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Abstract. Let Γ be a (not necessarily finite) structure with a finite relational
signature. We prove that deciding whether a given existential positive sentence
holds in Γ is in LOGSPACE or complete for the class CSP(Γ )NP under deter-
ministic polynomial-time many-one reductions. Here, CSP(Γ )NP is the class of
problems that can be reduced to the constraint satisfaction problem of Γ under
non-deterministic polynomial-time many-one reductions.

Key words: Computational Complexity, Existential Positive First-Order Logic,
Constraint Satisfaction Problems

1 Introduction

We study the computational complexity of the following class of computational prob-
lems. Let Γ be a structure with finite or infinite domain and with a finite relational signa-
ture. The model-checking problem for existential positive first-order logic, parametrized
by Γ , is the following problem.

Problem: EXPOS(Γ )
Input: An existential positive first-order sentence Φ.
Question: Does Γ satisfy Φ?

An existential positive first-order formula over Γ is defined as follows:
– if R is a relation symbol of a relation from Γ with arity k and x1, . . . , xk are

variables, then R(x1, . . . , xk) is a existential positive first-order formula;
– if ϕ and ψ are existential positive first-order formulas, then ϕ ∧ ψ and ϕ ∨ ψ are

existential positive first-order formulas;
– if ϕ is an existential positive first-order formula with a free variable x then ∃xϕ is

an existential positive first-order formula.
An existential positive first-order sentence is an existential positive first-order formula
without free variables. Note that we do not allow equality symbols in the existential
positive sentences; this only makes our results stronger, since one might always add a
relation symbol = for the equality relation into the signature of Γ to obtain the result
for the case where equality symbols are allowed.

The sentence does not need to be in prenex normal form; however, every existential
positive first-order sentence can be transformed in an equivalent one in this form with-
out an exponential blowup, thanks to the absence of universal quantifiers and negation
symbols.



The constraint satisfaction problem CSP(Γ ) for Γ is defined similarly, but its input
consists of a primitive positive sentence, that is, a existential positive sentence with-
out disjunctions. Constraint satisfaction problems frequently appear in many areas of
computer science, and have attracted a lot of attention, in particular in combinatorics,
artificial intelligence, finite model theory and universal algebra; we refer to the recent
monograph with survey articles on this subject [7]. The class of constraint satisfaction
problems for infinite structures Γ is a rich class of problems; it can be shown that for
every computational problem there exists a relational structure Γ such that CSP(Γ ) is
equivalent to that problem under polynomial-time Turing reductions [1].

In this paper, we show that the complexity classification for existential positive first-
order sentences over infinite structures can be reduced to the complexity classification
for constraint satisfaction problems.

For finite structures Γ , our result implies that EXPOS(Γ ) is in LOGSPACE or NP-
complete. The polynomial-time solvable cases of EXPOS(Γ ) are in this case precisely
those relational structures Γ with an element a where all non-empty relations in Γ con-
tain the tuple (a, . . . , a) composed only from the element a; in this case, EXPOS(Γ )
is called a-valid. Interestingly, this is no longer true for infinite structures Γ . Con-
sider the structure Γ := (N, 6=), which is clearly not a-valid. However, EXPOS(Γ )
can be reduced to the Boolean formula evaluation problem (which is known to be in
LOGSPACE) as follows: atomic formulas in Φ of the form x 6= y are replaced by true,
and atomic formulas of the form x 6= x are replaced by false. The resulting Boolean
formula is equivalent to true if and only if Φ is true in Γ .

A universal-algebraic study of the model-checking problem for finite structures Γ
and various other syntactic restrictions of first-order logic (for instance positive first-
order logic) can be found in [6].

2 Result

We write L ≤m L′ if there exists a deterministic polynomial-time many-one reduction
from L to L′.

Definition 1 (from [4]). A problem A is non-deterministic polynomial-time many-one
reducible to a problem B (A ≤NP B) if there is a nondeterministic polynomial-time
Turing machine M such that x ∈ A if and only if there exists a y computed by M on
input x with y ∈ B. We denote by ANP the smallest class that contains A and is closed
under ≤NP.

