
Collapsibility in Infinite-Domain Quantified
Constraint Satisfaction

Manuel Bodirsky1 and Hubie Chen2

1 Institut für Informatik
Humboldt-Universität zu Berlin

Berlin, Germany
bodirsky@informatik.hu-berlin.de

2 Departament de Tecnologia
Universitat Pompeu Fabra

Barcelona, Spain
hubie.chen@upf.edu

Abstract. In this article, we study the quantified constraint satisfaction
problem (QCSP) over infinite domains. We develop a technique called
collapsibility that allows one to give strong complexity upper bounds
on the QCSP. This technique makes use of both logical and universal-
algebraic ideas. We give applications illustrating the use of our technique.

1 Introduction

The constraint satisfaction problem (CSP) is the problem of deciding the truth
of a primitive positive sentence

∃v1 . . .∃vn(R(vi1 , . . . , vik
) ∧ . . .)

over a relational signature, relative to a given relational structure over the same
signature. Informally, the goal in an instance of the CSP is to decide if there
exists an assignment to a set of variables simultaneously satisfying a collection
of constraints. Many search problems in computer science can be naturally for-
mulated as CSPs, such as boolean satisfiability problems, graph homomorphism
problems, and the problem of solving a system of equations (over some algebraic
structure). The CSP can be equivalently formulated as the relational homomor-
phism problem [14], or the conjunctive-query containment problem [18].

The ubiquity of the CSP in conjunction with its general intractability has
given rise to an impressive research program seeking to identify restricted cases
of the CSP that are polynomial-time tractable. In particular, much attention has
been focused on identifying those relational structures Γ such that CSP(Γ)–the
CSP where the relational structure is fixed to be Γ–is polynomial-time tractable.
In a problem CSP(Γ), we call Γ the constraint language, and use the term domain
to refer to the universe of Γ . Many recent results have studied the problems
CSP(Γ) for finite-domain constraint languages Γ , see for example [8, 9, 7, 6, 13]
and the references therein. However, it has been recognized that many natural

combinatorial problems from areas such as graph theory and temporal reasoning
can be expressed as problems of the form CSP(Γ) only if infinite-domain Γ are
permitted [1]. This has motivated the study of constraint satisfaction problems
CSP(Γ) on infinite domains [1, 2, 4].

A recent subject of inquiry that builds upon CSP research is the quantified
constraint satisfaction problem (QCSP), which is the generalization of the CSP
where both existential and universal quantification is allowed, as opposed to
just existential quantification. As is well-known, the extra expressiveness of the
QCSP comes with an increase in complexity: the finite-domain QCSP is PSPACE-
complete, in contrast to the finite-domain CSP, which is NP-complete. Recent
work on the QCSP includes that of Börner, Bulatov, Krokhin, and Jeavons [5],
Chen [11, 10, 12], Gottlob, Greco, and Scarcello [15], and Pan and Vardi [20].

In this paper, we consider infinite-domain quantified constraint satisfaction.
Our contribution is to introduce, in the infinite-domain setting, a technique
called collapsibility that allows us to give complexity upper bounds on problems
of the form QCSP(Γ), such as NP upper bounds, that are dramatically lower
than the “obvious” upper bound of PSPACE that typically applies. On a high
level, collapsibility allows one to show that, for certain contraint languages Γ , an
arbitrary instance of QCSP(Γ) can be reduced to the conjunction of instances of
QCSP(Γ) that are simpler in that they have only a constant number of (or no)
universally quantified variables; typically, such a conjunction can be cast as an
instance of CSP(Γ ′) for some constraint langauge Γ ′ with CSP(Γ ′) in NP, and
hence the reduction yields a proof that QCSP(Γ) is in NP.

To develop our collapsibility technique, we make use of a universal-algebraic
approach to studying the complexity of constraint languages; this approach as-
sociates a set of operations called polymorphisms to each constraint language,
and uses this set of operations to derive information about complexity. While
the present work takes inspiration from technology that was developed in the
finite-domain setting [11, 10] for similar purposes, there are a number of differ-
ences between the infinite and finite settings that necessitate the use of more
involved and intricate argumentation in the infinite setting. One is that, while
there is a canonical choice for the aforementioned simpler instances in the finite
setting, in the infinite setting there is no such canonical choice and indeed often
an expansion of the constraint language is required to achieve a reduction from
the QCSP to the CSP. Another is that, in the infinite setting, any assignment
or partial assignment f to variables induces, via the automorphism group of Γ ,
an orbit of assignments {σ(f) : σ is an automorphism of Γ}. The property of an
assignment satisfying constraints over Γ is orbit-invariant, but in the presence
of universal quantification, one needs to make inferences about the orbit of an
assignment in a careful way (see Lemma 3 and its applications).

