
The Complexity of
Equality Constraint Languages

Manuel Bodirsky1 and Jan Kára2

1 Algorithms and Complexity Department, Humboldt University, Berlin,
bodirsky@informatik.hu-berlin.de

2 Department of Applied Mathematics, Charles University, Prague,
kara@kam.mff.cuni.cz ??

Abstract. We apply the algebraic approach to infinite-valued constraint satisfac-
tion to classify the computational complexity of all constraint satisfaction problems
with templates that have a highly transitive automorphism group. A relational
structure has such an automorphism group if and only if all the constraint types
are Boolean combinations of the equality relation, and we call the corresponding
constraint languages equality constraint languages. We show that an equality con-
straint language is tractable if it admits a constant unary or an injective binary
polymorphism, and is NP-complete otherwise.
Keywords: Constraint Satisfaction, Logic in Computer Science, Com-
putational Complexity, Clones on Infinite Domains

1 Introduction

In a constraint satisfaction problem we are given a set of variables and a set of constraints
on those variables, and want to find an assignment of values to the variables such that all
the constraints are satisfied. The computational complexity of the constraint satisfaction
problem depends on the constraint language that we are allowed to use in the instances
of the constraint satisfaction problem, and attracted a lot of interest in recent years; see
e.g. [6] for an introduction to the state-of-the-art of the techniques used to study the
computational complexity of constraint satisfaction problems.

Formally, we can define constraint satisfaction problems (CSPs) as homomorphism
problems for relational structures. Let Γ be a (not necessarily finite) structure with a re-
lational signature τ . Then the constraint satisfaction problem CSP(Γ) is a computational
problem where we are given a finite τ -structure S and want to know whether there is
a homomorphism from S to Γ ; for the detailed definitions, see Section 2. We show two
examples.

Example 1. Let Γ be the relational structure (N; =, 6=). Then CSP(Γ) is the computational
problem to determine for a given set of equality or inequality constraints on a finite set
of variables whether the variables can be mapped to the natural numbers such that
variables x, y with a constraint x = y are mapped to the same value and variables x, y
with a constraint x 6= y are mapped to distinct values.
?? The second author has been supported by a Marie Curie fellowship of the graduate program

”Combinatorics, Geometry, and Computation”, HPMT-CT-2001-00282. Also supported by
project 1M0021620808 of the Ministry of Education of the Czech Republic.

This problem is tractable: for this, we consider the undirected graph on the variables
of an instance S of CSP(Γ), where two variables x and y are joined iff there is a constraint
x = y in S. Then it is easy to see that S does not have a solution if and only if it contains
an inequality-constraint x 6= y such that y is reachable from x in the graph defined above.
Clearly, such a reachability test can be performed in polynomial time.

Example 2. Let Γ be the relational structure (N;S), where S is the ternary relation
S := { (x1, x2, x3) ∈ N3 | (x1 = x2 ∧ x2 6= x3) ∨ (x1 6= x2 ∧ x2 = x3) }. Here the problem
CSP(Γ) turns out to be NP-complete (see Section 5).

In this paper we consider constraint satisfaction problems where the infinite template
Γ = (D;R1, . . . , Rk) has a highly transitive automorphism group, i.e., if every permuta-
tion of D is an automorphism of Γ . That is, we study the constraint satisfaction problems
for templates with the highest possible degree of symmetry. We will see in Section 2 that
Γ has a highly transitive automorphism group if and only if all relations R1, . . . , Rk can be
defined with a Boolean combination of atoms of the form x = y. (A Boolean combination
is a formula built from atomic formulas with the usual connectives of conjunction, disjunc-
tion, and negation.) We say that such a relational structure defines an equality constraint
language. Later, we also discuss the case where the template has infinitely many relation
symbols R1, R2, . . . Note that Example 1 and 2 are both equality constraint languages.

The main result of this paper is a full classification of the computational complexity
of equality constraint languages. They are either tractable, or NP-complete. The contain-
ment in NP is easy to see: a nondeterministic algorithm can guess which variables in an
instance S denote the same element in Γ and can verify whether this gives rise to a so-
lution for S. To prove that certain equality constraint languages are NP-hard (Section 5)
we apply the algebraic approach to constraint satisfaction, which was previously mainly
applied to constraint satisfaction with finite templates.

Some equality constraint languages are tractable. These languages are described by
certain closure properties. The most interesting languages here are those that are closed
under an injective binary operation. The polynomial-time algorithm for such languages,
which is presented in Section 6, is an instantiation of the relational consistency algorithm
as introduced in [8]. Our contribution here is the proof that this algorithm is complete for
equality constraint languages that are closed under an injective binary polymorphism, this
is, the algorithm rejects an instance if and only if the instance does not have a solution.

