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Abstract

We classify the computational complexity of all constraint satisfaction
problems where the constraint language is preserved by all permutations
of the domain. A constraint language is preserved by all permutations of
the domain if and only if all the relations in the language can be defined by
boolean combinations of the equality relation. We call the corresponding
constraint languages equality constraint languages.

For the classification result we apply the universal-algebraic approach
to infinite-valued constraint satisfaction, and show that an equality con-
straint language is tractable if it admits a constant unary polymorphism
or an injective binary polymorphism, and is NP-complete otherwise. We
also discuss how to determine algorithmically whether a given constraint
language is tractable.

Keywords: Constraint Satisfaction, Logic in Computer Sci-
ence, Computational Complexity, Clones on Infinite Domains

1 Introduction

In a constraint satisfaction problem we are given a set of variables and a set
of constraints on those variables, and want to find an assignment of values to
the variables such that all the constraints are satisfied. The computational
complexity of the constraint satisfaction problem depends on the constraint
language that we are allowed to use in the instances of the constraint satisfaction
problem.

Formally, we can define constraint satisfaction problems (CSPs) as homo-
morphism problems for relational structures. Let Γ be a (not necessarily finite)
structure with a relational signature τ . Then the constraint satisfaction prob-
lem CSP(Γ) is a computational problem where we are given a finite τ -structure
S and want to know whether there is a homomorphism from S to Γ; for the
detailed definitions, see Section 2. We show two examples.

Example 1. Let Γ be the relational structure (N; =, 6=). Then CSP(Γ) is the
computational problem to determine for a given set of equality or disequality
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constraints on a finite set of variables whether the variables can be mapped to the
natural numbers such that variables x, y with a constraint x = y are mapped
to the same value and variables x, y with a constraint x 6= y are mapped to
distinct values.

This problem is tractable: for this, we consider the undirected graph on the
variables of an instance S of CSP(Γ), where two variables x and y are joined iff
there is a constraint x = y in S. Then it is easy to see that S does not have a
solution if and only if it contains an inequality-constraint x 6= y such that y is
reachable from x in the graph defined above. Clearly, such a reachability test
can be performed in linear time in the size of the input.

Example 2. Let Γ be the relational structure (N;S), where S is the ternary
relation S := { (x1, x2, x3) ∈ N3 | (x1 = x2 ∧ x2 6= x3) ∨ (x1 6= x2 ∧ x2 = x3) }.
Here the problem CSP(Γ) turns out to be NP-complete (see Section 5).

A considerable amount of recent research is concerned with the computa-
tional complexity of constraint satisfaction problems, if the domain of the con-
straint language Γ is finite [1, 7, 10, 11]. Many concepts and methods that have
been succesfully applied in this context generalize to constraint languages over
an infinite domain, if the constraint language is sufficiently symmetric [2, 3, 5];
the notion of symmetry we have in mind here will be made precise in Section 3.
This article is a further contribution in this direction. We provide a full classi-
fication of the computational complexity for constraint languages that have the
largest possible degree of symmetry, namely the constraint languages that are
preserved by all permutations of the domain.

We will see in Section 2 that a constraint language Γ = (D;R1, R2, . . . ) is
preserved by all permutations of the domain if and only if all relations R1, R2, . . .
can be defined with an =-formula, i.e., a boolean combination of atoms of the
form x = y. (A boolean combination is a formula built from atomic formulas
with the usual connectives of conjunction, disjunction, and negation.) We say
that such a relational structure defines an equality constraint language. Note
that Example 1 and 2 are both equality constraint languages.

The main result of this paper is a full classification of the computational
complexity of equality constraint languages. Also these languages are tractable,
or NP-complete. The containment in NP is easy to see: a nondeterministic al-
gorithm can guess which variables in an instance S denote the same element in
Γ and can verify whether there is a corresponding solution for S. Some equality
constraint languages define a constraint satisfaction problem that can be solved
in polynomial time. These languages are characterized by certain closure prop-
erties. The most interesting languages here are those that are preserved by an
injective binary operation, see Section 4. We present an algorithm for the cor-
responding constraint satisfaction problems that outperforms other algorithms
that are based on resolution or based on establishing relational consistency.
Moreover, if the constraint relations are represented by formulas in DNF, then
our algorithm is the first polynomial-time algorithm.
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To prove that certain equality constraint languages are NP-hard (Section 5)
we apply the algebraic approach to constraint satisfaction, which was previ-
ously mainly applied to constraint satisfaction with finite templates. In the
terminology of the algebraic approach, our main result can be formulated as
follows.

Theorem 1. An equality constraint language with template Γ is tractable if
Γ has a constant unary or an injective binary polymorphism. Otherwise it is
NP-complete.

We finally discuss the complexity of the so-called meta problem of con-
straint satisfaction complexity, i.e., the question whether a given finite equality
constraint language is tractable or not.

2 Equality Constraint Languages

In this section we define the constraint satisfaction problem and equality con-
straint languages. Before we recall fundamental concepts.

Relational structures. A relational language τ is a (here always at most
countable) set of relation symbols Ri, each associated with a finite arity ki.
A (relational) structure Γ over the (relational) language τ (also called a τ -
structure) is a countable set DΓ (the domain) together with a relation Ri ⊆ Dki

Γ

for each relation symbol of arity ki from τ . For simplicity, we use the same
symbol for a relation symbol and the corresponding relation. If necessary, we
write RΓ to indicate that we are talking about the relation R belonging to the
structure Γ. For a τ -structure Γ and R ∈ τ it will also be convenient to say that
R(u1, . . . , uk) holds in Γ iff (u1, . . . , uk) ∈ R. We sometimes write x for a tuple
(x1, . . . , xk) of some length k. If we add relations to a given structure Γ, we call
the resulting structure Γ′ an expansion of Γ, and we call Γ a reduct of Γ′.

Structure homomorphisms. Let Γ and Γ′ be τ -structures. A homomor-
phism from Γ to Γ′ is a function f from DΓ to DΓ′ such that for each n-ary
relation symbol R in τ and each n-tuple (a1, . . . , an), if (a1, . . . , an) ∈ RΓ, then
(f(a1), . . . , f(an)) ∈ RΓ′

. In this case we say that the map f preserves the
relation R. An isomorphism is a bijective homomorphism where the inverse
mapping f−1 of f is a homomorphism as well. Isomorphisms from Γ to Γ are
called automorphisms, and homomorphisms from Γ to Γ are called endomor-
phisms. The set of all automorphisms of a structure Γ forms a permutation
group.

Let G be a permutation group on a countable infinite set D. An orbit of
k-tuples in Γ is a largest set O of k-tuples in Γ such that for all s, t ∈ O there
is a permutation α of Γ such that (α(s1), . . . , α(sk)) = (t1, . . . , tk).
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The constraint satisfaction problem. Let Γ be a relational structure. The
constraint satisfaction problem (CSP) for Γ is the following computational ques-
tion.

CSP(Γ)
INSTANCE: A finite relational structure S of the same language as Γ
QUESTION: Is there a homomorphism from S to Γ?

Equivalently, CSP(Γ) can be seen as the problem to decide whether Γ satis-
fies a given first-order sentences of the form

∃x1, . . . , xn (φ1 ∧ · · · ∧ φl)

where φ1, . . . , φn are atomic formulas of the form R(x) for a relation symbol R
from Γ. These atomic formulas are also called the constraints of the instance of
CSP(Γ).