2 Preliminaries

When A and B are sets, we use [A→ B] to denote the set of functions mapping
from A to B. When f : A→ B is a function and A′ is a subset of A, we use f |A′

to denote the restriction of f to A′. We extend this notation to sets of functions:
when F ⊆ [A → B] and A′ is a subset of A, we use F |A′ to denote the set
{f |A′ : f ∈ F}. When f : A → B is a function, we use the notation f [a′ → b′]
to denote the extension of f mapping a′ to b′. We will use [k] to denote the first
k positive integers, {1, . . . , k}.

Relational structures. A relational language τ is a (in this paper always finite)
set of relation symbols Ri, each of which has an associated finite arity ki. A
(relational) structure Γ over the (relational) language τ (also called τ -structure)
is a set DΓ (the domain or universe) together with a relation Ri ⊆ Dki

Γ for each
relation symbol Ri from τ . For simplicity, we use the same symbol for a relation
symbol and the corresponding relation. If necessary, we write RΓ to indicate
that we are talking about the relation R belonging to the structure Γ . For a
τ -structure Γ and R ∈ τ it will also be convenient to say that R(u1, . . . , uk)
holds in Γ iff (u1, . . . , uk) ∈ R. If we add relations to a given structure Γ we call
the resulting structure Γ ′ an expansion of Γ , and Γ is called a reduct of Γ ′.

Homomorphisms. Let Γ and Γ ′ be τ -structures. A homomorphism from Γ to
Γ ′ is a function f from DΓ to DΓ ′ such that for each n-ary relation symbol R in
τ and each n-tuple (a1, . . . , an), if (a1, . . . , an) ∈ RΓ , then (f(a1), . . . , f(an)) ∈
RΓ ′

. In this case we say that the map f preserves the relation R. Isomor-
phisms from Γ to Γ are called automorphisms, and homomorphisms from Γ
to Γ are called endomorphisms. The set of all automorphisms of a structure
Γ is a group, and the set of all endomorphisms of a structure Γ is a monoid
with respect to composition. When referring to an automorphism of Γ , we
sometimes use the term Γ -automorphism to make clear the relational structure.
An orbit of k-tuples in Γ is a set of k-tuples of the form {(a(s1), . . . , a(sk)) :
a is an automorphism of Γ} for some tuple (s1, . . . , sk).

Polymorphisms. Let D be a countable set, and O be the set of finitary op-
erations on D, i.e., functions from Dk to D for finite k. We say that a k-ary
operation f ∈ O preserves an m-ary relation R ⊆ Dm if whenever R(xi

1, . . . , x
i
m)

holds for all 1 ≤ i ≤ k in Γ , then R
(
f(x1

1, . . . , x
k
1), . . . , f(x1

m, . . . , x
k
m)

)
holds in

Γ . If f preserves all relations of a relational τ -structure Γ , we say that f is a
polymorphism of Γ . In other words, f is a homomorphism from Γ k = Γ× . . .×Γ
to Γ , where Γ1 × Γ2 is the (categorical- or cross-) product of the two relational
τ -structures Γ1 and Γ2. Hence, the unary polymorphisms of Γ are the endomor-
phisms of Γ .

Quantified constraint satisfaction. We define a τ -formula to be a quantified
constraint formula if it has the form Q1v1 . . . Qnvn(ψ1∧ . . .∧ψm), where each Qi

is a quantifier from {∀,∃}, and each ψi is an atomic τ -formula that can contain
variables from {v1, . . . , vn}.

The quantified constraint satisfaction problem over a τ -structure Γ , denoted
by QCSP(Γ), is the problem of deciding, given a quantified constraint formula
over τ , whether or not the formula is true under Γ . Note that both the universal

and existential quantification is understood to take place over the entire universe
of Γ . We use D throughout the paper to denote the universe of a constraint lan-
guage Γ under discussion. The constraint satisfaction problem over a τ -structure
Γ , denoted by CSP(Γ), is the restriction of QCSP(Γ) to instances only including
existential quantifiers.

A constraint language is simply a relational structure; we typically refer to
a relational structure Γ as a constraint language when we are interested in the
computational problem QCSP(Γ) or CSP(Γ). We also refer to Γ as a template.

We will illustrate the use of our technique on examples drawn from the following
two classes of constraint languages.