2 Fundamental Concepts for the Algebraic Approach

We introduce classical concepts that are fundamental for the algebraic approach to con-
straint satisfaction. A general introduction to these concepts is [12]; for clones and poly-
morphisms we refer to [17].

Structures. A relational language τ is a (here always at most countable) set of relation
symbols Ri, each associated with a finite arity ki. A (relational) structure Γ over the (re-
lational) language τ (also called τ -structure) is a countable set DΓ (the domain) together
with a relation Ri ⊆ Dki

Γ for each relation symbol of arity ki from τ . For simplicity, we use
the same symbol for a relation symbol and the corresponding relation. If necessary, we
write RΓ to indicate that we are talking about the relation R belonging to the structure

Γ . For a τ -structure Γ and R ∈ τ it will also be convenient to say that R(u1, . . . , uk)
holds in Γ iff (u1, . . . , uk) ∈ R. We sometimes write u for a tuple (u1, . . . , uk) of some
length k. If we add relations to a given structure Γ , we call the resulting structure Γ ′ an
expansion of Γ , and Γ is called a reduct of Γ ′.

Homomorphisms. Let Γ and Γ ′ be τ -structures. A homomorphism from Γ to Γ ′ is a
function f from DΓ to DΓ ′ such that for each n-ary relation symbol R in τ and each
n-tuple (a1, . . . , an), if (a1, . . . , an) ∈ RΓ , then (f(a1), . . . , f(an)) ∈ RΓ ′

. In this case
we say that the map f preserves the relation R. Isomorphisms from Γ to Γ are called
automorphisms, and homomorphisms from Γ to Γ are called endomorphisms. The set of
all automorphisms of a structure Γ is a group, and the set of all endomorphisms of a
structure Γ is a monoid with respect to composition.

Polymorphisms. Let D be a countable set, and O be the set of finitary operations on D,
i.e., functions from Dk to D for finite k. We say that a k-ary operation f ∈ O preserves
an m-ary relation R ⊆ Dm if whenever R(xi

1, . . . , x
i
m) holds in Γ for all 1 ≤ i ≤ k , then

R
(
f(x1

1, . . . , x
k
1), . . . , f(x1

m, . . . , x
k
m)

)
holds in Γ . If f preserves all relations of a relational

τ -structure Γ , we say that f is a polymorphism of Γ . In other words, f is a homomorphism
from Γ k = Γ × . . .× Γ to Γ , where Γ1 × Γ2 is the (categorical- or cross-) product of the
two relational τ -structures Γ1 and Γ2. Hence, the unary polymorphisms of Γ are the
endomorphisms of Γ , and the unary bijective polymorphisms are the automorphisms of
Γ .

Clones. An operation π is a projection if for all n-tuples, π(x1, . . . , xn) = xi for some
fixed i ∈ {1, . . . , n}. The composition of a k-ary operation f and k operations g1, . . . , gk

of arity n is an n-ary operation defined by

f(g1, . . . , gk)(x1, . . . , xn) = f
(
g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)

)
.

A clone F is a set of operations from O that is closed under compositions and that
contains all projections. We write DF for the domain D of the clone F . It is easy to verify
that the set Pol(Γ) of all polymorphisms of Γ is a clone with the domain DΓ . Moreover,
Pol(Γ) is also closed under interpolations: we say that an operation f ∈ O is interpolated
by a set F ⊆ O if for every finite subset B of D there is some operation g ∈ F such that
f |B = g|B (f restricted to B equals g restricted to B, i.e., f(s) = g(s) for every s ∈ Bk).
The set of operations that are interpolated by F is called the local closure of F ; if F
equals its local closure, we say that F is locally closed. The following is a well-known fact:

Proposition 1 (see e.g. [16]). A set F ⊆ O of operations is locally closed if and only
if F is the set of polymorphisms of Γ for some relational structure Γ .

An operation is called essentially unary iff there is a unary operation f0 such that
f(x1, . . . , xk) = f0(xi) for some fixed i ∈ {1, . . . , k}. We say that a k-ary operation f
depends on argument i iff there is no k−1-ary operation f ′ such that f(x1, . . . , xk) =
f ′(x1, . . . , xi−1, xi+1, . . . , xk). Hence, an essentially unary operation is an operation that
depends on one argument only. We can equivalently characterize k-ary operations that
depend on the i-th argument by requiring that there are elements x1, . . . , xk and x′i
such that f(x1, . . . , xk) 6= f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk). We refer to [16] and [17] for a

general introduction to clones.