Equality constraint languages. An equality constraint language is a rela-
tional structure Γ = (D;R1, R2, . . . ) on a countably infinite domain D where
each relation can be defined with a Boolean combination of the equality re-
lation. Equality constraint languages have a highly transitive automorphism
group: clearly, every permutation of D preserves all relations R1, R2, . . . .

Conversely, suppose that R is a k-ary relation that is preserved by all per-
mutations of D. Such a relation is a union of finitely many orbits of k-tuples
with respect to the permutation group that contains all permutations. It is
easy to see that each orbit of k-tuples in R can be described by a conjunction of
equality and disequality relations: if t is a k-tuple, the orbit of t consists of the
set of all tuples that satisfy the formula

∧
ti 6=tj

xi 6= xj ∧
∧

ti=tj
xi = xj . Hence,

every relational structure that is preserved by all permutations is an equality
constraint language.

From now on Γ = (D;R1, R2, . . . ) always denotes an equality constraint
language. There are different natural ways to represent the relations R1, R2, . . .
in instances of the CSP. If the constraint language is finite, clearly the choice of
the representation does not affect the computational complexity. Therefore, the
following definition of tractability of constraint languages is also independent
from the choice of the representation.

Definition 2. A constraint language Γ = (D;R1, R2, . . . ) is called tractable, if
for every reduct Γ′ of Γ that contains only finitely many relations from R1, R2, . . .
the problem CSP(Γ′) is tractable.

We might as well be interested in the computational complexity of the con-
straint satisfaction problem where the constraints in the input can involve ar-
bitrary relations from Γ. However, in this case the computational complexity
of the problem depends on the way the relations in instances of CSP(Γ) are
represented. The representation that dominated in the literature on the CSP
over finite domains is the representation of a relation by the set of its tuples.
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However, note that there are other natural possibilities for the choice of the rep-
resentation. In [10], for constraint satisfaction problems over a boolean domain,
representations of constraint relations by formulas in disjunctive normal form
(DNF) have been studied as well.

In this article, we also study two natural ways to represent relations in
equality constraint languages, which are analogous to the two mentioned rep-
resentations over a finite domain. In the first representation we also use DNF
formulas. The second representation is the closest analogue to representations
of relations over a finite domain by the set of tuples in the relation. We show
that in both cases the tractable constraint languages are globally tractable in
the sense that an instance with arbitrary constraints for relations in Γ can be
decided in polynomial time.

Clearly, a non-empty relation from an equality constraint language contains
an infinite number of tuples, and therefore we can not use such representations
for equality constraint languages. However, as we have seen before, every k-
ary relation in Γ is the union of a finite number of orbits of k-tuples of the
automorphism group of Γ. Let s be a k-tuple from one of these orbits. Let ρ
be the equivalence relation on the set {1, . . . , k} that contains those pairs {i, j}
where si = sj . Clearly, all tuples of the same orbit lead to the same equivalence
relation ρ. Hence, every k-ary relation R in Γ corresponds uniquely to a set
of equivalence relations on {1, . . . , k}, which we call the representation of R.
Sometimes we identify a relation R from Γ with its representation. For example,
we freely write ρ ∈ R if ρ is an equivalence relation from the representation of
R. Let |R| denote the number of orbits of k-tuples contained in R (i.e., the
number of equivalence relations in the representation of R).

For algorithmic purposes it is convenient to not use equivalence relations
explicitely, but instead take from each orbit of R one tuple as its representant.
Hence, in the algorithm we rather speak about the representation of a relation
by a set of tuples instead of the representation by a set of equivalence relations.

Example 3. Consider again the ternary relation S(x1, x2, x3) from Example 2
that is defined by the =-formula (x1 = x2∧x2 6= x3)∨ (x1 6= x2∧x2 = x3). The
representation of S by equivalence relations consists of two equivalence relations,
each containing exactly two equivalence classes. An example of a representation
of S by a set of tuples is {(0, 0, 1), (0, 1, 1)}. An example of a representation of
S be a DNF formula is obvious from the way we defined S.

Note that the hardness results that we will present in the next section hold
independently from the representation. The algorithmic results in Section 6 do
depend on the representation. Clearly, the meta problem of deciding whether a
given constraint language has a tractable CSP discussed in Section 7 may also
depend on the way how the relations of the language are represented.
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3 The Algebraic Approach

We first introduce classical concepts that are fundamental for the algebraic
approach to constraint satisfaction. A general introduction to these concepts
is [15]; for polymorphisms and clones we refer to [23], or the literature on con-
straint satisfaction, e.g., to [7].

Polymorphisms. Let D be a countable set, and O be the set of finitary
operations on D, i.e., functions from Dk to D for finite k. We say that a k-ary
operation f ∈ O preserves anm-ary relation R ⊆ Dm if whenever R(xi

1, . . . , x
i
m)

holds in Γ for all 1 ≤ i ≤ k , then R
(
f(x1

1, . . . , x
k
1), . . . , f(x1

m, . . . , x
k
m)

)
holds

in Γ. If f preserves all relations of a relational τ -structure Γ, we say that f
is a polymorphism of Γ. In other words, f is a homomorphism from Γk =
Γ × . . . × Γ to Γ, where Γ1 × Γ2 is the (categorical- or cross-) product of the
two relational τ -structures Γ1 and Γ2. Hence, the unary polymorphisms of Γ
are the endomorphisms of Γ, and the unary bijective polymorphisms are the
automorphisms of Γ.

Clones. An operation π is a projection if for all n-tuples, π(x1, . . . , xn) = xi

for some fixed i ∈ {1, . . . , n}. The composition of a k-ary operation f and k
operations g1, . . . , gk of arity n is an n-ary operation defined by

f(g1, . . . , gk)(x1, . . . , xn) = f
(
g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)

)
.

A clone F is a set of operations from O that is closed under compositions
and that contains all projections. We write DF for the domain D of the clone F .
It is easy to verify that the set Pol(Γ) of all polymorphisms of Γ is a clone with
the domain DΓ. Moreover, Pol(Γ) is also locally closed (see e.g. [22,23]): we say
that a k-ary operation f ∈ O is interpolated by a set of operations F ⊆ O if for
every finite subset B of D there is some operation g ∈ F such that f(s) = g(s)
for every s ∈ Bk. The set of operations that are interpolated by F is called the
local closure of F ; if F equals its local closure, we say that F is locally closed.
We say that an operation g generates an operation f is f is in the smallest
locally closed clone that contains g and all permutations of D.

An operation is called essentially unary iff there is a unary operation f0
such that f(x1, . . . , xk) = f0(xi) for some fixed i ∈ {1, . . . , k}. We say that
a k-ary operation f depends on argument i iff there is no k−1-ary operation
f ′ such that f(x1, . . . , xk) = f ′(x1, . . . , xi−1, xi+1, . . . , xk). Hence, an essen-
tially unary operation is an operation that depends on one argument only.
We can equivalently characterize k-ary operations that depend on the i-th
argument by requiring that there are elements x1, . . . , xk and x′i such that
f(x1, . . . , xk) 6= f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk). We refer to [22] and [23] for a

general introduction to clones.
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The algebraic approach to constraint satisfaction. A τ -formula is called
primitive positive, if it has the form

∃x1 . . . xk.ψ1 ∧ · · · ∧ ψl ,

where ψi is an atomic τ -formula that might contain existentially quantified vari-
ables from x1, . . . , xk and also might contain free variables. The atomic formula
ψi might also be of the form x = y. A formula is called existential positive, if it
is a disjunctive combination of primitive positive formulas (equivalently, if it is a
first-order formula without universal quantifiers and negations). Every formula
φ with k free variables defines on a structure Γ a k-ary relation R. In this case,
we refer to φ as a definition of R. Primitive positive definability of relations
is an important concept in constraint satisfaction because primitive positive
definable relations can be ’simulated’ by the constraint satisfaction problem.
The following is frequently used in hardness proofs for constraint satisfaction
problems; see e.g. [7].

