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Constraint Satisfaction Problems

Informal description

Constraint Satisfaction Problem (CSP)

A computational problem:

Input: a set of variables and a set of constraints imposed on these
variables

Question: is there an assignment of values to the variables such that all
the constraints are satisfied?

Examples and Applications of CSPs in:
Artificial Intelligence, Type Systems for Programming Languages,
Computational Linguistics, Database Theory, Computational Biology, Graph
Theory, Finite Model Theory, Computational Real Geometry, Computer
Algebra, Operations Research, Boolean Satisfiability, Complexity Theory, . . .
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Constraint Satisfaction Problems

Informal description

Constraint Satisfaction Problem (CSP)

A computational problem:

Input: a set of variables and a set of constraints imposed on these
variables

Question: is there an assignment of values to the variables such that all
the constraints are satisfied?

Will be interested in computational complexity of CSPs
Which CSPs can be solved in polynomial time?
Which CSPs are NP-hard?
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Examples of Constraint Satisfaction Problems

Problem 1.
Input: A finite set of variables x1, . . . , xn, a finite set of constraints of

the form xi − xj = 1 or of the form |xi − xj | = 1.
Question: Is there a mapping s : {x1, . . . , xn} → Z that satisfies all

constraints?

x1

x6

x5

x4

x3

x2

x1 - x2 = 1 
|x2 - x3| = 1 

x4 - x3 = 1 x6 - x1 = 1 

x6 - x5 = 1 
|x4 - x5| = 1 
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Examples of Constraint Satisfaction Problems

Problem 1.
Input: A finite set of variables x1, . . . , xn, a finite set of constraints of

the form xi − xj = 1 or of the form |xi − xj | = 1.
Question: Is there a mapping s : {x1, . . . , xn} → Z that satisfies all

constraints?

Solvable in polynomial time.

Problem 3.
Input: A finite set of variables x1, . . . , xn, a finite set of constraints of

the form |xi − xj | ∈ {1,2}.
Question: Is there a mapping s : {x1, . . . , xn} → Z that satisfies all

constraints?

NP-hard: Instance satisfiable iff corresponding graph is 3-colorable.
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Constraint Satisfaction Problems: Formal Definition

Let τ be a finite set of relation symbols.
Let Γ = (D; R1,R2, . . . ) be a τ-structure (also called template).

CSP(Γ)

Input: A primitive positive τ-sentence Φ,
i.e., a first-order sentence of the form

∃x1, . . . , xn. ψ1 ∧ · · ·∧ψl

where ψi are atomic, i.e. of the form R(xi1 , . . . , xik ) for R ∈ τ.
Question: Is Φ true in Γ?

Examples:

CSP
(
Z; {(x , y) | x − y = 1}, {(x , y)

∣∣ |x − y | = 1}
)

CSP
(
Z; {(x , y) | x − y = 1}, {(x , y)

∣∣ |x − y | ∈ {1,3}}
)
.
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The Computational Complexity of CSPs

Fact (MB+Grohe’ICALP08): for every computational problem P there is a
structure Γ such that P and CSP(Γ) are equivalent (under polynomial-time
Turing reductions).

Consequence (Ladner’JACM75): There are structures Γ such that CSP(Γ) is
in NP, but neither NP-complete nor in P.

This paper: study complexity of Distance CSPs.

Definition

A Distance CSP is a problem of the form CSP(Γ) where Γ has a first-order
definition in

(
Z; {(x , y) | x − y = 1}

)
.

Note:(
Z; x − y = 1, |x − y | = 1

)
and

(
Z; x − y = 1, |x − y | ∈ {1,3}

)
do have a first-order definition in

(
Z; {(x , y) | x − y = 1}

)
.

Allow any number of relations of any arity!
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Related Research

Important subclasses of CSPs:

The class of all CSPs with finite template.

Feder-Vardi Dichotomy Conjecture: every CSP in this class is either in P
or NP-hard.
Powerful universal-algebras tools available [Jeavons, Bulatov, Krokhin,
Dalmau, Zadori, Larose, Valeriote, Willard, McKenzie, Maroti, Barto,
Kozik, et al 2001-2010].

The class of all CSPs with ω-categorical template.
Universal algebraic approach generalizes from finite to ω-categorical
structures [MB+Kara’STOC08].

From a model-theoretic perspective, the structure
(
Z; {(x , y) | x − y = 1}

)
is

among the simplest structures that is not ω-categorical.
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Main Result

Let Γ, ∆ be τ-structures. A mapping f : Γ → ∆ is called a homomorphism if
(f (t1), . . . , f (tn)) ∈ R∆ whenever (t1, . . . , tn) ∈ RΓ , for all tuples t and all R ∈ τ.
Γ and ∆ are said to be homomorphically equivalent if there is a
homomorphism from Γ to ∆ and vice versa.

Theorem 1.
Let Γ be a finite-degree structure with a first-order definition in(
Z; {(x , y) | x − y = 1}

)
. Then one of the following is true.

Γ is homomorphically equivalent to a finite structure.
In this case, CSP(Γ) is equivalent to a finite domain CSP.

There is a structure ∆ with a primitive positive definition in Γ such that ∆
is homomorphically equivalent to Kn for some finite n ≥ 3.
In this case, CSP(Γ) is NP-hard.

Γ has a modular median polymorphism.
In this case, CSP(Γ) can be solved in polynomial time.
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Constraint Propagation and Majority Polymorphisms

Our main algorithmic tool: constraint propagation and k -consistency.

When is constraint propagation complete for CSP(Γ)?

A polymorphism of Γ is a homomorphism from Γ3 to Γ . An operation is a
majority if it satisfies f (x , x , y) = f (x , y , x) = f (y , x , x) = x for all x , y .