3 The Algebraic Approach

A τ -formula is called primitive positive, if it has the form ∃x1 . . . xk.ψ1∧· · ·∧ψl, where ψi is
an atomic τ -formula that might contain free variables and existentially quantified variables
from x1, . . . , xk. The atomic formula ψi might also be of the form x = y. A formula is
called existential positive, if it is a disjunctive combination of primitive positive formulas
(equivalently, if it is a first-order formula without universal quantifiers and negations).
Every formula with k free variables defines on a structure Γ a k-ary relation. Primitive
positive definability of relations is an important concept in constraint satisfaction because
primitive positive definable relations can be ’simulated’ by the constraint satisfaction
problem. The following is frequently used in hardness proofs for constraint satisfaction
problems; see e.g. [13].

Lemma 1. Let Γ be a relational structure and let R be a relation that has a primitive pos-
itive definition in Γ . Then the constraint satisfaction problems of Γ and of the expansion
of Γ by R have the same computational complexity.

The algebraic approach to constraint satisfaction (see e.g. [4, 5, 13]) is based on the
following preservation statements that characterize syntactic restrictions of first-order
definability.

Theorem 1 (from [3,10,14]). Let Γ be a finite relational structure. Then

1. A relation R has a first-order definition in Γ if and only if it is preserved by all
automorphisms of Γ ;

2. A relation R has an existential positive definition in Γ if and only if it is preserved
by all endomorphisms of Γ ;

3. A relation R has a primitive positive definition in Γ if and only if it is preserved by
all polymorphisms of Γ .

These statements do not hold for infinite structures in general. However, we have the
following.

Theorem 2 (from [1,2]). Let Γ be a countably infinite relational structure. Then State-
ment 1 of Theorem 1 holds if and only if Γ is ω-categorical, i.e., if the first-order theory
of Γ has only one countable model up to isomorphism. For ω-categorical Γ , Statements
2 and 3 hold as well.

Let G be a permutation group on a countable infinite set D. An orbit of k-tuples in
Γ is a largest set O of k-tuples in Γ such that for all s, t ∈ O there is a permutation α
of Γ such that (α(s1), . . . , α(sk)) = (t1, . . . , tk). A permutation group G on a countably
infinite set D is called oligomorphic, if it has only finitely many orbits of k-tuples from
D, for all k ≥ 1; see [7]. The next theorem can be seen as a reformulation of the theorem
of Ryll-Nardzewski, Engeler, and Svenonius (see [12]), and is also closely related to the
first part of Theorem 2.

Theorem 3 (See [7]). Let Γ be a relational structure. Then the following are equivalent.

– Γ is ω-categorical;
– the automorphism group of Γ is oligomorphic;

– every k-ary first-order definable relation in Γ is the union of a finite number of orbits
of k-tuples of the automorphism group of Γ .

Now it is easy to see that a relational structure Γ = (V ;R1, R2, . . .) has a highly
transitive automorphism group if and only if all relations can be defined with Boolean
combinations of the equality relation. Clearly, such relations are preserved by all per-
mutations of V . On the other hand, if Γ has a highly transitive automorphism group,
it is in particular ω-categorical. Hence, every k-ary relation R from Γ is the union of
a finite number of orbits of k-tuples of the automorphism group of Γ . It is easy to see
that the orbits of k-tuples of a highly transitive permutation group can be described by
a conjunction of equality and inequality relations.

4 Representations of Relations

From now on, unless stated otherwise, Γ = (D;R1, R2, . . .) is a relational structure on
a countably infinite domain D where every relation Ri can be defined by a Boolean
combination of atoms of the form x = y. Note that the automorphism group of Γ is the
full symmetric group on D, which is clearly oligomorphic.

Both the hardness results and the algorithm for equality constraint languages use a
special representation of the relations in Γ , which we are now going to describe. Theorem 3
implies that every k-ary relation in Γ is a union of orbits of k-tuples of the automorphism
group of Γ . Let s be a k-tuple from one of these orbits. We define the equivalence relation
ρ on the set {1, . . . , k} that contains those pairs {i, j} where si = sj . Clearly, all tuples
in the orbit lead to the same equivalence relation ρ. Hence, every k-ary relation R in Γ
corresponds uniquely to a set of equivalence relations on {1, . . . , k}, which we call the
representation of R. Sometimes we identify a relation R from Γ with its representation
and for example freely write ρ ∈ R if ρ is an equivalence relation from the representation
of R. Let |R| denote the number of orbits of k-tuples contained in R. Hence, |R| also
denotes the number of equivalence relations in the representation of R.