Observe that ≤NP is transitive [4]. To state the complexity classification for exis-
tential positive first-order logic, we need the following concept. The Γ -localizer F (ψ)
of a formula ψ is defined as follows:

– F (∃xψ) = F (ψ)
– F (ϕ ∧ ψ) = F (ϕ) ∧ F (ψ)
– F (ϕ ∨ ψ) = F (ϕ) ∨ F (ψ)

– F (R(x1, . . . , xk)) =

{
true if R is a relation of Γ and R 6= ∅
false otherwise



Definition 2. We call a structure Γ locally refutable if every existential positive sen-
tence Φ is true in Γ if and only if the Γ -localizer F (Φ) is logically equivalent to true.

Proposition 1. A structure Γ is locally refutable if and only if every unsatisfiable con-
junction of atomic formulas contains an unsatisfiable conjunct.

Proof. First suppose that Γ is locally refutable, and let Φ be a conjunction of atomic
formulas with variables x1, . . . , xn. Then every conjunct of Φ is satisfiable in Γ if and
only if F (∃x1, . . . , xn.Φ) is true. By local refutability of Γ this is the case if and only
if ∃x1, . . . , xn.Φ is true in Γ , which shows the claim.

Now suppose that Γ is not locally refutable, that is, there is an existential sentence Φ
that is false in Γ such that F (Φ) is true. Now, we define recursively for each subformula
Ψ of Φ where F (Ψ) is true the formula T (Ψ) as follows. If Ψ is of the form Ψ1 ∨ Ψ2,
then for some i ∈ {1, 2} the formula F (Ψi) must be true, and we set T (Ψ) to be T (Ψi).
If Ψ is of the form Ψ1 ∧ Ψ2, then for both i ∈ {1, 2} the formula F (Ψi) must be true,
and we set T (Ψ) to be T (Ψ1) ∧ T (Ψ2).

Each conjunctΦ in T (Φ) is satisfiable in Γ sinceF (Φ) is true. From the construction
it is clear that if T (Φ) is satisfiable, then Φ is also satisfiable in Γ , a contradiction.
Hence, T (Φ) is unsatisfiable in Γ but each conjunct is satisfiable. ut

In Section 3, we will show the following result.

Theorem 1. Let Γ be a structure with a finite relational signature τ . If Γ is locally
refutable then the problem EXPOS(Γ ) to decide whether an existential positive sentence
is true in Γ is in LOGSPACE. If Γ is not locally refutable, then EXPOS(Γ ) is complete
for the class CSP(Γ )NP under polynomial-time many-one reductions.

In particular, EXPOS(Γ ) is in P or is NP-hard (under deterministic polynomial-time
many-one reductions). If Γ is finite, then EXPOS(Γ ) is in P or NP-complete, because
finite domain constraint satisfaction problems are clearly in NP. The observation that
EXPOS(Γ ) is in P or NP-complete has previously been made in [3] and independently
in [5]. However, our proof remains the same for finite domains and is simpler than the
previous proofs.

3 Proof

Before we prove Theorem 1, we start with the following simpler result.

Theorem 2. Let Γ be a structure with a finite relational signature τ . If Γ is locally
refutable, then the problem EXPOS(Γ ) to decide whether an existential positive sen-
tence is true in Γ is in LOGSPACE. If Γ is not locally refutable, then EXPOS(Γ ) is
NP-hard (under polynomial-time many-one reductions).

To show Theorem 2, we first prove the following lemma.

Lemma 1. A structure Γ is not locally refutable if and only if there are existential
positive formulas ψ0 and ψ1 with the property that



– ψ0 and ψ1 define non-empty relations over Γ ;
– ψ0 ∧ ψ1 defines the empty relation over Γ .

Proof. The “if”-part of the statement is immediate. To show the “only if”-part, suppose
that Γ is not locally refutable. Then by Proposition 1 there is an unsatisfiable conjunc-
tion Ψ of satisfiable atomic formulas. Among all such formulas Ψ , let Ψ be one with
minimal length. Let ψ0 be one of the atomic formulas in Ψ , and let ψ1 be the conjunc-
tion over the remaining conjuncts in Ψ . Since Ψ was chosen to be minimal, the formula
ψ1 must be satisfiable. By construction ψ0 is also satisfiable and Ψ is unsatisfiable,
which is what we had to show. ut

Proof of Theorem 2: If Γ is locally refutable, then EXPOS(Γ ) can be reduced to the
positive Boolean formula evaluation problem, which is known to be LOGSPACE-
complete. We only have to construct from an existential positive sentence Φ a Boolean
formula F := FΓ (Φ) as described before Definition 2. Clearly, this construction can
be performed with logarithmic work-space. We evaluate F , and reject if F is false, and
accept otherwise.