Equality constraint languages. An equality-definable relation is a relation
(on an infinite domain) that can be defined by a boolean combination of atoms
of the form x = y. An equality constraint language is a relational structure
having an countably infinite universe D and such that all of its relations are
equality-definable relations over D.

When Γ is an equality constraint language with domain D, any permutation
of D is an automorphism of Γ , that is, the automorphism group of Γ is the full
symmetric group onD. Observe that, if a tuple t = (t1, . . . , tk) is an element of an
equality-definable relation R ⊆ Dk, then all tuples of the form (π(t1), . . . , π(tk)),
where π is a permutation on D, are also contained in R. In studying equality
constraint languages, it is therefore natural for us to associate to each tuple
(t1, . . . , tk) the equivalence relation ρ on {1, . . . , k} where i = j if and only if
ti = tj . This is because, by our previous observation, a tuple t = (t1, . . . , tk) is in
an equality-definable relation R if and only if all k-arity tuples inducing the same
equivalence relation as t are in R. We may therefore view an equality-definable
relation of arity k as the union of equivalence relations on {1, . . . , k}.

It is known that for an equality constraint language Γ , CSP(Γ) is polynomial-
time tractable if Γ has a constant unary polymorphism or an injective binary
polymorphism, and is NP-complete otherwise [4]. It is also known (and not
difficult to verify) that for every equality constraint language Γ , the problem
QCSP(Γ) is in PSPACE [3]. In general, the quantified constraint satisfaction
problem for equality constraint languages is PSPACE-complete [3]; this is closely
related to a result of [21].

Temporal constraint languages. A temporal relation is a relation on the
domain Q (the rational numbers) that can be defined by a boolean combination
of expressions of the form x < y. A temporal constraint language is a relational
structure having Q as universe and such that all of its relations are temporal rela-
tions. As with equality constraint languages, it is known and not difficult to verify
that for every temporal constraint language Γ , the problem CSP(Γ) is in NP, the
problem QCSP(Γ) is in PSPACE, and there are temporal constraint languages
Γ such that QCSP(Γ) is PSPACE-complete. Temporal constraint languages are
well-studied structures in model theory (e.g., they are all ω-categorical; see [16]).

3 Collapsibility

In this section, we present our collapsibility technology. We begin by introducing
some notation and terminology.

When Φ is a quantified constraint formula, let V Φ denote the variables of
Φ, let EΦ denote the existentially quantified variables of Φ, and let UΦ denote
the universally quantified variables of Φ. When u ∈ V Φ is a variable of Φ, we
use V Φ

<u to denote the variables coming strictly before u in the quantifier prefix
of Φ, and we use V Φ

≤u to denote the variables coming before u (including u) in
the quantifier prefix of Φ. When S is a subset of V Φ, we say that S is an initial
segment of Φ if S = ∅ or S = V Φ

≤u for a variable u ∈ V Φ.
Let us intuitively think of an instance of the QCSP as a game between two

players: a universal player that sets the universally quantified variables, and an
existential player that sets the existentially quantified variables. The existential
player wants to satisfy all of the constraints. We may formalize the notion of a
strategy for the existential player in the following way.

A strategy for a quantified constraint formula Φ is a sequence of partial
functions σ = {σx : [V Φ

<x → D] → D}x∈EΦ . The intuition behind this definition
is that the function σx of a strategy describes how to set the variable x given a
setting to all of the previous variables. We say that an assignment f to an initial
segment of Φ is consistent with σ if for every existentially quantified variable
x in the domain of f , it holds that σx(f |V Φ

<x
) is defined and is equal to f(x).

Intuitively, f is consistent with σ if it could have been reached in a play of the
game under σ.

A playspace for a quantified constraint formula Φ is a set of mappings A ⊆
[V Φ → D]. We will often be interested in restrictions of a playspace A of the form
A|V Φ

<u
or A|V Φ

≤u
; we will use the notation A〈<u〉 and A〈≤u〉 for these restrictions,

respectively. The quantified constraint formula Φ will always be clear from the
context. Likewise, for a function f defined on a subset of V Φ, we will use the
notation f〈<u〉 and f〈≤u〉 for the restrictions f |V Φ

<u
and f |V Φ

≤u
, respectively.

Intuitively, a playspace will be used to describe a restriction on the actions
of the universal player: an existential strategy will be a winning strategy for a
playspace as long as it can properly respond to all settings of variables that fall
into the playspace. We formalize this in the following way.