Theorem 2 (Jeavons,Cohen,Cooper,AI’98).

If Γ has a majority polymorphism and an instance Φ of CSP(Γ) is 3-consistent
and does not contain false, then Φ is satisfiable.

Theorem 3.
Let Γ be a finite degree structure with first-order definition in
(Z; {(x , y) | x − y = 1}) and a majority polymorphism. Then CSP(Γ) is in P.
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Constraint Propagation and Majority Polymorphisms

Our main algorithmic tool: constraint propagation and k -consistency.

Idea: perform k -local inferences until a fixed point is reached,
which is then called k -consistent.
Example for k = 3: Look at the constraints on three variables and add the
binary constraints they imply.

x1

x6

x5

x4

x3

x2

x1 - x2 = 1 
|x2 - x3| = 1 

x4 - x3 = 1 x6 - x1 = 1 

x6 - x5 = 1 
|x4 - x5| = 1 

x1 - x2 = 2 

x1 - x2 = 1 

When is constraint propagation complete for CSP(Γ)?
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The Modular Median Operation

The d-modular median is the operation md : Z3 → Z defined as follows:

If x , y , z are congruent modulo d , then md (x , y , z) equals the median of
x , y , z.

If precisely two arguments from x , y , z are congruent modulo d , then
md (x , y , z) equals the first of those arguments in the ordered sequence
(x , y , z).

Otherwise, md (x , y , z) = x .

The 1-modular median is the usual median operation.
The modular median is a majority operation.

Theorem 4.

Let Γ be a first-order expansion of (Z; {(x , y) | x − y = 1}). Then

Γ is preserved by a modular median and CSP(Γ) is in P, or

CSP(Γ) is NP-hard.
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Automorphisms, Endomorphisms

An endomorphism of Γ is a homomorphism from Γ to itself.
Example: x 7→ (x mod 2) is an endomorphism of(

Z; {(x , y)
∣∣ |x − y | = 1}

)
.

Theorem 5.
Let Γ be a finite-degree structure with a first-order definition in(
Z; {(x , y) | x − y = 1}

)
. Then

1 The automorphism group of Γ equals either the automorphism group of(
Z; {(x , y) | x − y = 1}

)
, or that of

(
Z; {(x , y)

∣∣ |x − y | = 1}
)
.

2 Either Γ has an endomorphism with finite range, or it has an
endomorphism whose image induced in Γ a structure isomorphic to a
structure ∆ with a first-order definition in

(
Z; {(x , y) | x − y = 1}

)
all of

whose endomorphisms are automorphisms.

Example: Γ =
(
Z; {(x , y)

∣∣ |x − y | ∈ {1,3,6}, {(x , y)
∣∣ |x − y | = 3}}

)
.
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∣∣ |x − y | = 1}
)
.

2 Either Γ has an endomorphism with finite range, or it has an
endomorphism whose image induced in Γ a structure isomorphic to a
structure ∆ with a first-order definition in

(
Z; {(x , y) | x − y = 1}

)
all of

whose endomorphisms are automorphisms.

Example: Γ =
(
Z; {(x , y)

∣∣ |x − y | ∈ {1,3,6}, {(x , y)
∣∣ |x − y | = 3}}

)
.
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Primitive Positive Definitions of the Successor Relation

How do we use the information about the endomorphisms of Γ?

Theorem 6.
Every finite degree relational structure Γ with a first-order definition in(
Z; {(x , y) | x − y = 1}

)
is either homomorphically equivalent to a finite

structure, or to a connected finite-degree structure ∆ with a first-order
definition in

(
Z; {(x , y) | x − y = 1}

)
such that

CSP(∆) is NP-hard, or

the relation {(x , y) | x − y = 1} is primitive positive definable.

The CSP of the expansion of Γ by a primitive positive definable relation
reduces to CSP(Γ) in polynomial time.
Hence, may assume in the following that Γ contains the relation
{(x , y) | x − y = 1}.
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Concluding Remarks

Distance CSPs confirm the importance of constraint propagation:

Unless a distance CSP is NP-hard or equivalent to
a finite-domain CSP, it can be solved in polynomial time
by constraint propagation with binary constraints.

On the way, obtain interesting results about endomorphism monoids and
primitive positive definability in structures over Z.

Important open problems:

Classify the complexity of finite-domain CSPs with a transitive template.

If a finite-domain CSP or a distance CSP has a majority polymorphism,
can it be solved in linear time? (the algorithm presented here is cubic)

Distance CSPs 12



Concluding Remarks

Distance CSPs confirm the importance of constraint propagation:

Unless a distance CSP is NP-hard or equivalent to
a finite-domain CSP, it can be solved in polynomial time
by constraint propagation with binary constraints.

On the way, obtain interesting results about endomorphism monoids and
primitive positive definability in structures over Z.

Important open problems:

Classify the complexity of finite-domain CSPs with a transitive template.

If a finite-domain CSP or a distance CSP has a majority polymorphism,
can it be solved in linear time? (the algorithm presented here is cubic)

Distance CSPs 12



Concluding Remarks

Distance CSPs confirm the importance of constraint propagation:

Unless a distance CSP is NP-hard or equivalent to
a finite-domain CSP, it can be solved in polynomial time
by constraint propagation with binary constraints.

On the way, obtain interesting results about endomorphism monoids and
primitive positive definability in structures over Z.

Important open problems:

Classify the complexity of finite-domain CSPs with a transitive template.

If a finite-domain CSP or a distance CSP has a majority polymorphism,
can it be solved in linear time? (the algorithm presented here is cubic)

Distance CSPs 12