Lemma 3. Let Γ be a relational structure and let R be a relation that has a
primitive positive definition in Γ. Then the constraint satisfaction problems of
Γ and of the expansion of Γ by R have the same computational complexity.

The algebraic approach to constraint satisfaction (see e.g. [7]) is based on
the following preservation statements that characterize syntactic restrictions of
first-order definability.

Theorem 4 (from [6,13,16]). Let Γ be a finite relational structure. Then

1. A relation R has a first-order definition in Γ if and only if it is preserved
by all automorphisms of Γ;

2. A relation R has an existential positive definition in Γ if and only if it is
preserved by all endomorphisms of Γ;

3. A relation R has a primitive positive definition in Γ if and only if it is
preserved by all polymorphisms of Γ.

These statements do not hold for infinite structures in general. However, we
have the following.

Theorem 5 (from [2, 5]). Let Γ be a countably infinite relational structure.
Then Statement 1 of Theorem 4 holds if and only if Γ is ω-categorical, i.e., if
the first-order theory of Γ has only one countable model up to isomorphism. For
ω-categorical Γ, Statements 2 and 3 hold as well.

The first part of Theorem 5 essentially is a reformulation of the theorem
of Ryll-Nardzewski, Engeler, and Svenonius (see [15]), which we recall in the
following. A permutation group G on a countably infinite set D is called oligo-
morphic, if it has only finitely many orbits of k-tuples from D, for all k ≥ 1;
see [8].
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Theorem 6 (Ryll-Nardzewski, Engeler, Svenonius. See [8]). Let Γ be a rela-
tional structure. Then the following are equivalent.

• Γ is ω-categorical;

• the automorphism group of Γ is oligomorphic;

• every k-ary first-order definable relation in Γ is the union of a finite num-
ber of orbits of k-tuples of the automorphism group of Γ.

Clearly, all equality constraint languages are ω-categorical.

4 Intersection-closed Relations

In this section we study equality constraint languages that satisfy an important
property called intersection-closure.

Definition 7. Let ρ and ρ′ be equivalence relations on a set D. We say that ρ
is finer than ρ′, and write ρ ⊆ ρ′, if ρ(x, y) implies ρ′(x, y) for each x, y ∈ X.
We also say that in this case ρ′ is coarser than ρ. The intersection of two
equivalence relations ρ and ρ′, denoted by ρ ∩ ρ′, is the equivalence relation σ
such that σ(x, y) if and only if ρ(x, y) and ρ′(x, y). Finally, let c(ρ) denote the
number of equivalence classes in ρ.

Let R be a relation from an equality constraint language, and let φ be a
boolean combination of the equality relation that defines R. We can always find
such a formula φ that is written in conjunctive normal form (CNF). If in φ each
clause contains at most one positive literal, we say that φ is a Horn =-formula.

Lemma 8. For a k-ary relation R in an equality constraint language on a
countable set D the following are equivalent.

1. R is preserved by every injective binary operation on D;

2. R is preserved by an injective binary operation on D;

3. R is preserved by a binary operation f and there are two k-element subsets
S1, S2 of the domain such that f restricted to S1 × S2 is injective;

4. The representation of R is closed under intersections, i.e., ρ ∩ ρ′ ∈ R for
all equivalence relations ρ, ρ′ ∈ R;

5. R can be defined by a Horn =-formula.

Proof. In our proof, we first show the equivalence of the first four items, and
then show that (5) is equivalent as well. The implication from (1) to (2) and
from (2) to (3) is immediate. To show that (3) implies (4), let ρ and ρ′ be two
equivalence relations from the representation of R. Pick two k-tuples s and s′

in R that lie in the orbits that are described by ρ and ρ′. Now, let f be a binary
operation of D that is injective on its restriction to S1 × S2 for two k-element
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subsets S1, S2. Let α1 and α2 be permutations of D that map the entries of the
k-tuples s and s′ to S1 and S2, respectively. Then by injectivity of f the k-tuple
s′′ := (f(α1(s1), α2(s′1)), . . . , f(α1(sk), α2(s′k))) satisfies s′′i = s′′j if and only if
ρ(i, j) and ρ′(i, j). Hence, we found a tuple in R that lies in the orbit that is
described by ρ∩ρ′, which is therefore also contained in the representation of R,
and therefore (3) implies (4).

Every injection of D2 into D preserves every relation with an intersection-
closed representation, because it maps two tuples that correspond to equivalence
relations ρ and ρ′ to a tuple that corresponds to ρ ∩ ρ′. We thus proved that
(4) implies (1).

To show that (2) implies (5), let R be preserved by a binary injective oper-
ation f , and let φ be a formula in CNF that defines R. A formula φ is said to
be in reduced form if it does not contain a clause or a literal such that removing
this clause or literal from φ creates an equivalent formula. It is clear that every
formula is equivalent to a reduced formula, and hence we can assume that φ is
in reduced form. Suppose for contradiction that φ is not Horn, i.e. there exists
a clause of φ which contains two equalities xi = xj and xk = xl. Construct φ′

from φ by removing the equation xi = xj , and φ′′ by removing xk = xl. There
exist a, b ∈ Dn such that φ(a) but not φ′(a), and φ(b) but not φ′′(b). Clearly,
ai = aj , ak 6= al, bi 6= bj , and bk = bl. Set c = f(a, b). Then ci 6= cj , ck 6= cl,
and in fact φ(c) does not hold. Hence R is not preserved by f , a contradiction.

We finally show that (5) implies (1). Let R be a relation that can be defined
by a Horn =-formula, and let f be a binary injective operation. Let r and s be
two tuples in R. We verify that f(s, t) satisfies each clause C. First consider
the case that s or t satisfies a negative literal. Then f(s, t) satisfies this literal
as well, by injectivity of f . In the other case, both s and t do not satisfy all
negative literals. Hence, there must be a positive literal, and s and t must satisfy
this literal. But then f(s, t) satisfies this literal as well. Therefore, f preserves
R.

Corollary 9. An operation f generates an injective binary operation g if and
only if every equality constraint relation that is preserved by f is intersection-
closed.

Proof. If f generates an injective binary operation g, then every relation R that
is preserved by f is also preserved by g, and Lemma 8 shows that R is intersec-
tion closed. Conversely, if every equality constraint relation R preserved by f
has a Horn definition, we claim that f generates all injective binary operations.
Suppose the contrary. Then there is a relation R that is preserved by f but not
by some injective binary operation g. Another application of Lemma 8 shows
that R cannot be intersection closed, contradicting the assumption.

5 A Generic Hardness Proof

In this section we prove that every equality constraint language without a con-
stant unary or an injective binary polymorphism is NP-hard. Let us start with
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a fundamental lemma on non-injective endomorphisms.

Lemma 10. If Γ has a non-injective endomorphism f , then Γ also has a con-
stant endomorphism.