Let A be a playspace for a quantified constraint formula Φ, and let σ be a
strategy for the same formula Φ. We say that σ is a winning strategy for A if
the following two conditions hold:

– for every variable x ∈ EΦ and every assignment f ∈ A〈<x〉, if f is consistent
with σ, then σx(f) is defined and f [x→ σx(f)] ∈ A〈≤x〉, and

– every assignment f ∈ A consistent with σ satisfies the constraints of Φ.

We call a playspace winnable if there exists a winning strategy for it.
Let us say that a playspace A (for a quantified constraint formula Φ) is ∀-free

(∃-free) if for every universally (existentially) quantified variable u ∈ V Φ, every
domain element d ∈ D, and every function f ∈ A〈<u〉, the function f [u → d]

is contained in A〈≤u〉. As a simple example illustrating these notions, observe
that for any quantified constraint formula Φ, the playspace [V Φ → D] is both
∀-free and ∃-free. The notion for ∀-freeness yields a characterization of truth for
quantified constraint formulas.

Proposition 1. Let Φ be a quantified constraint formula Φ. The following are
equivalent:

1. Φ is true.
2. The ∀-free playspace [V Φ → D] has a winning strategy.
3. There exists a ∀-free playspace for Φ having a winning strategy.

Having given the basic terminology for collapsibility, we now proceed to de-
velop the technique itself. The following is an outline of the technique. What we
aim to show is that for certain templates Γ , an arbitrary instance Φ of QCSP(Γ)
is truth-equivalent to (the conjunction of) a collection of “simpler” QCSP in-
stances. These simpler instances will always have the property that the truth of
the original instance Φ readily implies the truth of the simpler instances; what
is non-trivial is to show that the truth of all of the simpler instances implies
the truth of the original instance. We will be able to establish this implication
in the following way. First, we will translate the truth of the simpler instances
into winnability results on playspaces (for the original instance Φ). Then, we will
make use of two tools (to be developed here) that allow us to infer the winnabil-
ity of larger playspaces based on the winnability of smaller playspaces and the
polymorphisms of Φ. These tools will let us demonstrate the winnability of a
∀-free playspace, which then implies the truth of Φ by Proposition 1.

We now turn to give the two key tools which allow us to “enlargen” playspaces
while still preserving winnability. To illustrate the use of these tools, we will use
a running example which will fully develop a collapsibility proof.

Example 2. As a running example for this section, we consider positive equality
constraint languages. Positive equality constraint languages are equality con-
straint languages where every relation is definable by a positive combination of
atoms of the form x = y, that is, definable using such atoms and the boolean
connectives {∨,∧}. A simple example of a positive equality constraint language
is Γ = (N, S), where S is the relation

S = {(w, x, y, z) ∈ N4 : (w = x) ∨ (y = z)}.

Any equality-definable relation R, viewed as the union of equivalence rela-
tions, can be verified to have the following closure property: every equivalence
relation ρ′ obtainable from an equivalence relation ρ from R by combining two
equivalence classes into one is also contained in R. In fact, from this observation,
it is not difficult to see that a positive equality constraint language has all unary
functions as polymorphisms. (Indeed, the property of having all unary functions
as polymorphisms is also sufficient for an equality constraint language to be a
positive equality constraint language, and hence yields an algebraic characteri-
zation of positive equality constraint languages.)

We will show that, for any positive equality constraint language Γ , the prob-
lem QCSP(Γ) reduces to CSP(Γ ∪ {6=}). In particular, for an instance

Φ = Q1v1 . . . QnvnC

of QCSP(Γ), we define the collapsing of Φ to be the CSP(Γ ∪ {6=}) instance

Φ′ = ∃v1 . . .∃vn(C ∧
∧
{vi 6= vj : i < j,Qj = ∀}).

That is, the collapsing of Φ is obtained from Φ by adding constraints asserting
that each universal variable y is different from all variables coming before y,
and then changing all quantifiers to existential. We will show that an instance
Φ of QCSP(Γ) is true if and only if its collapsing is true. This gives a reduction
from a problem whose most obvious complexity upper bound is PSPACE, to a
problem in NP. The inclusion of this problem in NP has been previously shown by
Kozen [19]; we have elected it as our running example as we believe it allows us
to nicely illustrate our technique. Note that our reduction is tight in that there
are known NP-hard positive equality constraint languages [3]. (The existence
of such NP-hard constraint languages also implies that one cannot hope for a
reduction from QCSP(Γ) to CSP(Γ) which does not “augment the template”,
since for positive equality constraint languages Γ , the problem CSP(Γ) is known
to be polynomial-time tractable [4].)