Definition 1. Let ρ and ρ′ be equivalence relations on a set X. We say that ρ is finer
than ρ′, and write ρ ⊆ ρ′, if ρ(x, y) implies ρ′(x, y) for each x, y ∈ X. We also say that
in this case ρ′ is coarser than ρ. The intersection of two equivalence relations ρ and ρ′,
denoted by ρ∩ ρ′, is the equivalence relation σ such that σ(x, y) if and only if ρ(x, y) and
ρ′(x, y). Finally, let c(ρ) denote the number of equivalence classes in ρ.

Lemma 2. For a k-ary relation R in an equality constraint language on a countable set
D the following are equivalent.

1. R is preserved by every injection of D2 into D;
2. R is preserved by an injective binary operation on D;
3. R is preserved by a binary operation f and there are two k-element subsets S1, S2 of

the domain such that f restricted to S1 × S2 is injective;
4. The representation of R is closed under intersections, i.e., ρ∩ρ′ ∈ R for all equivalence

relations ρ, ρ′ ∈ R;

Proof. The implication from (1) to (2) and from (2) to (3) is immediate. Let ρ and ρ′ be
two equivalence relations from the representation of R. Pick two k-tuples s and s′ in R

that lie in the orbits that are described by ρ and ρ′. Now, let f be a binary operation of D
that is injective on its restriction to S1 ×S2 for two k-element subsets S1, S2. Let α1 and
α2 be permutations ofD that map the entries of the k-tuples s and s′ to S1 and S2, respec-
tively. Then by injectivity of f the k-tuple s′′ := (f(α1(s1), α2(s′1)), . . . , f(α1(sk), α2(s′k)))
satisfies s′′i = s′′j if and only if ρ(i, j) and ρ′(i, j). Hence, we found a tuple in R that lies in
the orbit that is described by ρ∩ρ′, which is therefore also contained in the representation
of R, and therefore (3) implies (4). Every injection of D2 into D preserves every relation
with an intersection-closed representation, because it maps two tuples that correspond to
equivalence relations ρ and ρ′ to a tuple that corresponds to ρ ∩ ρ′. We thus proved that
(4) implies (1). ut

If a relation R has a representation that is closed under intersections, we also write
that R is ∩-closed. The proofs can be found in the appendix.

Corollary 1. An operation f on a countable set D and the permutations on D locally
generate an injective binary operation g if and only if every equality constraint relation
that is preserved by f is ∩-closed.

Proof. If f and the permutations locally generate an injective binary operation g, then
every relation R that is preserved by f is also preserved by g, and Lemma 2 shows that R
is ∩-closed. Conversely, if every equality constraint relation R preserved by f is ∩-closed,
we claim that f and the permutations locally generate all injective binary operations.
Suppose the contrary. Then there is a relation R that is preserved by f but not by an
injective binary operation g. An application of Lemma 2 in the other direction shows that
R cannot be ∩-closed, contradicting the assumption. ut

5 A Generic Hardness Proof

In this section we prove that every equality constraint language without a constant unary
or an injective binary polymorphism is NP-hard. Let us start with a fundamental lemma
on non-injective endomorphisms.

Lemma 3. If Γ has a non-injective endomorphism f , then Γ also has a constant endo-
morphism.

Proof. Let f be an endomorphism of Γ such that f(x) = f(y) for two distinct points
x, y from D. Let a1, a2, . . . be an enumeration of D. We construct an infinite sequence of
endomorphisms e1, e2, ... where ei is an endomorphism that maps the points a1, . . . , ai to
a1. This suffices, since by local closure the mapping defined by e(x) = a1 for all x is an
endomorphism of Γ .

For e1 we take the identity map, which clearly is an endomorphism with the desired
properties. To define ei for i ≥ 2 let α be an automorphism of Γ that maps a1 = ei−1(a1) =
· · · = ei−1(ai−1) to x, and ei−1(ai) to y. Then the endomorphism f(α(ei−1)) is constant
on a1, . . . , ai. There is also an automorphism α′ that maps f(α(ei−1(a1))) to a1. Then
ei := α′(f(α(ei−1))) is an endomorphism with the desired properties. ut

Lemma 4. If Γ does not have a constant endomorphism, then there is a primitive positive
definition of the relation x 6= y in Γ .