If Γ is not locally refutable, we show NP-hardness of EXPOS(Γ ) by reduction
from 3-SAT. Let I be a 3-SAT instance. We construct an instance Φ of EXPOS(Γ ) as
follows. Let ψ0 and ψ1 be the formulas from Lemma 1 (suppose they are d-ary). Let
v1, . . . , vn be the Boolean variables in I . For each vi we introduce d new variables x̄i =
x1

i , . . . , x
d
i . Let Φ be the instance of EXPOS(Γ ) that contains the following conjuncts:

– For each 1 ≤ i ≤ n, the formula ψ0(x̄i) ∨ ψ1(x̄i)
– For each clause l1 ∨ l2 ∨ l3 in I , the formula ψi1(x̄j1)∨ψi2(x̄j2)∨ψi3(x̄j3) where
ip = 0 if lp equals ¬xjp and ip = 1 if lp equals xjp , for all p ∈ {1, 2, 3}.

It is clear that Φ can be computed in deterministic polynomial time from I , and that Φ
is true in Γ if and only if I is satisfiable. ut

Note that, applied to finite relational structures Γ , we obtain again the dichotomy
from [3] and [5], that is, EXPOS(Γ ) is in P if Γ is a-valid and NP-complete otherwise.
We prove in the following proposition that, over a finite domainD, Γ is locally refutable
if and only if it is a-valid for an element a ∈ D.

Proposition 2. Let Γ be a relational structure with a finite domain. Then Γ is locally
refutable if and only if it is a-valid.

Proof. Suppose that Γ is a-valid, and let Φ be an existential positive sentence over the
signature of Γ . To show that Γ is locally refutable, we only have to show that Φ is true
in Γ when F (Φ) is equivalent to true (since the other direction holds trivially). But this
follows from the fact that if an atomic formula R(x1, . . . , xn) is satisfiable in Γ then in
fact this formula can be satisfied by setting all variables to a.

For the opposite direction of the statement, suppose that Γ is not a-valid for all
a ∈ D. That it, when D = {a1, . . . , an} we have that for each ai ∈ D there exists a
non-empty relation Ri of arity ri in Γ such that (ai, . . . , ai) /∈ R. Let r be

∑n
i=1 ri,

and let x1, . . . , xrn be distinct variables. Consider the formula

Ψ =
∧

y∈{x1,...,xrn}r

R1(y1, . . . , yr1) ∧ · · · ∧Rn(yr−rn+1, . . . , yr) . (1)



By the pigeonhole principle, for every mapping f : {x1, . . . , xrn} → D at least r vari-
ables are mapped to the same value, say to ai. For a vector y that contains exactly these
r variables, for some l there is a conjunct Ri(yl+1, . . . , yl+ri) in Ψ ; but by assumption,
Ri does not contain the tuple (ai, . . . , ai). This shows that ∃x1, . . . , xrn.Ψ is not true
in Γ . On the other hand, since each relationRi is non-empty, it is clear that the Boolean
formula F (∃x1, . . . , xrn.Ψ) is true. Therefore, Γ is not locally refutable. ut

Proof of Theorem 1: If Γ is locally refutable then the statement has been shown in The-
orem 2. Suppose that Γ is not locally refutable. To show that EXPOS(Γ ) is contained
in CSP(Γ )NP, we construct a non-deterministic Turing machine T which takes as in-
put an instance Φ of EXPOS(Γ ), and which outputs an instance T (Φ) of CSP(Γ ) as
follows.

On input Φ the machine T proceeds recursively as follows:

– if Φ is of the form ∃x.ϕ then return ∃x.T (ϕ);
– if Φ is of the form ϕ1 ∧ ϕ2 then return T (ϕ1) ∧ T (ϕ2);
– if Φ is of the form ϕ1∨ϕ2 then non-deterministically return either T (ϕ1) or T (ϕ2);
– if Φ is of the form R(x1, . . . , xk) then return R(x1, . . . , xk).

The output of T can be viewed as an instance of CSP(Γ ), since it can be transformed
to a primitive positive sentence (by moving all existential quantifiers to the front). It is
clear that T has polynomial running time, and that Φ is true in Γ if and only if there
exists a computation of T on Φ that computes a sentence that is true in Γ .