It is readily seen that if an instance Φ is true, then its collapsing Φ′ is true.
The difficulty in justifying this reduction, then, is in showing that if a collaps-
ing Φ′ is true, then the original instance Φ is true. Our first step in showing
this is to simply view the truth of Φ′ as a winnability result on a playspace.
Let a : {v1, . . . , vn} → D be an assignment satisfying the constraints of Φ′.
Clearly, the playspace {a} is winnable, via the strategy σ = {σx}x∈EΦ defined
by σx(a|V Φ<x) = a(x). We will use the winnability of this playspace to derive
the winnability of larger and larger playspaces, ultimately showing the winnabil-
ity of the largest playspace [V Φ → D], and hence the truth of the formula (by
Proposition 1). ut

The following lemma allows one to add, to a winnable playspace, tuples from
the orbits induced by the tuples already in the playspace, while maintaining the
property of winnability.

Lemma 3. (Orbit Lemma) Let A be a winnable playspace for a quantified con-
straint formula Φ over template Γ . Let y ∈ UΦ be a universally quantified vari-
able. There exists a winnable playspace A′ such that the following hold:

– for each t ∈ A〈≤y〉 and Γ -automorphism σ that fixes every point {t(u) : u ∈
A〈<y〉}, σ(t) is in A′〈≤y〉. Note that here, σ(t) is equal to t at all points
except (possibly) y.

– A ⊆ A′ ⊆ {τ(t) : t ∈ A, τ is a Γ -automorphism}.
– A〈<y〉 = A′〈<y〉.

Proof (idea). Let F be the set of all functions of the form σ(t) satisfying the
conditions of the first property, that is, t is in A〈≤y〉 and σ is a Γ -automorphism
that fixes every point {t(u) : u ∈ A〈<y〉}. For each element f ∈ F \A〈≤y〉, define
σf and tf to be such mappings so that f = σf (tf). We define A′ to be

A ∪ {σf (e) : f ∈ F \ A〈≤y〉, e ∈ A, e〈≤y〉 = tf}.

Let {ρx} be a winning strategy for A. We assume without loss of generality
that the partial functions ρx are only defined on functions f ∈ A〈<x〉 that are
consistent with ρ. We need to extend the ρx so that they handle extensions of the
functions f ∈ F \A〈≤y〉. When g is an extension of such a f , we define ρ′x(g) as
σf (ρx(σ−1

f (g))). That is, we translate g back by σf and look at the response by
ρx, and apply σf to that response to obtain our response. It is straightforward
to verify that the {ρ′x} are a winning strategy for A′. ut

Example 4. We continue the discussion of positive equality constraint languages,
our running example. We have established the winnability of a size-one playspace
{a}, where for all universally quantified variables y, the value a(y) is different
from a(v) for all variables v coming before y in the quantifier prefix. Our goal is
to infer the winnability of the largest playspace [V Φ → D], using the winnability
of this playspace.

Let us say that a playspace A is 6=-free if for every universally quantified
variable y ∈ V Φ, every function f ∈ A〈<y〉, and every value d ∈ D distinct
from all values in {f(u) : u ∈ V Φ

<y}, the function f [y → d] is contained in
A〈≤y〉. Assuming that our original instance Φ contained at least one universally
quantified variable y, our playspace {a} is not 6=-free: there is only one extension
of a〈<y〉 in {a}〈≤y〉, namely, a〈≤y〉. However, using the Orbit Lemma, we can
expand {a} into a 6=-free playspace, as follows.

Let y1 be the first universally quantified variable of Φ. Applying the Orbit
Lemma to the playspace A = {a} and variable y = y1, we obtain a playspace
A1 that satisfies the 6=-freeness condition at y1. We demonstrate this as follows.
If f is a function in A1〈<y1〉, we have f ∈ A〈<y1〉, since the Orbit Lemma
provides A〈<y〉 = A′〈<y〉. Let h = f [y1 → d] be any extension of f where
d is distinct from all values in the image of f . We want to show that h is
contained in A1〈≤y1〉. We know that there exists an extension f ′ = f [y1 → d′]
of f such that d′ is different from all values in the image of f . (This is because
f ∈ A〈<y1〉 = {a}〈<y1〉, and the function a assigns y1 to a value different from
all values assigned to preceding variables.) Let σ be a permutation on D (that is,
a Γ -automorphism) that fixes all points in the image of f , but maps d′ to d. The
Orbit Lemma provides that σ(f ′) = h is in A1〈≤y〉. Repeatedly applying the
Orbit Lemma to the universally quantified variables y1, y2, . . . of Φ, we obtain
an increasing sequence of winnable playspaces A1,A2, . . . whose last member is
6=-free.