Proof. Suppose Γ has a k-ary polymorphism f that does not preserve 6=, i.e., there are
k-tuples u and v such that ui 6= vi for all i ∈ {1, . . . , k}, but f(u) 6= f(v). Let α2, . . . , αk

be permutations of D that map u1 to ui and v1 to vi. Then the endomorphism g(x) :=
f(x, α2(x), . . . , αk(x)) is not injective, because g(u1) = f(u1, . . . , uk) = f(v1, . . . , vk) =
g(v1), and by Lemma 3 locally generates a constant, in contradiction to the assumptions.
Hence, every polymorphism of Γ preserves 6=, and by Theorem 2 the relation 6= has a
primitive positive definition. ut

Due to the following lemma we can focus on binary operations in some later proofs.

Lemma 5. Every essentially at least binary operation together with all permutations lo-
cally generates a binary operation that depends on both arguments.

Proof. Let k be a k-ary operation, where k > 2, that depends on all arguments. In
particular, f depends on the first argument, and hence there are two k-tuples (a1, . . . , ak)
and (a′1, a2, . . . , ak) with f(a1, . . . , ak) 6= f(a′1, a2, . . . , ak). Suppose first that there are
b1, . . . , bk such that bi 6= ai for i ≥ 2 and f(b1, b2, . . . , bk) 6= f(b1, a2, . . . , ak). We can
then define permutations αi of D for i ≥ 3, such that a2 is sent to ai and d2 is sent to
di. The binary operation g defined by g(x, y) = f(x, y, α3(y), . . . , αk(y)) depends on both
arguments, as g(a1, a2) 6= g(a′1, a2) and g(b1, b2) 6= g(b1, a2), and hence we are done in
this case.

So suppose that for every b1 and every b2, . . . , bk such that bi 6= ai for i ∈ {2, . . . , k} it
holds that f(b1, b2, . . . , bk) = f(b1, a2, . . . , ak). Since f depends on the second coordinate,
there are elements c1, c2, . . . , ck and c′2 with f(c1, . . . , ck) 6= f(c1, c′2, c3, . . . , ck). The value
f(c1, a2, . . . , ak) can be equal to either f(c1, . . . , ck) or to f(c1, c′2, c3, . . . , ck), but not to
both. We can assume without loss of generality that f(c1, . . . , ck) 6= f(c1, a2, . . . , ak). Let
us choose d2, . . . , dk such that di 6= ai and di 6= ci for i ∈ {2, . . . , k}. Since ci and di are
distinct for all 2 ≤ i ≤ k, we can define permutations αi of D for i ≥ 3 such that b2 is
sent to bi and c2 is sent to ci.

We claim that the operation g defined by g(x, y) := f(x, y, α3(y), . . . , αk(y)) depends
on both arguments. Indeed, from the beginning of the previous paragraphs we know that
g(a1, d2) = f(a1, d2, . . . , dk) = f(a1, a2, . . . , ak), and that g(a′1, d2) = f(a′1, d2, . . . , dk) =
f(a′1, a2, . . . , ak). By the choice of the values a1, . . . , ak and a′1 these two values are distinct,
and we have shown that g depends on the first argument. For the second argument, note
that g(c1, d2) = f(c1, d2, . . . , dk) = f(c1, a2, . . . , ak) and that g(c1, c2) = f(c1, c2, . . . , ck).
But in the previous paragraph we also saw that these two values are distinct, and hence
g also depends on the second argument. ut

Now comes the central argument.

Theorem 4. Let f be a binary operation that depends on both arguments. Then f together
with all permutations locally generates either a constant unary operation or a binary
injective operation.

Proof. Suppose that f does not locally generate a constant operation. We want to use
Corollary 1 and show that every equality constraint relation R that is preserved by f is ∩-
closed, which implies that f locally generates a binary injective polymorphism. Suppose
for contradiction that R is an n-ary equality constraint relation, n ≥ 2, that is closed
under f but not ∩-closed, i.e., there are two equivalence relations ρ and ρ′ in R such that

ρ ∩ ρ′ is not in R. Choose ρ and ρ′ such that (c(ρ), c(ρ′)) is lexicographically maximal.
Let s := (s1, . . . , sn) and t := (t1, . . . , tn) be n-tuples of D that have the equivalence
relations ρ and ρ′. Because ρ is not finer than ρ′ we can find indices p and q such that
sp = sq, tp 6= tq. Let r be the number of equivalence classes of ρ that are contained in the
equivalence class of p in ρ′. Choose p and q such that r is minimal.

