairwise distinct (in particular, x 6= v), so we have by the third
predicate that x 6= u, that is, u, v, x are pairwise distinct. �

Lemma 8.8 If R is not negative and preserved by a binary injective operation, then the relation
I has a pp-definition in (D;R, 6=).

Proof . Let φ be a reduced definition of R. Proposition 8.4 shows that φ is a Horn formula.
Among all reduced definitions, we choose one that minimizes the vector telling us how many
clauses there are of each length, in a lexicographical sense: we prefer any number of length 3
clauses to a length 4 clause, for instance. Since R is Horn but not negative, φ contains a clause C
of the form xi1 = xj1 ∨ xi2 6= xj2 ∨ · · · ∨ xik 6= xjk for k ≥ 2.

Because φ is reduced, we know we have some tuple t ∈ R where xi1 = xj1 is true and all other
literals in C are false, and we also have some tuple s ∈ R where xi2 6= xj2 is true and all other
literals in C are false. Let R′(x1, . . . , xn) be the relation defined by the formula

φ(x1, . . . , xn) ∧
k∧
l=3

xil = xjl ,

and let R′′ be the projection of R′ to the i1th, j1th, i2th, and j2th argument. Note that
|{i1, j1, i2, j2}| ≥ 3 because φ is reduced, and therefore the arity of R′′ is either 3 or 4. Be-
cause t ∈ R satisfies xi1 = xj1 and xi2 = xj2 , and also satisfies all the additional equations
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xil = xjl for l ≥ 3, the relation R′′ contains a tuple t′ that satisfies xi1 = xj1 and xi2 = xj2 . The
analogous argument for s shows that R′′ contains a tuple s′ where xi1 6= xj1 and xj1 6= xj2 .

First, consider the case that |{i1, j1, i2, j2}| = 3. By renaming variables, we can assume
that j1 = i2. Suppose that R′′ contains a triple with three distinct entries. We know that
R′′(xi1 , xj1 , xj2) does not contain a tuple of the form (x, x, y) for x 6= y, because such a tuple
violates C ∧

∧k
l=3 xil = xjl . But then the relation defined by R′′(x, y, z)∧R′′(y, z, x)∧R′′(z, x, y)

only contains the tuple with three distinct entries and the tuple with three equal entries, and
hence we have found a pp-definition of the relation S in (D;R, 6=). By Lemma 8.6 we are done.

Suppose now that R′′(xi1 , xi2 , xj2) does not contain a tuple with three distinct entries. Then
it is impossible that there is a tuple r ∈ R′′ where xi1 6= xj2 , because the tuple obtained from
applying the binary injective operation to r and s′ has three distinct entries. Thus the clause
xi3 6= xj3 ∨ · · · ∨ xik 6= xjk ∨ xi1 = xj2 is entailed by φ. Hence, we could replace the clause C in φ
by this shorter clause and obtain a formula that is equivalent to φ, because xi1 = xj2 also implies
xi1 = xj1 ∨ xj1 6= xj2 . This contradicts the choice of φ.

Now take the case where |{i1, j1, i2, j2}| = 4. Observe that R′′ does not contain tuples with
xi1 6= xj1 and xi2 = xj2 , because such tuples violate C ∧

∧k
l=3 xil = xjl .

If t′ ∈ R′′ satisfies xi1 = xj1 6= xi2 = xj2 , then the tuple obtained from applying the binary
injective operation to t′ and s′ has four distinct entries. It is easy to verify that the formula

R′′(a, b, c, d) ∧R′′(c, d, a, b) ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d (1)

is a pp-definition of the relation T (a, b, c, d), and we are done by Lemma 8.7.
Now suppose that t′ ∈ R′′ satisfies xj1 = xi2 and hence t′ is the tuple with four equal entries.

If the tuple in R′′ that has the most values has exactly two values, by the observation above each
of these values must occur twice. So we have two forced equalities y = z and x = w, and we can
observe as before that xi3 6= xj3 ∨ · · · ∨ xik 6= xjk ∨ y = z and xi3 6= xj3 ∨ · · · ∨ xik 6= xjk ∨ x = w
are both entailed by the original formula, and we could replace the original clause with these two
clauses.

So suppose that the tuple in R′′ that has the most values only has one value that occurs twice.
We can suppose this tuple has the form (a, b, b, c), up to rearranging coordinates. We claim that
the expression

R′′(a, b, b, c) ∧R′′(c, a, a, b) ∧R′′(b, c, c, a)

defines the relation S(a, b, c). Clearly, the tuple that contains three distinct values, and the tuple
that contains three equal values satisfy the expression. For any other tuple there is a conjunct in
the expression that has the form R′′(a, b, b, b) for a 6= b, and by the observation above the tuple is
excluded.

Finally, suppose that the tuple in R′′ that has the most values contains four distinct values.
We know that some tuple where one value occurs once and another value occurs three times is
excluded (we have just shown this). If some tuple where two values occur twice is excluded from
R′′, then the relation

∃a
∧
π

R′′(π(a), π(b), π(c), π(d))

is a pp-definition of the relation S(b, c, d), where the conjunction is over all permutations π of
{a, b, c, d}. Otherwise R′′ contains all tuples where two values occur exactly twice. As before it
is easy to verify that Expression (1) is a pp-definition of T (a, b, c, d), and we are again done by
Lemma 8.7. �

Proof . (Theorem 8.1) Let Γ be a constraint language that is neither positive nor negative. If an
operation from sPol(Γ) violates 6= then Theorem 8.2 and Proposition 7.3 show that Γ is positive, a
contradiction to our assumptions. So we can assume without loss of generality (by Corollary 4.4)
that Γ contains the relation 6=.