Note that the Orbit Lemma provides, for each i,

Ai+1 ⊆ {τ(t) : t ∈ Ai, τ is a Γ -automorphism}

and hence, for each i,

Ai ⊆ {τ(t) : t ∈ A, τ is a Γ -automorphism}.

From this, we can see that each Ai has the property that for any universally
quantified variable yj and for any function f ∈ Ai〈<yj〉, any extension f [yj → d]
of f in Ai〈≤yj〉 has d distinct from all values in the image of f ; this is because
A has this property, and this property is preserved by adding, to a playspace,
permutations of functions already in the playspace.

Summarizing, we have shown that the winnability of the size-one playspace
from Example 2 implies the winnability of a 6=-free playspace. ut

The next theorem allows us to, roughly speaking, use a polymorphism g :
Dk → D of Φ to compose together k winnable playspaces to derive another
winnable playspace.

Let g : Dk → D be an operation. Let A,B1, . . . ,Bk be playspaces for a
quantified constraint formula Φ. We say thatA is g-composable from (B1, . . . ,Bk)
if for all universally quantified variables y ∈ UΦ, the following holds: if t ∈ A〈<y〉
and t1 ∈ B1〈<y〉, . . ., tk ∈ Bk〈<y〉 are such that t = g(t1, . . . , tk) pointwise, and
d ∈ D is a value such that t[y → d] ∈ A〈≤y〉, then there exist d1, . . . , dk ∈ D
such that d = g(d1, . . . , dk) and t1[y → d1] ∈ B1〈≤y〉, . . ., tk[y → dk] ∈ Bk〈≤y〉.

Theorem 5. Let Φ be a quantified constraint formula, and assume that g :
Dk → D is a polymorphism of all relations in Φ. Assume that A,B1, . . . ,Bk are
playspaces such that A is ∃-free and g-composable from (B1, . . . ,Bk). If each of
the playspaces B1, . . . ,Bk is winnable, then A is winnable.

Theorem 5 was inspired by machinery developed for finite-domain QCSPs
presented in [10, Chapter 4]. Before giving the proof, we give an example appli-
cation that allows us to conclude our running example.

Example 6. For a QCSP instance Φ over a positive equality constraint language
Γ , we have shown, in Examples 2 and 4, the winnability of a 6=-free playspace A 6=
based on the truth of the collapsing Φ′ of Φ; the collapsing Φ′ is a CSP instance
(over an equality constraint language). We now complete the justification of our
reduction by showing that the winnability of this 6=-free playspace implies the
winnability of the “full” playspace [V Φ → D].

Let g : D → D be a surjective unary function such that g−1(d) is of infinite
size for every d ∈ D, that is, every point d ∈ D in the image of g is hit by infinitely
many domain points. As noted in Example 2, the function g is a polymorphism
of Γ . To show the winnability of the playspace [V Φ → D], we show that it is g-
composable from A 6=, from which its winnability follows by appeal to Theorem 5.

Why is the playspace [V Φ → D] g-composable from A 6=? Let y ∈ UΦ be a
universally quantified variable, let t ∈ A〈<y〉, let t′ ∈ A 6=〈<y〉 and suppose that
t = g(t′) pointwise. It suffices to show that for any value d ∈ D, there exists
d′ ∈ D such that d = g(d′) and t′[y → d′] ∈ A 6=. This holds: one can pick d′ to be
any point in g−1(d) \ image(t′). This set is non-empty as it is the subtraction of
a finite set from an infinite set, and for any such d′ we have t′[y → d′] ∈ A 6=〈≤y〉
by the 6=-freeness of A 6=. ut

Proof (Theorem 5). For each i ∈ [k], let σi be a winning strategy for the
playspace Bi. We define a sequence of mappings σ = {σx}x∈EΦ that consti-
tutes a winning strategy for A. We consider each initial segment one by one, in
order of increasing size. After the initial segment S has been considered, we will
have defined mappings {σx}x∈EΦ∩S having the following properties:

(a) if S = V Φ|≤x for an existentially quantified variable x, then for any f ∈
A〈<x〉 consistent with σ, σx(f) is defined and f [x→ σx(f)] ∈ A|S .

(b) if f ∈ A|S is consistent with σ, then there exist f1 ∈ B1|S , . . ., fk ∈ Bk|S
such that f = g(f1, . . . , fk) pointwise and fi is consistent with σi for all
i ∈ [k].