Consider 2n − 1 distinct elements a1, . . . , a2n−1 from D. By the infinite pigeon-hole
principle, there is an infinite subset S1 of D such that f(a1, b) = f(a1, b

′) for all b, b′ ∈ S1,
or f(a1, b) 6= f(a1, b

′) for all b, b′ ∈ S1. We apply the same argument to a2 instead of
a1, and S1 instead of D, and obtain an infinite subset S2 of S1. The argument can be
iterated to obtain an infinite subset S2n−1 such that for all a ∈ {a1, . . . , a2n−1} we either
have f(a, b) 6= f(a, b′) for all b, b′ ∈ B, or f(a, b) = f(a, b′) for all b, b′ ∈ B. Then there
is also an n-element subset A of {a1, . . . , a2n−1} and an n-element subset B of S2n−1

such that either f(a, b) 6= f(a, b′) for all a ∈ A and b, b′ ∈ B, or f(a, b) = f(a, b′) for
all a ∈ A and b, b′ ∈ B. Not-e that in the latter case f(a, b) 6= f(a′, b) for all distinct
elements a, a′ ∈ A, and b ∈ B. Otherwise, if f(a, b) = f(a′, b), then f does not preserve
the inequality relation, because there is a b′ ∈ B such that b′ 6= b and f(a, b) = f(a, b′),
and hence f(a, b) = f(a′, b′), but a 6= a′ and b 6= b′. But this is impossible, because
Lemma 3 shows that in this case f locally generates a constant operation. Therefore, we
found two n-element sets A and B such that either f(a, b) 6= f(a′, b) for all a, a′ ∈ A and
b ∈ B, or f(a, b) 6= f(a, b′) for all a ∈ A and b, b′ ∈ B. Without loss of generality we
assume that the first case applies.

Since f cannot only depend on the first argument, there are elements u, v1, and v2 in
D such that v1 6= v2 and f(u, v1) 6= f(u, v2). We can assume that v2 is from B: For this,
consider any element v′ of B. If f(u, v′) 6= f(u, v1), we choose v′ instead of v2 and are
done. If f(u, v′) = f(u, v1), then f(u, v′) 6= f(u, v2), and we choose v′ instead of v2 and
v2 instead of v1. We can also assume that f(u, v) 6= f(u′, v) for all u′ ∈ A, v ∈ B: The
reason here is that if there are elements a ∈ A and b1, b2 ∈ B such that f(a, b1) 6= f(a, b2)
we choose u = a, v1 = b1, and v2 = b2. Otherwise, we know that f(a, b1) = f(a, b2) for all
a ∈ A and b1, b2 ∈ B. But then, f(u, v) = f(u′, v) is impossible for all u′ ∈ A and v ∈ B
due to Lemma 3.

Let α1 be a permutation of D that maps sp = sq to u and the other entries in s to A.
Let α2 be a permutation of D that maps tp to v1, tq to v2, and the other entries in t to B.
Consider the equivalence relation σ of the tuple (f(α1(s1), α2(t1)), . . . , f(α1(sn), α2(tn))).
Because f preserves R, we know that σ is contained in R. If r = 0, then due to the way
we apply the operation f to α1(s) and α2(t) it is easy to see that σ has more equivalence
classes than ρ, contradicting the maximal choice of ρ. If r ≥ 1, then σ has more equivalence
classes than ρ′, for the following reason. Every equivalence class C of ρ′ either consists of
a union of equivalence classes from ρ, or contains an element from an equivalence class
in ρ that is not contained in C. But also in the latter case, by the choice of p and q such
that r is minimal, we can infer that C contains some equivalence class from ρ. Hence, in
both cases we can associate in that way one equivalence class from ρ to every class in ρ′.
Due to the way we apply the operation f to α1(s) and α2(t), all these equivalence classes
correspond to distinct equivalence classes in σ. Moreover, f(α1(sq), α2(tq)) will lie in yet
another equivalence class of σ. Thus, σ has more equivalence classes than ρ′. Since σ is
not coarser than ρ, the existence of the relations ρ and σ then contradicts the choice of ρ
and ρ′ where (c(ρ), c(ρ′)) was lexicographically maximal. ut

Hence, if the template is not preserved by a constant unary or an injective binary
operation, we have a primitive positive definition of every first-order definable relation,
in particular for the relation S that was defined in Example 2 in the introduction.

Lemma 6. If the relation S has a primitive positive definition in Γ , then CSP(Γ) is
NP-hard.