If all operations in sPol(Γ) are essentially unary, then they all preserve I. In this case I has a
∀∃∧-definition in Γ and we are done. If sPol(Γ) contains an essential operation, then Theorem 8.3
implies that Γ is preserved by a binary injection.
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Since Γ is not negative, Γ contains a relation R without a negative definition. We can therefore
apply Lemma 8.8 and have that I is pp-definable in Γ. �

9 coNP-hardness

In this section, we prove that the QCSP over the relation I = {(x, y, z) | (x = y ⇒ y = z)} is
coNP-hard.

Theorem 9.1 QCSP((D; I)) is coNP-hard.

Proof . We reduce from the complement of the problem MONOTONE 3-SAT. In this version of
the 3-SAT problem, the input is a 3-SAT instance where all clauses are either purely negative or
purely positive; MONOTONE 3-SAT is known to be NP-hard [11].

Let φ be an instance of the MONOTONE 3-SAT problem, use v1, . . . , vn to denote the variables,
use N1, . . . , Nl to denote the negative clauses, and use P1, . . . , Pm to denote the positive clauses.
From this instance, we create an instance ψ of the problem QCSP((D; I)) as follows. The instance
ψ has quantifier prefix

∃b0∃b1∀v1 . . .∀vn∃N1 . . .∃Nl∃N ′
2 . . .∃N ′

l∃P1 . . .∃Pm∃P ′
2 . . .∃P ′

m.

The quantifier-free part of ψ is the conjunction of the following:

1. b0 6= b1. Note that we are free to use 6=, as u 6= v is definable by ∀w(u = v ⇒ v = w).

2. (vi = b0 ⇒ b0 = Nh) ∧ (vj = b0 ⇒ b0 = Nh) ∧ (vk = b0 ⇒ b0 = Nh) for each negative clause
Nh = (¬vi ∨ ¬vj ∨ ¬vk).

3. (vi = b1 ⇒ b1 = Ph) ∧ (vj = b1 ⇒ b1 = Ph) ∧ (vk = b1 ⇒ b1 = Ph) for each positive clause
Ph = (vi ∨ vj ∨ vk).

4. (N1 = N2 ⇒ N2 = N ′
2) ∧

∧
h=3,...,l(N

′
h−1 = Nh ⇒ Nh = N ′

h)

5. (P1 = P2 ⇒ P2 = P ′
2) ∧

∧
h=3,...,m(P ′

h−1 = Ph ⇒ Ph = P ′
h)

6. N ′
l = P ′

m. Note that we are free to use = since u = v is by definition a quantified constraint
formula.

(We assume that the formula φ contains at least two positive clauses and two negative clauses.)
We verify the correctness of this reduction as follows. First, assume that the original formula

φ is satisfiable via the assignment f : {v1, . . . , vn} → {0, 1}. Consider the induced assignment to
the universally quantified variables of ψ where the universally quantified variable vi is set to be
bf(vi). Since f satisfies all of the clauses of φ, in order for all constraints in (2), (3) of ψ to be
satisfied, it must hold that Nh = b0 for all h ∈ [l] and Ph = b1 for all h ∈ [m]. For all constraints
in (4), (5) to be satisfied, it must further hold that N ′

h = b0 for all h = 2, . . . , l and that P ′
h = b1

for all h = 2, . . . ,m. By (1), this implies that N ′
l 6= P ′

m, contradicting (6), and we have that the
formula ψ is false.

Now, assume that the original formula φ is not satisfiable. Consider an assignment g :
{v1, . . . , vn} → D to the universally quantified variables of ψ. Let us say that a negative clause
Nh is not satisfied by g if none of its variables are set by g to be b0; similarly, let us say that a
positive clause Ph is not satisfied by g if none of its variables are set by g to be b1. By assumption,
there exists a negative clause not satisfied by g or a positive clause not satisfied by g. Consider
the case where a negative clause Nh is not satisfied by g (the case of a positive clause is similar).
All of the constraints in (2) can be satisfied in such a way that the variable Nh is not set equal to
b0. It follows that all of the constraints in (4) can be satisfied in such a way that the variable N ′

l

is set equal to b1. Setting all of the variables Ph and P ′
h equal to b1 results in all of the constraints

being satisfied. We conclude that the formula ψ is true. �
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10 Concluding Remarks

Figure 1 is an illustration of the complexity landscape of equality constraint languages.

All Horn 
relations

x=y ⋁ y=z

All equality 
definable  
relations

All relations 
preserved by all 

operations

x=y ⇒ y=z

All negative 
relations

QCSP coNP-hard

QCSP NP-complete

QCSP in L

All positive 
relations

CSP NP-complete
CSP in P

Figure 1: The complexity of the quantified constraint satisfaction problem for equality constraint
languages.

We remark that the classification of the computational complexity of QCSP(Γ) for equality
constraint languages Γ presented in this paper is effective in the sense that there is an algorithm
that decides in a finite amount of time whether a given constraint language (whose relations are
represented by equality-formulas) has a QCSP in L or has a QCSP that is coNP-hard or NP-hard.
This is obvious from the syntactic descriptions of the corresponding equality constraint languages
presented in the classification theorem.

We did not determine the precise complexity of the coNP-hard QCSPs for equality templates,
and suspect that all of them are in fact PSPACE-complete. In the conference version of the paper,
we presented a false proof of this. Proving PSPACE-hardness for the problem QCSP((D, I))
appears to be very difficult, and we have to leave this open here.

Acknowledgements. We thank the referees for their helpful comments; one of the comments
led to the discovery of the mistake in the PSPACE-hardness proof of the conference version of the
paper.
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