Proof. Let f be an endomorphism of Γ such that f(x) = f(y) for two distinct
points x, y from D. Let a1, a2, . . . be an enumeration of D. We construct an
infinite sequence of endomorphisms e1, e2, ... where ei is an endomorphism that
maps the points a1, . . . , ai to a1. This suffices, since by local closure the mapping
defined by e(x) = a1 for all x is an endomorphism of Γ.

For e1 we take the identity map, which clearly is an endomorphism with the
desired properties. Suppose that we have already constructed an endomorphism
ei−1 that maps a1, . . . , ai−1 to a1. If ei−1 maps ai also to a1, we set ei to
be ei−1. Otherwise, there exists an automorphism α of Γ that maps a1 =
ei−1(a1) = · · · = ei−1(ai−1) to x, and ei−1(ai) to y. Then the endomorphism
f(α(ei−1)) is constant on a1, . . . , ai. There is also an automorphism α′ that
maps f(α(ei−1(a1))) to a1. Then ei := α′(f(α(ei−1))) is an endomorphism
with the desired properties.

Lemma 11. If Γ does not have a constant endomorphism, then there is a
primitive positive definition of the relation x 6= y in Γ.

Proof. Suppose Γ has a k-ary polymorphism f that does not preserve 6=, i.e.,
there are k-tuples u and v such that ui 6= vi for all i ∈ {1, . . . , k}, but f(u) =
f(v). Let α2, . . . , αk be permutations of D such that αi(u1) = ui and αi(v1) =
vi. Then the endomorphism g(x) := f(x, α2(x), . . . , αk(x)) is not injective, be-
cause g(u1) = f(u1, . . . , uk) = f(v1, . . . , vk) = g(v1), and by Lemma 10 locally
generates a constant, in contradiction to the assumptions. Hence, every poly-
morphism of Γ preserves 6=, and by Theorem 5 the relation 6= has a primitive
positive definition.

Due to the following lemma we can focus on binary operations in some later
proofs.

Lemma 12. Every essentially at least binary operation together with all per-
mutations locally generates a binary operation that depends on both arguments.

Proof. Let f be a k-ary operation, where k > 2, that depends on all arguments.
In particular, f depends on the first argument, and hence there are two k-tuples
(a1, . . . , ak) and (a′1, a2, . . . , ak) with f(a1, . . . , ak) 6= f(a′1, a2, . . . , ak). Suppose
first that there are b1, . . . , bk such that bi 6= ai for i ≥ 2 and f(b1, b2, . . . , bk) 6=
f(b1, a2, . . . , ak). We can then define permutations αi of D for i ≥ 3, such that
a2 is sent to ai and b2 is sent to bi. The binary operation g defined by g(x, y) =
f(x, y, α3(y), . . . , αk(y)) depends on both arguments, as g(a1, a2) 6= g(a′1, a2)
and g(b1, b2) 6= g(b1, a2), and hence we are done in this case.

So suppose that for every b1 and every b2, . . . , bk such that bi 6= ai for
i ∈ {2, . . . , k} it holds that f(b1, b2, . . . , bk) = f(b1, a2, . . . , ak). Since f de-
pends on the second coordinate, there are elements c1, c2, . . . , ck and c′2 with
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f(c1, . . . , ck) 6= f(c1, c′2, c3, . . . , ck). The value f(c1, a2, . . . , ak) can be equal to
either f(c1, . . . , ck) or to f(c1, c′2, c3, . . . , ck), but not to both. We can assume
without loss of generality that f(c1, . . . , ck) 6= f(c1, a2, . . . , ak). Let us choose
d2, . . . , dk such that di 6= ai and di 6= ci for i ∈ {2, . . . , k}. Since ci and di are
distinct for all 2 ≤ i ≤ k, we can define permutations αi of D for i ≥ 3 such
that d2 is sent to di and c2 is sent to ci.

We claim that the operation g defined by g(x, y) := f(x, y, α3(y), . . . , αk(y))
depends on both arguments. Indeed, from the beginning of the previous para-
graphs we know that g(a1, d2) = f(a1, d2, . . . , dk) = f(a1, a2, . . . , ak), and that
g(a′1, d2) = f(a′1, d2, . . . , dk) = f(a′1, a2, . . . , ak). By the choice of the values
a1, . . . , ak and a′1 these two values are distinct, and we have shown that g de-
pends on the first argument. For the second argument, note that g(c1, d2) =
f(c1, d2, . . . , dk) = f(c1, a2, . . . , ak) and that g(c1, c2) = f(c1, c2, . . . , ck). But
in the previous paragraph we also saw that these two values are distinct, and
hence g also depends on the second argument.

Now comes the central argument.

Theorem 13. Let f be a binary operation that depends on both arguments.
Then f together with all permutations locally generates either a constant unary
operation or a binary injective operation.

Proof. Suppose that f does not locally generate a constant operation. We want
to use Corollary 9 and show that every equality constraint relation R that is
preserved by f is intersection closed, which implies that f locally generates a
binary injective polymorphism. Suppose for contradiction that R is an n-ary
equality constraint relation, n ≥ 2, that is closed under f but not intersection
closed, i.e., there are two equivalence relations ρ and ρ′ in R such that ρ∩ρ′ is not
in R. Choose ρ and ρ′ such that (c(ρ), c(ρ′)) is lexicographically maximal (c(ρ)
was defined to be the number of equivalence classes in ρ). Let s := (s1, . . . , sn)
and t := (t1, . . . , tn) be n-tuples of D that have the equivalence relations ρ and
ρ′. Because ρ is not finer than ρ′ we can find indices p and q such that sp = sq,
tp 6= tq. Let r be the number of equivalence classes of ρ that are contained in
the equivalence class of p in ρ′. Choose p and q such that r is minimal.

Consider 2n − 1 distinct elements a1, . . . , a2n−1 from D. By the infinite
pigeon-hole principle, there is an infinite subset S1 of D such that f(a1, b) =
f(a1, b

′) for all b, b′ ∈ S1, or f(a1, b) 6= f(a1, b
′) for all b, b′ ∈ S1. We apply the

same argument to a2 instead of a1, and S1 instead of D, and obtain an infinite
subset S2 of S1. The argument can be iterated to obtain an infinite subset
S2n−1 such that for all a ∈ {a1, . . . , a2n−1} we either have f(a, b) 6= f(a, b′) for
all b, b′ ∈ S2n−1, or f(a, b) = f(a, b′) for all b, b′ ∈ S2n−1. Then there is also an
n-element subset A of {a1, . . . , a2n−1} and an n-element subset B of S2n−1 such
that either f(a, b) 6= f(a, b′) for all a ∈ A and b, b′ ∈ B, or f(a, b) = f(a, b′) for
all a ∈ A and b, b′ ∈ B. Note that in the latter case f(a, b) 6= f(a′, b) for all
distinct elements a, a′ ∈ A, and b ∈ B. Otherwise, if f(a, b) = f(a′, b), then f
does not preserve the inequality relation, because there is b′ ∈ B such that b′ 6= b
and f(a, b) = f(a, b′), and hence f(a, b) = f(a′, b′), but a 6= a′ and b 6= b′. But
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this is impossible, because Lemma 10 shows that in this case f locally generates
a constant operation. Therefore, we found two n-element sets A and B such
that either f(a, b) 6= f(a′, b) for all a, a′ ∈ A and b ∈ B, or f(a, b) 6= f(a, b′) for
all a ∈ A and b, b′ ∈ B. Without loss of generality we assume that the first case
applies.