Proof. First observe that by identification of arguments x and y, if S has a primitive
positive definition in Γ , then the inequality relation has a primitive positive definition
in Γ as well. We prove the NP-hardness by reduction from the NP-hard problem 3-
coloring [9]. Let G = (V,E) be a graph that is an instance of 3-coloring. We construct
an instance of CSP(Γ) that has a polynomial size in |V | and |E| and is satisfiable if and
only if G has a proper 3-coloring. Lemma 1 asserts we can use inequality constraints
and the relation S to formulate this instance. The set of variables in this instance is
V ∪ V ′ ∪ {c1, c2, c3}, where V ′ is a copy of V , and c1, c2, c3 are three new variables
representing colors. We impose inequality constraints on each pair in c1, c2, c3 and on
each pair (u, v) for uv ∈ E. We impose the constraint S on (c1, v′, c2) for each v′ ∈ V ′,
and on (v′, v, c3) for each v ∈ V where v′ is the copy of v in V ′. By construction, a
solution to these constraints induces a proper 3-coloring of G. Conversely, a simple case
analysis shows that any proper 3-coloring can be extended in a way that satisfies these
constraints. ut

As we already mentioned in the introduction, the constraint satisfaction problem for
equality constraint languages is always contained in NP. By combining the results obtained
in this section and using Theorem 2 and Lemma 1 we therefore proved the following main
result of this section.

Theorem 5. If Γ has no constant unary and no injective binary polymorphism, then
CSP(Γ) is NP-complete.

6 Algorithmic Results

The case that Γ contains a constant unary polymorphism gives rise to trivially tractable
constraint satisfaction problems: If an instance of such a constraint satisfaction problem
has a solution, then there is also a solution that maps all variables to a single point. In this
case an instance of CSP(Γ) is satisfiable if and only if it does not contain a constraint R
where R denotes the empty relation in Γ . Clearly, this can be tested efficiently. To finish
the classification of the complexity of equality constraint languages we are left with the
case that Γ has a binary injective polymorphism.

Lemma 7. Let Γ be closed under a binary injective polymorphism, and let R be a k-ary
relation from Γ . Then for every equivalence relation ρ on {1, . . . , k} (note, that ρ need
not be in R) either there is no σ ∈ R that is coarser than ρ, or there exists an equivalence
relation σ ∈ R such that σ is coarser than ρ and σ is finer than any σ′ ∈ R coarser than
ρ. Furthermore, σ can be computed in time O(k2|R|).

Proof. First we compute the set R′ of equivalence relations of R that are coarser than
ρ. The set R′ can be computed straightforwardly in time O(k2|R|) by checking each

equivalence relation in R. If R′ is empty we are done. Otherwise, because R is closed
under intersections, we know that σ = ∩σ′∈R′σ′ is in R. It is even in R′, since if two
equivalence relations are both coarser than another, then so is their intersection. We can
find σ with the following procedure.

– We start with an arbitrary equivalence relation τ in R′.
– For each σ′ ∈ R′, if σ′ is finer than τ , then set τ to be σ′.

The procedure clearly runs in time O(k2|R|). ut

Theorem 6. Let Γ be closed under a binary injective polymorphism, and let S be an
instance of CSP(Γ) with n variables and q constraints. Let k be the maximal arity of the
constraints, and let m be the maximal number of equivalence relations in the representa-
tions for the constraints. Then there is an algorithm that decides the satisfiability of S in
time O(qm(qmk2 + n)).

Proof. We start by assigning each variable a unique value. Then we check whether each
constraint is satisfied. If we find an unsatisfied l-ary constraint R, let x1, . . . , xl be the
variables of that constraint. Let ρ be the equivalence relation on the elements {1, . . . , l}
that contains all pairs {i, j} where xi got the same value as xj . Using the algorithm from
Lemma 7 we either find that there is no σ ∈ R coarser than ρ, in which case we answer
that the problem does not have a solution. Otherwise we find the unique finest equivalence
relation σ ∈ R. In this case we reassign the values to the variables in the following way:
If σ(i, j), we assume without loss of generality that i < j, and change the value of all
variables with the value of xj to the value of xi. Finally we restart the procedure with the
new assignment for the variables. If all the constraints are satisfied we have computed a
solution.

To show the correctness of this algorithm we prove by induction that each of the intro-
duced equalities holds in every solution of the problem. In the beginning we introduced
no equality (all the values were mutually different). We introduce an equality only if we
find an unsatisfied constraint. In that case we have computed the set of equalities (an
equivalence relation) that is contained in every other set of equalities acceptable for the
constraint. Because the constraint must be satisfied in every solution we introduce only
the equalities that hold in every solution.

Because the set of acceptable equivalence relations is made smaller each time the
constraints are not yet satisfied, we have to recompute the assignment at most qm times.
Finding the unsatisfied constraint can take O(qmk2) and changing the assignment can
take O(n). Putting the terms together yields the claimed bound on the time complexity.

ut

Note that the asymptotic running time of the algorithm can be substantially improved
by using better data structures.