This suffices, since after the initial segment S = V Φ has been considered, the
sequence of mappings {σx} constitute a winning strategy. The first requirement
in the definition of a winning strategy holds because property (a) holds for all
possible initial segments S. The second requirement in the definition of a winning
strategy holds: by property (b), any assignment f ∈ A|V Φ consistent with σ is
equal to g applied point-wise to assignments f1 ∈ B1|V Φ , . . ., fk ∈ Bk|V Φ that are
consistent with σ1, . . . , σk, respectively; since the σi are winning strategies, each
fi satisfies the constraints of Φ, and since g is a polymorphism of the relations
of Φ, f satisfies the constraints of Φ.

We now give the construction.
Let S′ = V Φ

≤u be an initial segment of size |S′| ≥ 1, and let S = V Φ
<u be the

initial segment of size |S′|−1. We may assume by induction that the construction
has been performed for S. To perform the construction for S′, we consider two
cases depending on the quantifier of the variable u.

Case 1: u is an ∃-quantified variable. We consider each mapping f ∈ A|S . If
f is not consistent with σ, then we leave σu(f) undefined. If f is consistent with
σ, then in order to satisfy property (a), we need to define σu(f). Since property
(b) holds on S, there exist the described mappings f1 ∈ B1|S , . . ., fk ∈ Bk|S with
f = g(f1, . . . , fk) pointwise and with fi consistent with σi for all i ∈ [k]. Since,
for each i ∈ [k], the σi are winning strategies, there is an extension f ′i ∈ Bi|S′
of f consistent with σi. We define σu(f) as g(f ′1(u), . . . , f

′
k(u)). The mapping

f ′ = f [u → σu(f)] is in A|S′ by the ∃-freeness of A. Now, the mapping f ′

is consistent with σ, so we need to verify that property (b) holds on f ′. It is
straightforward to verify that the mappings f ′1, . . . , f

′
k serve at witnesses.

Case 2: u is a ∀-quantified variable. Clearly, property (a) is trivially satisfied
for S′, so we need only consider property (b). Suppose that f ′ ∈ A|S′ is consistent
with σ. We want to show the existence of the described mappings f ′1, . . . , f

′
k. Let

f = f ′|S . Since property (b) holds for the initial segment S, we know that there
exist f1 ∈ B1〈<u〉, . . . , fk ∈ Bk〈<u〉 such that f = g(f1, . . . , fk) pointwise and fi

is consistent with σi for all i ∈ [k]. By the definition of g-composable, there exist
extensions f ′1, . . . , f

′
k of f1, . . . , fk, respectively, to S′, satisfying the conditions

of property (b). ut

4 Applications

In the previous section, we developed some tools for giving collapsibility proofs,
and illustrated their use on positive equality constraint languages. We showed
that for any positive equality constraint language Γ , the problem QCSP(Γ) is in
NP. In this section, we give further applications of our technique.

4.1 Max-closed constraints

We consider temporal constraint languages that are closed under the binary
operation max : Q × Q → Q that returns the maximum of its two arguments.
We will demonstrate the following theorem.

Theorem 7. Let Γ be a temporal constraint language having the max operation
as polymorphism. The problem QCSP(Γ) is in NP.

Example 8. Consider the temporal constraint language (Q, R) where R is the
relation {(x, y, z) ∈ Q3 : x < y or x < z}. This constraint language has the
max operation as polymorphism: suppose (a, b, c), (a′, b′, c′) ∈ R. We want to
show that (max(a, a′),max(b, b′),max(c, c′)) ∈ R. Let us assume without loss of
generality that a > a′. We know that either a < b or a < c. If a < b, then
a < max(b, b′) and we have max(a, a′) < max(b, b′). If a < c, then a < max(c, c′)
and we have max(a, a′) < max(c, c′). ut

We now prove this theorem. Let Φ be an instance of QCSP(Γ) for a max-
closed template Γ . As in the collapsibility proof for positive equality constraint
languages, we will show a reduction to a CSP. Whereas in the case of positive
languages we gave a direct reduction to a CSP, here, we give a reduction to
a conjunction of QCSP instances, each of which has one universally quantified
variable; we argue that this ensemble can be formulated as a CSP.

Denote Φ as Q1v1 . . . QnvnC. (We assume that Φ has at least one universally
quantified variable, otherwise, it is an instance of CSP(Γ).) For a universally
quantified variable vi ∈ UΦ, we define the vk-collapsing of Φ to be the QCSP
instance

Φ′ = ∃v1 . . .∃vk−1∀vk∃vk+1 . . .∃vn(C ∧
∧
{vi > vj : i < j, j 6= k,Qj = ∀}).