We now show that EXPOS(Γ ) is hard for CSP(Γ )NP under ≤m-reductions. Let L
be a problem with a non-deterministic polynomial-time many-one reduction to CSP(Γ ),
and let M be the non-deterministic Turing machine that computes the reduction. We
have to construct a deterministic Turing machineM ′ that computes for any input string s
in polynomial time in |s| an instance Φ of EXPOS(Γ ) such that Φ is true in Γ if and only
if there exists a computation of M on s that computes a satisfiable instance of CSP(Γ ).

Say that the running time of M on s is in O(|s|e) for a constant e. Hence, there
are constants s0 and c such that for |s| > s0 the running time of M and hence also
the number of constraints in the input instance of CSP(Γ ) produced by the reduction
is bounded by t := c|s|e. The non-deterministic computation of M can be viewed as a
deterministic computation with access to non-deterministic advice bits as shown in [2].
We also know that for |s| > s0, the machine M can access at most t non-deterministic
bits. If w is a sufficiently long bit-string, we write Mw for the deterministic Turing
machine obtained from M by using the bits in w as the non-deterministic bits, and
Mw(s) for the instance of CSP(Γ ) computed by Mw on input s.

If |s| ≤ s0, then M ′ returns ∃x̄.ψ1(x̄) if there is an w ∈ {0, 1}∗ such that Mw(s) is
a satisfiable instance of CSP(Γ ), and M ′ returns ∃x̄.ψ0(x̄) ∧ ψ1(x̄) otherwise (i.e., it
returns a false instance of EXPOS(Γ ); ψ0 and ψ1 are defined in Lemma 1). Since s0 is
a fixed finite value, M ′ can perform these computations in constant time.

It is convenient to assume that Γ has just a single relation R (we can always find
a CSP which is deterministic polynomial-time equivalent and where the template is of
this form1). Let l be the arity ofR. Then instances of CSP(Γ ) with variables x1, . . . , xn

1 If Γ = (D; R1, . . . , Rn) where Ri has arity ri and is not empty, then CSP(Γ ) is equiva-
lent to CSP(D; R1 × · · · × Rn) where R1 × · · · × Rn is the

Pn
i=1 ri-ary relation defined



can be encoded as sequences of numbers that are represented by binary strings of length
dlog te as follows: The i-th number m in this sequence indicates that the (((i− 1) mod
l) + 1)-st variable in the (((i− 1) div l) + 1)-st constraint is xm.

For |s| > s0, we use a construction from the proof of Cook’s theorem given in [2]. In
this proof, a computation of a non-deterministic Turing machine T accepting a language
L is encoded by Boolean variables that represent the state and the position of the read-
write head of T at time r, and the content of the tape at position j at time r. The tape
content at time 0 consists of the input x, written at positions 1 through n, and the non-
deterministic advice bit string w, written at positions −1 through −|w|. The proof in [2]
specifies a deterministic polynomial-time computable transformation fL that computes
for a given string s a SAT instance fL(s) such that there is an accepting computation
of T on s if and only if there is a satisfying truth assignment for fL(s).

In our case, the machine M computes a reduction and thus computes an output
string. Recall our binary representation of instances of the CSP: M writes on the out-
put tape a sequence of numbers represented by binary strings of length dlog te. It is
straightforward to modify the transformation fL given in the proof of Theorem 2.1
in [2] to obtain for all positive integers a, b, c where a ≤ t, b ≤ l, c ≤ dlog te, and
d ∈ {0, 1}, a deterministic polynomial-time transformation gd

a,b,c that computes for a
given string s a SAT instance gd

a,b,c(s) with distinguished variables z1, . . . , zp, p ≤ t for
the non-deterministic bits in the computation of M such that the following are equiva-
lent:

– gd
a,b,c(s) has a satisfying assignment where zi is set to wi ∈ {0, 1} for 1 ≤ i ≤ p;

– the c-th bit in the b-th variable of the a-th constraint in Mw(s) equals d.