First assume that there exist v and v′ in B and u ∈ A such that f(u, v) 6=
f(u, v′). Let α1 be a permutation of D that maps sp = sq to u and the other
entries in s to A. Let α2 be a permutation of D that maps tp to v1, tq to v2, and
the other entries in t to B. Then it is easy to check that the equivalence relation
σ of the tuple (f(α1(s1), α2(t1)), . . . , f(α1(sn), α2(tn))) has more equivalence
classes than ρ and since f preserves R we also have that σ ∈ R. Because σ
is always coarser than ρ ∩ ρ′ we obtain a contradiction to the maximality of
(c(ρ), c(ρ′)).

So now assume that f(u, v) = f(u, v′) for all v, v′ ∈ B and u ∈ A. Since f
cannot only depend on the first argument, there are elements u, v1, and v2 in
D such that v1 6= v2 and f(u, v1) 6= f(u, v2). We can assume that v2 is from
B: For this, consider any element v′ of B. If f(u, v′) 6= f(u, v1), we choose
v′ instead of v2 and are done. If f(u, v′) = f(u, v1), then f(u, v′) 6= f(u, v2),
and we choose v′ instead of v2 and v2 instead of v1. By Lemma 10 f preserves
6= and hence f(u, v1) 6= f(a, b) for any a ∈ A, b ∈ B. If r = 0, then due to
the way we apply the operation f to α1(s) and α2(t) it is easy to see that
σ has more equivalence classes than ρ, again contradicting the maximality of
(c(ρ), c(ρ′)). If r ≥ 1, then σ has more equivalence classes than ρ′, for the
following reason. Every equivalence class C of ρ′ either is equals to a union of
equivalence classes from ρ, or contains an element from an equivalence class in
ρ that is not contained in C. But also in the latter case, by the choice of p
and q such that r is minimal, we can infer that C contains some equivalence
class from ρ. Hence, in both cases we can associate in that way one equivalence
class from ρ to every class in ρ′. Due to the way we apply the operation f to
α1(s) and α2(t), all these equivalence classes correspond to distinct equivalence
classes in σ. Moreover, f(α1(sq), α2(tq)) will lie in yet another equivalence class
of σ since no equivalence class of ρ′ contained a class of elements equivalent to
sq. Thus, σ has more equivalence classes than ρ′. Since σ is not coarser than
ρ, the existence of the relations ρ and σ then contradicts the choice of ρ and ρ′

where (c(ρ), c(ρ′)) was lexicographically maximal.

Hence, if the template is not preserved by a constant unary or an injective
binary operation, we have a primitive positive definition of every first-order
definable relation, in particular for the relation S that was defined in Example 2
in the introduction.

Lemma 14. If the relation S has a primitive positive definition in Γ, then
CSP(Γ) is NP-hard.

Proof. First observe that by identification of arguments x and y, if S has a prim-
itive positive definition in Γ, then the inequality relation has a primitive positive
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definition in Γ as well. We prove the NP-hardness by reduction from the NP-
hard problem 3-coloring [12]. Let G = (V,E) be a graph that is an instance of
3-coloring. We construct an instance of CSP(Γ) that has a polynomial size in
|V | and |E| and is satisfiable if and only if G has a proper 3-coloring. Lemma 3
asserts we can use inequality constraints and the relation S to formulate this
instance. The set of variables in this instance is V ∪ V ′ ∪ {c1, c2, c3}, where V ′

is a copy of V , and c1, c2, c3 are three new variables representing colors. We
impose inequality constraints on each pair in c1, c2, c3 and on each pair (u, v)
for uv ∈ E. We impose the constraint S on (c1, v′, c2) for each v′ ∈ V ′, and
on (v′, v, c3) for each v ∈ V where v′ is the copy of v in V ′. By construction,
a solution to these constraints induces a proper 3-coloring of G. Conversely, a
simple case analysis shows that any proper 3-coloring can be extended in a way
that satisfies these constraints.

As we already mentioned in the introduction, the constraint satisfaction
problem for equality constraint languages is always contained in NP. By com-
bining the results obtained in this section and using Theorem 5 and Lemma 3
we therefore proved the following.

Theorem 15. If Γ has no constant unary and no injective binary polymorphism,
then CSP(Γ) is NP-complete.

6 Tractable Constraint Languages

The case that Γ contains a constant unary polymorphism gives rise to trivially
tractable constraint satisfaction problems: If an instance of such a CSP has a
solution, then there is also a solution that maps all variables to a single element
a of Γ. In this case an instance of CSP(Γ) is satisfiable if and only if it does not
contain a constraint R where R denotes the empty relation in Γ. Clearly, this
can be decided efficiently. Such constraint languages are also called a-valid in
the literature, e.g. in [9].

To finish the classification of the complexity of equality constraint languages
we are left with the case that Γ has a binary injective polymorphism. We
present an algorithm with polynomial running time that can be adapted to
work with representations of the constraint relations by sets of tuples and for
representations by DNF formulas.

These two representations of the constraint relations in the input are different
with respect to succinctness. It is easy to transform representations by sets of
tuples into representations by DNF. For every relation R that is represented by
a set of l k-tuples we can find a formula φ of size at most O(k2l) such that a
tuple a satisfies φ if and only if a is in R. The formula can be found as follows:
For each equivalence relation ρ ∈ R we introduce one clause to φ. The clause
contains xi = xj if (i, j) ∈ ρ, and contains xi 6= xj if (i, j) 6∈ ρ. Note that
given a DNF formula φ(x1, . . . , xk) that represents a k-ary relation R, the size
of the representation of R by a set of tuples may be exponential in the size
of φ. Hence, a polynomial time algorithm for instances where the constraints
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are represented in DNF implies a polynomial time algorithm for constraints
represented as tuples, but not vice-versa.

We now review known algorithmic results for intersection-closed equality
constraint languages. If the constraint relations in an instance of the CSP are
explicitly given as Horn clauses, then the CSP can be solved by a resolution-
based algorithm that was developed by Bürkert and Nebel for temporal reason-
ing problems [17]. The worst-case running time of this algorithm is cubic in the
size of the input. Our algorithm for representations by DNF formulas can be
applied in this case as well, and has a significantly better running time. The
algorithm of Nebel and Bürkert can also be applied, if the constraint language
is finite, since we can in this case assume that the Horn representation of all the
relations in the constraint language is known. However, their algorithm cannot
be applied if the constraint relations are represented by sets of tuples or by
formulas in DNF.

If an intersection-closed equality constraint language is finite or represented
by sets of tuples, then the corresponding CSP can be solved by an instantiation
of the relational consistency algorithm as introduced in [11]. This was shown
in the conference version of the present paper [4]. The worst-case running time
for this algorithm is at most quadratic in the size of the input, and again the
algorithm presented below has a significantly better running time.

We now present our new algorithm for intersection closed equality con-
straints. The essential idea is to find two variables x and y in the instance
such that x and y must denote the same value in all solutions of the instance. If
we find such a pair of variables, we contract them. Then we again search for vari-
ables that will be contracted, until we either reach a contradiction, or until no
two variables must denote the value in all solutions. In this case, intersection-
closure guarantees that a solutions exists (and we can efficiently construct a
solution, if required). The presented algorithm works both for representations
by DNF formulas and representations by sets of tuples, only the implementation
of some auxiliary procedures differs.