In the standard case that the signature of Γ is finite, the algorithm clearly establishes
the tractability of CSP(Γ) for injective binary polymorphisms, since in this case k and
m are bounded by constants that only depend on Γ . If Γ has a countable signature,
there are various possibilities to define tractability of CSP(Γ). We refer to the discus-
sion in [6]. The definition of tractability chosen there is to require that for every reduct
Γ ′ of Γ with a finite signature the problem CSP(Γ ′) is tractable. If Γ has an injective
binary polymorphism, this requirement is clearly fulfilled, because we can again use the

above algorithm with the same argument. If we allow that the instances contain arbitrary
relations from the signature, we have to discuss how to represent the constraints in the
instance. For equality constraint languages, one natural candidate to represent the con-
straints in the instance is the representation that we already used in the formulation of the
algorithm: a constraint is represented by a list of equivalence relations on its arguments.
Now, the detailed complexity analysis given above shows that we even obtain tractability
in the stronger sense where instances might contain arbitrary constraints in the above
representation.

7 Conclusion and Remarks

We combine the results of Section 5 and Section 6 and obtain the following.

Theorem 7. An equality constraint language with template Γ is tractable if Γ has a
constant unary or an injective binary polymorphism. Otherwise it is NP-complete.

In other words, unless P=NP, an equality constraint language with template Γ is
tractable if and only if every relation in Γ contains all tuples of the form (a, . . . , a) for all
a ∈ Γ , or if all relations are ∩-closed.

We would like to conclude with a remark on the relationship of the presented results
with questions from universal algebra. The lattice of clones that contain all the permu-
tations is a recent research focus in universal algebra [11, 15], and a full classification
seems to be out of reach. However, the lattice of locally closed clones that contain the
set of all permutations Sω is considerably simpler. The lattice has a smallest element,
the clone that is locally generated by Sω. Above this clone the lattice has exactly two
minimal clones that correspond to the maximally tractable equality constraint languages.
Is it possible to give a full description of the locally closed clones that contain all the
permutations?

Acknowledgements. We thank the anonymous referees.

References

1. M. Bodirsky. Constraint satisfaction with infinite domains. PhD thesis, Humboldt-
Universitat zu Berlin, 2004.

2. M. Bodirsky and J. Nešetřil. Constraint satisfaction with countable homogeneous templates.
In Proceedings of CSL’03, pages 44–57, 2003.

3. V. G. Bodnarčuk, L. A. Kalužnin, V. N. Kotov, and B. A. Romov. Galois theory for post
algebras, part I and II. Cybernetics, 5:243–539, 1969.

4. A. Bulatov. Tractable conservative constraint satisfaction problems. In Proceedings of
LICS’03, pages 321–330, 2003.

5. A. Bulatov, A. Krokhin, and P. Jeavons. The complexity of maximal constraint languages.
In Proceedings of STOC’01, pages 667–674, 2001.

6. A. Bulatov, A. Krokhin, and P. G. Jeavons. Classifying the complexity of constraints using
finite algebras. SIAM Journal on Computing, 34:720–742, 2005.

7. P. J. Cameron. Oligomorphic Permutation Groups. Cambridge University Press, 1990.
8. R. Dechter and P. van Beek. Local and global relational consistency. TCS, 173(1):283–308,

1997.

9. Garey and Johnson. A Guide to NP-completeness. CSLI Press, Stanford, 1978.
10. D. Geiger. Closed systems of functions and predicates. Pacific Journal of Mathematics,

27:95–100, 1968.
11. L. Heindorf. The maximal clones on countable sets that include all permutations. Algebra

univers., 48:209–222, 2002.
12. W. Hodges. A shorter model theory. Cambridge University Press, 1997.
13. P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. Journal of the

ACM, 44(4):527–548, 1997.
14. M. Krasner. Généralisation et analogues de la théorie de Galois. Congrés de la Victoire de

l’Ass. France avancement des sciences, pages 54–58, 1945.
15. M. Pinsker. The number of unary clones containing the permutations on an infinite set. Acta

Sci. Math. (Szeged), 2005. To appear.
16. R. Pöschel and L. A. Kalužnin. Funktionen- und Relationenalgebren. Deutscher Verlag der

Wissenschaften, 1979.
17. A. Szendrei. Clones in universal Algebra. Seminaire de mathematiques superieures. Les

Presses de L’Universite de Montreal, 1986.