We use the transformations gd
a,b,c to define M ′ as follows. The machine M ′ first

computes the formulas gd
a,b,c(s). For every Boolean variable v in these formulas we

introduce a new conjunct ϕ0(xv) ∨ ϕ1(xv) where xv is a d-tuple of fresh variables.
Then, every positive literal v in the original conjuncts of the formula is replaced by
ϕ1(xv), and every negative literal l = ¬v by ϕ0(xv). We then existentially quantify
over all variables except for x̄z1 , . . . , x̄zp . Let ψd

a,b,c(s) denote the resulting existential
positive formula. For positive integers k and i, we denote k[i] the i-th bit in the binary
representation of k. Let n be the total number of variables in the CSP instance Mw(s)
(in particular, n ≤ t). It is clear that the formula

∃y1, . . . , yn, x̄z1 , . . . , x̄zp .
∧

1≤a,k1,...,kl≤t

 ∧
b≤l,c

ψ
kb[c]
a,b,c(s)

 → R(yk1 , . . . , ykl
)


can be re-written in existential positive form Φ without blow-up: we can replace impli-
cations α → β by ¬α ∨ β, and then move the negation to the atomic level, where we
can remove negation by exchanging the role of ϕ0 and ϕ1. Hence, Φ can be computed
by M ′ in polynomial time.

as the Cartesian product of the relations R1, . . . , Rn. Similarly, EXPOS(Γ ) is equivalent to
EXPOS(D; R1 × · · · × Rn).



We claim that the formula Φ is true in Γ if and only if there exists a computation
of M on s that computes a satisfiable instance of CSP(Γ ). To see this, let w be a
sufficiently long bitstring such that Mw(s) is a satisfiable instance of CSP(Γ ). Suppose
for the sake of notation that the n variables in Mw(s) are the variables y1, . . . , yn. Let
a1, . . . , an be a satisfying assignment to those n variables. Then, if for 1 ≤ i ≤ n
the variable yi in the formula Φ is set to ai, and for 1 ≤ i ≤ p the variables x̄zi are
set to a tuple that satisfies ψd where d is the i-th bit in w, we claim that the inner part
of Φ is true in Γ . The reason is that, due to the way how we set the variables of the
form x̄zi , the precondition

(∧
b≤l,c ψ

kb[c]
a,b,c(s)

)
is true if and only if R(yk1 , . . . , ykl

) is
a constraint in Mw(s). Therefore, all the atomic formulas of the form R(yk1 , . . . , xkl

)
are satisfied due to the way how we set the variables yi, and hence Φ is true in Γ . It is
straightforward to verify that the opposite implication holds as well, and this shows the
claimed equivalence. ut

4 Structures with function symbols

In this section, we briefly discuss the complexity of EXPOS(Γ ) when Γ might also
contain functions. That is, we assume that the signature of Γ consists of a finite set of
relation and function symbols, and that the input formulas for the problem EXPOS(Γ )
are existential positive first-order formulas over this signature. It is easy to see from the
proofs in the previous section that when Γ is not locally refutable, then EXPOS(Γ ) is
still NP-hard (with the same definition of local refutability as before).

The case when Γ is locally refutable becomes more intricate when Γ has functions.
We present an example of a locally refutable structure Γ where EXPOS(Γ ) is NP-hard.
Let the signature of Γ be the structure (2N; 6=,∩,∪, c,0,1) where 6= is the binary dis-
equality relation, ∩ and ∪ are binary functions for intersection and union, respectively,
c is a unary function for complementation, and 0,1 are constants (i.e., 0-ary functions)
for the empty set and the full set N, respectively.

Proposition 3. The structure (2N; 6=,∩,∪, c,0,1) is locally refutable.

Proof. By Lemma 1 is suffices to show that if Ψ is a conjunction of atomic formulas
that are satisfiable in Γ , then Ψ is satisfiable over Γ . Since the only relation symbol in
the structure is 6=, every conjunct in Ψ is of the form t1 6= t2, where t1 and t2 are terms
formed by variables and the function symbols ∩, ∪, c, 1 and 0. By Boole’s fundamental
theorem of Boolean algebras, t = t′ can be re-written as t′′ = 0. Therefore, Ψ can be
written as t1 6= 0∧ · · · ∧ tn 6= 0. Since Γ is an infinite Boolean algebra, it now follows
from known results in [8] (Theorem 5.1) that if ti 6= 0 is satisfiable in Γ for all i ≤ n,
then Ψ is satisfiable in Γ as well. ut

Proposition 4. The problem EXPOS(2N; 6=,∩,∪, c,0,1) is NP-hard.

Proof. The proof is by reduction from SAT. Given a Boolean formula Ψ in CNF with
variables x1, . . . , xn, we replace each conjunction in Ψ by ∩, each disjunction by ∪,
and each negation by c. Let t be the resulting term over the signature {∩,∪, c} and
variables x1, . . . , xn. It is easy to verify that ∃x1, . . . , xn.t 6= 0 is true in Γ if and only
if Ψ is a satisfiable Boolean formula. ut
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