Algorithm 16. Input: a set of variables X, a set of constraints S
// For each constraint s, X(s) denotes a list of variables
// constrained by s.
// For each variable x, we construct a set C(x) that contains a pair (s, i)
// for all constraints s where the variable x appears at the i-th position.
for each x ∈ X do
C(x) := ∅

for each s ∈ S dok
for i := 1 to arity(s) do
C(X(s)[i]) := C(X(s)[i]) ∪ {(s, i)}

// Todo contains constraints that impose further contractions
Todo := S
// Contracted is a graph on the variables that contains edges for contracted

variables
Contracted := (X, ∅)
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while Todo 6= ∅ do begin
Let s be an arbitrary element from Todo
Todo := Todo \ {s}
// Compute new contractions forced by s
c := ForcedContractions(s)
for all {x, y} ∈ c do begin
// Perform the contraction of x and y
Add edge {x, y} to Contracted
I := {(s, i) | ∃s, i, j : (s, i) ∈ C(x) and (s, j) ∈ C(y)}
for all (s′, i) ∈ I do begin
// Compute a representation of s′ ∧ (x = y)
UpdateConstraint(s′,x,y)
if |s′| = 0 then
Reject

if s′ changed then
Todo := Todo ∪ {s′}

end
// Update the occurrences of the less frequent variable
if |C(x)| ≥ |C(y)| then begin
for each (s, i) ∈ C(y) do
X(s)[i] := x

C(x) := C(x) ∪ C(y)
end
else begin
for each (s, i) ∈ C(x) do
X(s)[i] := y

C(y) := C(x) ∪ C(y)
end

end
end
Assign a different value to each connected component in Contracted.
Assign to each variable the value of its component.

Algorithm 16 uses the procedures ForcedContractions and UpdateConstraint
that are not implemented in the pseudocode above. Their implementation de-
pends on the representation of the constraints in the input, and will be presented
later.

A k-tuple s represents an equivalence relation σ if {x, y} ∈ σ if and only if
sx = sy. We say that k-tuple s is finer than a k-tuple t (and t is coarser than s)
if the equivalence relation represented by s is finer than the equivalence relation
represented by t. We say that a k-tuple u is an intersection of two k-tuples s
and t if u represents the intersection of the equivalence relations represented
by s and t. We say that a tuple is consistent with x = y (x 6= y) if the value
assigned to x is equal to (different from) the value assigned to y.

For representations of the constraints by formulas in DNF we need the fol-
lowing definitions. A formula φ in DNF is a disjunction of monomials, and a
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monomial is a conjunction of literals. A literal is either a positive atom of the
form x = y or a negative atom of the form x 6= y, where x and y are variables
from X. For example, the formula (x = y ∧ x 6= z) ∨ (x 6= y) ∨ (y 6= z ∧ x = y)
has three monomials.

Fix an enumeration z1, . . . , zn of the variables X. We say that a k-tuple t
satisfies a monomial with k variables zi1 , . . . , zik

, where 1 ≤ i1 ≤ · · · ≤ ik ≤ n,
if after the substitution of zij by tj for all 1 ≤ j ≤ k all literals of the monomial
are true. Observe that if two tuples satisfy a monomial, then their intersection
also satisfies a monomial. Hence, there is a unique finest tuple among all tuples
that satisfy the monomial. We say that a monomial M is finer than a monomial
M ′ if the finest tuple satisfying M is finer than the finest tuple satisfying M ′.
We say that a monomial M is consistent with x = y (x 6= y) if there exists a
tuple satisfying M that is consistent with x = y (x 6= y).

If the constraints are represented by sets of tuples, then the procedure
ForcedContractions selects a finest tuple t from its input s. For each value
v that appears as an entry of t, the procedure returns a list {x1, xi} for each
2 ≤ i ≤ l, where x1, . . . , xl are the variables that have value v in t. The pro-
cedure UpdateConstraint(s,x,y) goes through the list of tuples in the repre-
sentation of s and removes those tuples where x and y have different values.

If the constraints are represented by formulas in DNF, we need an additional
data structure to achieve the desired running time. For each monomial M of
a formula DNF we construct a graph G(M) whose vertices are the variables
constrained by the monomial. Note that for a k-ary constraint s the number of
such variables might be less than k, because some variables might occur several
times in the list X(s). The edges of the graph are the pairs {x, y} such that the
monomial contains the literal x = y. We arbitrarily select one vertex from each
connected component of this graph, and call this vertex the representative of the
component. Our data structure contains for each variable x constrained by the
monomial a pointer Rep(x) to the representative of the connected component
containing x. Moreover, for each representative of a connected component we
maintain a hash table (see e.g. [18]). For each term x 6= y in the monomial
we insert Rep(x) to the hash table of Rep(y), and Rep(y) to the hash table of
Rep(x).

The implementation of the procedure ForcedContractions(s) selects the
finest monomial M0 in s, i.e., a monomial that is finer than all other monomials
in the constraint. Note that such a finest monomial always exists, because there
is a finest tuple satisfying the constraint, and this tuple satisfies at least one
monomial, which is the finest monomial. Then ForcedContractions returns a
list that contains all edges {x,Rep(x)} for x 6= Rep(x).

The procedure UpdateConstraint(s,x,y) looks up Rep(y) in the hash table
of Rep(x) for each monomial M . If Rep(y) is found in the table, we can remove
the monomial M from s, because M0 forces x = y. Otherwise, suppose that
the size of the hash table of Rep(x) plus the number of variables having the
representative Rep(x) is smaller than the corresponding number for Rep(y). In
this case, consider the set of all variables having the representative Rep(y).
We change the representative of these variables to Rep(x) and rehash the hash
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table of Rep(y) to Rep(x). If this is not the case, we symmetrically change the
representative of all variables having Rep(x) as a representative to Rep(y) and
rehash the hash table of Rep(x) to the hash table of Rep(y).

Now we show the correctness of Algorithm 16.

Lemma 17. The procedure ForcedContractions(s) returns a list of pairs
{x, y} such that x = y holds in every satisfying assignment of the constraint
that is also consistent with u = v for every edge {u, v} in Contracted. After the
execution of the procedure UpdateConstraint(s,x,y) the constraint descrip-
tion contains exactly those tuples/monomials that are consistent with x = y for
each edge {x, y} in Contracted.

Proof. Because UpdateConstraint removes exactly those tuples/monomials that
force x 6= y the statement here is obvious. Since the representation of each con-
straint contains all the tuples/monomials that are consistent with u = v for
every edge {u, v} in Contracted and the procedure ForcedConstraints works
with the finest tuple, it is also easy to see that ForcedConstraints works as
described.

Lemma 18. If {x, y} is an edge in Contracted, then either the instance (X,S)
has no solution, or x and y have the same value in every solution.

Proof. Suppose the instance (X,S) has a solution. We prove the lemma by
induction on the number of edges in Contracted. If Contracted has no edges,
the lemma trivially holds. Now suppose there are k + 1 edges in Contracted.
There is some edge {x, y} that was added last and by induction we know
that the variables in the first k edges must have the same value in every so-
lution. The edge {x, y} was added because it was returned by the procedure
ForcedContractions for some constraint s′. Lemma 17 implies that then x = y
holds in every satisfying assignment to s′ that is consistent with the equalities
described by the first k edges. Hence, because s′ must be satisfied, we conclude
that x an y have the same value in every solution.

Let Σ be the equivalence relation on X such that {x, y} ∈ Σ if and only if
x is connected to y by a path in Contracted. For s ∈ S let Σ(s) denote the
equivalence relation Σ restricted to variables constrained by s.

Lemma 19. If Algorithm 16 rejects the instance (X,S), then it does not have
a solution.

Proof. By Lemma 17 every constraint s contains all tuples/monomials that are
consistent with equalities contained in Σ(s). As Lemma 18 shows, all pairs in
Contracted have to be identified provided that (X,S) has a solution. Hence, if
there is no remaining tuple/monomial in s, the constraint cannot be satisfied
and (X,S) has no solution.

We finish the correctness proof with the following lemma.

Lemma 20. The assignment created by the last two steps of Algorithm 16 is a
solution to (X,S).
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Proof. We first prove the statement for the case where the constraints in the
input are represented by sets of tuples. Then every constraint s can be seen as
a set of equivalence relations as discussed in Section 2. We show that for each
constraint s ∈ S the equivalence relation Σ(s) is contained in s. First suppose
that there is no σ ∈ s coarser than Σ(s). Then at some point during the
execution of the algorithm the edge {x, y} must have been added to Contracted
such that before adding this edge there is an equivalence relation in s that is
coarser than Σ(s), but after adding this edge there is no equivalence relation
in s that is coarser than Σ(s). Clearly, s had to intersect both the connected
component of x and the connected component of y. But then s was in I, all the
tuples were removed from s, and the instance was rejected. A contradiction.
So s has to contain an equivalence relation σ coarser than Σ(s). If s does not
contain Σ(s), consider the last moment when some equivalence relation was
removed from s. At this moment s was added to Todo and s already did not
contain Σ(s). Hence, when s was considered later when processing Todo, we had
to add to Contracted some pairs that were not in Σ(s) (the pairs present in some
equivalence relation coarser than Σ(s) that was finest in s) — in contradiction
to the definition of Σ(s).

When constraints are represented by formulas in DNF, the proof is similar.
We argue that for each constraint s, there is a monomial that can be satisfied
when all the equalities from Σ(s) hold. Then we a conclude (in the same way
as in the above paragraph) that among all such monomials there must be one
that is satisfied even when all the disequalities from Σ(s) hold.

Now we discuss the running time of Algorithm 16. We show that for both
representations of the input, the algorithm has the running time O(m logm),
where m is the size of the input. If the constraint relations are represented by
sets of tuples, m is

∑
s∈S ar(s) · |s|. If the constraint relations s are represented

by formulas φ(s) in DNF, then m is
∑

s∈S |φ(s)|, where |φ| is the length of the
formula φ.

The initialization phase of the algorithm can clearly be implemented such
that the initialization takes O(m) time. To achieve the desired running time of
the procedure ForcedContractions, we have to describe how to efficiently find
the finest tuple/monomial in the representation of a constraint relation. If the
constraints are represented by sets of tuples, the idea is to sort the tuples of a
constraint relation by the number of different values. Similarly, if the constraints
are represented by formulas in DNF, we sort the monomials by the number of
connected components in the graphs G(M) defined for each monomial.

Observation 21. Let R be an intersection-closed k-ary relation that is repre-
sented as a set of tuples. If we sort tuples in the representation of R inversely
according to the number of different values (i.e., s < t if |{si : 1 ≤ i ≤ k}| >
|{ti : 1 ≤ i ≤ k}|), then if s is strictly finer than t, it also holds that s < t.

Proof. If s is finer than t, then s must have more equivalence classes implying
s < t.
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Observation 22. Let R be an intersection-closed k-ary relation that is repre-
sented by a formula in DNF. If we sort the monomials inversely according to
the number of connected components in the graph G(M), then if M is strictly
finer than M ′, it also holds that M < M ′.

Proof. If M is finer than M ′, the finest tuple satisfying M must have at least as
many values as the finest tuple satisfying M ′. Hence the subgraph of G induced
by M must have at least as many connected components as the subgraph of G
induced by M ′, since all the vertices in the same connected component must
get the same value.

Observation 21 asserts that the first tuple in the sorted list is the finest one.
Similarly, Observation 22 asserts that the first monomial in the sorted list is the
finest one. In both cases we can use bucket sort such that the sorting is done
in O(m) time.

A constraint is added to Todo only if it has a new finest tuple / monomial
(either in the beginning of the algorithm or after removal of an older tuple
/ monomial). Hence, the total time spent by processing the Todo list is in
O(m). The total time spent by the procedure ForcedContractions can be also
estimated by O(m), because the finest tuple / monomial is the first in the list
and because the number of contractions is linear in the size of tuple / monomial.

What remains is to estimate the time spent by contracting pairs of variables.
The computation of I and C(x) ∪ C(y) can be implemented as follows. We
represent each set C(x) as a hash table. For each hash table C(x) we keep a
potential. In the beginning we assign each hash table a potential P (x) equal
to |C(x)|. Hence, the sum of all potentials equals m. If two tables are joined,
we set the potential of C(Rx) ∪ C(Ry) to P (Rx) + P (Ry). When we compute
intersections and unions of hash tables we always rehash the table with the
smaller potential into the table with the larger potential. By rehashing we
obtain a hash table with C(Rx) ∪ C(Ry). During the rehashing we detect the
elements that appear in both hash tables, and in that way we can also compute
I. The overall time spent for the computations of intersections and unions is
clearly linear in the size of the number of elements we had to rehash. We can
estimate the number of times an element of a table is rehashed as follows. If
an element is rehashed, the potential of the resulting table is at least twice the
potential of the rehashed one, because we rehashed the table with the smaller
potential. As the potential of a table can never exceed m, we immediately get
that a single element can be rehashed at most logm times. Hence, the overall
time spent in the computations of unions and intersections is in O(m logm).
Similarly, we can estimate that a single element of a list X(s) is relabeled at
most logm times, and hence the time spent by relabeling these lists is also in
O(m logm).

Finally, we estimate the time spent in the procedure UpdateConstraint (the
time spent for the remaining operations that perform the contractions is clearly
in O(m)). The test whether a tuple / monomial is consistent with x = y can be
performed in O(1). If the constraints are represented by formulas in DNF we
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have to further spent some time for updating representatives and rehashing the
hash tables inside UpdateConstraints. Here, we can use a similar potential
argument as for the hash tables C(x), and conclude that the total time spent
by these update operations is in O(m logm).

We summarize the major results of this section in the following theorem.

Theorem 23. Let (X,S) be an instance of CSP(Γ) where Γ is an intersection-
closed equality constraint language. If the constraint relations in S are repre-
sented by sets of tuples or by formulas in DNF, then Algorithm 16 computes
a solution of (X,S) (or decides that there is no solution) in time O(m logm)
where m denotes the size of the input.

If the constraint language is finite, the size of an instance S can be measured
by i :=

∑
s∈S ar(s). The result for representations by sets of tuples implies that

the CSP can be solved in time O(i log i).

Representations by formulas in CNF. Since we studied representations
of constraint relations in DNF, it might be natural to ask for the complexity
of the CSP if the relations are represented by formulas in CNF. If a constraint
relation R is intersection-closed, we know that R can be defined by formulas in
CNF that are Horn. The CSP with constraints that are represented by Horn
formulas can be solved in cubic time by the algorithm of Nebel and Bürkert [17],
and in O(m logm) time by the algorithm presented above. However, it might
be the case that a CNF formula is equivalent to a Horn-formula, but not Horn.
In fact, this difference matters for the computational complexity of the CSP.
To see this, recall that unless NP=RP, the problem USAT is NP-hard, i.e., the
problem to decide whether a given CNF formula with at most one satisfying
assignment is satisfiable [24]. A formula with at most one satisfying assignment
is certainly equivalent to a Horn formula. Since USAT can be easily simulated
by intersection-closed equality constraints represented in CNF, we can not ex-
pect a polynomial time algorithm for intersection-closed equality constraints
represented by general CNF formulas.

7 The Meta Problem for Tractability

Let Γ be a finite constraint language. In this section we want to study the
computational complexity of determining whether CSP(Γ) can be solved in
polynomial time. The complexity of this task depends on the choice of the
representation in which Γ is specified. As in the previous section, we focus on
representations by sets of tuples, and representations by DNF formulas.

Let us first consider representations of the relations in Γ by sets of tuples.
We first check whether all relations R in Γ admit the constant assignment. To
determine whether R is intersection closed, we have to check whether for all
tuples r, s in the representation of a relation R in Γ the intersection of the
respective equivalence relations is also in R. Clearly, these computations can be
done in polynomial time.
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We have thus shown the following.

Proposition 24. If Γ is an equality constraint language that is represented by
a set of tuples, then the meta problem can be solved in polynomial time.

Now, suppose the relations in Γ are represented in DNF. Again, it can be
checked easily whether CSP(Γ) is 0-valid. We can also set up an algorithm that
verifies in polynomial time that the intersection of two non-deterministically
chosen equivalence relations in R is in R as well. Hence, the meta-problem for
these two representations is in coNP. We now show that this problem is also
coNP-hard.

Proposition 25. It is coNP-complete to decide whether an equality constraint
language Γ whose relations are represented by an =-formula in DNF is tractable.

Proof. We have already seen that the problem is in coNP. To show hardness, let
φ be a propositional formula in DNF. We create an =-formula Ψ as follows. For
each propositional variable x in φ we introduce a pair of new variables (ux, vx).
For each monomial x1 ∧ · · · ∧ xl ∧¬y1 ∧ · · · ∧ ¬yk in φ we introduce a monomial
(ux1 = vx1) ∧ · · · ∧ (uxl

= vxl
) ∧ (uy1 6= vy1) ∧ · · · ∧ (uyk

6= vyk
). Let ψ be the

disjunction of all these monomials, and let Ψ be ψ ∨ (u = v) ∨ (u′ = v′) where
u, v, u′, and v′ are new variables that do not appear in ψ. We claim that Ψ is
equivalent to a Horn =-formula if and only if φ is a boolean tautology. Clearly,
if φ is a tautology, then ψ is a tautology as well, and also Ψ is equivalent to
true and Horn.

Conversely, if Ψ is equivalent to a Horn formula, then it is intersection-closed.
The tuples that satisfy Ψ consist of the tuples where u = v and the remaining
variables are set arbitrarily, the tuples where u′ = v′ and the remaining variables
are set arbitrarily, and the tuples where ψ holds and u, v, u′, v′ are set arbitrarily.
If we compute the intersection-closure of all tuples satisfying u = v with all
tuples satisfying u′ = v′, we obtain (among other tuples) tuples of all equality
constraint types on the variables of ψ and satisfying u 6= v and u′ 6= v′. It
follows that φ is a tautology. The proposition then follows from the well-known
fact that the problem whether a given boolean formula in DNF is a tautology
is coNP-hard.

We would like to remark that it is similarly easy to show that it is also
coNP-complete to decide whether a given constraint languages represented by
CNF formulas is intersecion-closed.

8 Conclusion and Open Problems

The results of Section 5 and Section 6 establish Theorem 1, i.e., they show that,
unless P=NP, an equality constraint language with template Γ is tractable if
and only if Γ has a constant unary or an injective binary polymorphism. We
can also formulate this result by directly describing the the tractable constraint
languages (rather than their polymorphisms). Recall that a constraint language
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Representation CSP complexity Meta-problem complexity
Sets of Tuples O(m log(m)) P
DNF O(m log(m)) coNP-complete

Figure 1: The complexity of the CSP for intersection-closed constraints and
the complexity of the meta-problem, depending on the representation of the
relations, where m denotes size of the input.

is called a-valid if a is an element of Γ and every relation in Γ contains a tuple
of the form (a, . . . , a).

Corollary 26. Unless P=NP, an equality constraint language with template Γ
is tractable if and only if Γ is a-valid for some (equivalently, all) a ∈ Γ or if all
relations can be defined by Horn =-formulas.

Proof. By Lemma 8, the statement directly follows from Theorem 1.

The presented algorithm for intersection-closed equality constraint languages
does not only apply to finite constraint languages, but also to constraint lan-
guages where the constraints in the input are represented by sets of tuples or by
DNF formulas. In the special case that the input contains intersection-closed
constraints that are represented by Horn clauses, a resolution-based algorithm
by Nebel and Bürkert can be applied as well; however, our algorithm has a sig-
nificantly better running time. Our algorithm also outperforms algorithms that
are based on establishing relational consistency. Finally, we also showed that
the complexity of the problem to decide whether a given constraint language is
tractable or not (assuming P 6= NP) depends on the way the constraint language
is represented, and is either tractable for representations by sets of tuples, or
coNP-complete for representations by DNF formulas.

It is not hard to see that the P-complete problem of Horn-Sat (a boolean
constraint satisfaction problem; see e.g. [10]) can be reduced to intersection-
closed equality constraints. Hence, the constraint satisfaction problem for the
set of all intersection closed equality constraint is among the hardest problems
of the complexity class P. An interesting question for future research is a more
detailed study of the complexity of the equality constraint languages whose
CSP is in P. For boolean constraint satisfaction problems, an analogous project
was recently completed in [1]; it turned out that all boolean CSPs in P are
P-complete, NL-complete, parity-L-complete, or in L.

We would like to conclude with a remark on the relationship of the presented
results with questions from universal algebra. The lattice of clones that contain
all the permutations is a recent research focus in universal algebra [14, 19–21],
and a full classification seems to be out of reach. However, the lattice of locally
closed clones that contain the set of all permutations Sω is considerably simpler.
The lattice has a smallest element, the clone that is locally generated by Sω.
Above this clone the lattice has exactly two minimal clones that correspond to
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the maximally tractable equality constraint languages. Is it possible to give a
full description of the locally closed clones that contain all the permutations?
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the meta problem for boolean CSPs.
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de la Victoire de l’Ass. France avancement des sciences, pages 54–58, 1945.

[17] B. Nebel and H.-J. Bürckert. Reasoning about temporal relations: A max-
imal tractable subclass of Allen’s interval algebra. Journal of the ACM,
42(1):43–66, 1995.

[18] T. Ottmann and P. Widmayer. Algorithmen und Datenstrukturen. Spek-
trum Akademischer Verlag, 2002.

[19] M. Pinsker. Maximal clones on uncountable sets that include all permuta-
tions. Algebra Universalis, 54(2):129–148, 2005.

[20] M. Pinsker. The number of unary clones containing the permutations on
an infinite set. Acta Sci. Math. (Szeged), 71:461–467, 2005.

[21] M. Pinsker. Maximal clones on uncountable sets that include all permuta-
tions. Semigroup Forum, 2007. Accepted for publication.
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