That is, the vk-collapsing of Φ is obtained from Φ by adding constraints asserting
that each universal variable y (other than vk) is less than all variables coming
before it, and changing all universal quantifiers to existential except for that of
vk. It is readily verifiable that if the original QCSP(Γ) instance Φ was true, then
all of its y-collapsings (with y ∈ UΦ) are also true. We show that the converse
holds. This suffices to place QCSP(Γ) in NP, by the following lemma.

Lemma 9. Let B ⊆ Q3 be the “different-implies-between” relation defined by
B = {(x, y, z) ∈ Q3 : (x 6= z) → ((x < y < z) ∨ (x > y > z))}. Let Γ ′ be the
expansion of a temporal constraint language Γ with B and <. Given an instance

Φ of QCSP(Γ), there exists an instance Φ′ of CSP(Γ ′) that is true if and only
if Φ is true. For every constant k, the mapping Φ → Φ′ can be computed in
polynomial time on those formulas Φ with |UΦ| ≤ k.

Proof (idea). We demonstrate how to translate Φ to Φ′ iteratively by a process
that removes one universally quantified variable at a time. Let y denote the
first universally quantified variable of Φ. We may assume that Φ is of the form
∃x1 . . .∃xn∀yφ. We claim that there are polynomially (in n) many formulas
ψ1, . . . , ψm with free variables {x1, . . . , xn, y} such that:

– for any assignment f to the variables {x1, . . . , xn, y}, there exists a ψi such
that the only extension of f |{x1,...,xn} satisfying ψi is in the same orbit as f ,
that is, is of the form σ(f) for an automorphism f , and

– for any assignment f to the variables {x1, . . . , xn} and for all ψi, there is an
extension of f under which ψi is true.

This suffices, since Φ can then be rewritten as ∃x1 . . .∃xn

∧
i(∃x′i(ψi(x1, . . . , xn, x

′
i)∧

φ)). The ψi are as follows:

– For each choice of two variables x, x′ ∈ {x1, . . . , xn}, there is a ψi with
ψi(x1, . . . , xn, y) defined as B(x, y, x′).

– For each choice of variable x ∈ {x1, . . . , xn}, there is a ψi with ψi(x1, . . . , xn, y)
defined as x = y.

– There is a ψi with ψi(x1, . . . , xn, y) defined as
∧

i∈[n](xi < y).
– There is a ψi with ψi(x1, . . . , xn, y) defined as

∧
i∈[n](xi > y).

The total number of formulas ψi is
(
n
2

)
+ n+ 2 which is polynomial in n. ut

Lemma 9 can be viewed as a strong version of the well-known quantifier
elimination property for temporal constraint languages.

We want to show that if all y-collapsings of an instance Φ are true, then Φ
itself is true. How will we do this? We will first translate the truth of each y-
collapsing into a winnability result on a playspace Ay for Φ. We will then show
that each of these playspaces Ay can be expanded into a playspace A′

y that
obeys a “freeness” condition but is still winnable. We then compose together the
playspaces A′

y using Theorem 5 to derive the winnability of the full playspace
[V Φ → Q].

We translate the truth of the y-collapsings of Φ into winnability results on
playspaces, as follows. Let us say that a playspace A (for Φ) is ∀-free at z ∈ UΦ

if for every assignment f ∈ A〈<z〉, and every d ∈ D, the function f [z → d] is
contained in A〈≤z〉. For each y ∈ UΦ, it is readily verified that the truth of the
y-collapsing of Φ implies the winnability of a playspace Ay that is ∀-free at y,
and where for all t ∈ Ay it holds that t(a) > t(b) if b ∈ UΦ \ {y}, a ∈ V Φ, and a
comes before b in the quantifier prefix.

Let S ⊆ UΦ be a set of universally quantified variables. We define a playspace
A for Φ to be (S,<)-free if:

– for every variable y ∈ S, A is ∀-free at y, and

– for every variable y ∈ UΦ \S, and every assignment f ∈ A〈<y〉, there exists
an interval (−∞, dy] such that for every d ∈ (−∞, dy], the function f [y → d]
is contained in A〈≤y〉.

Our playspaces Ay are not ({y}, <)-free, but via repeated application of the
Orbit Lemma, from each playspace Ay we may obtain a winnable playspace A′

y

that is ({y}, <)-free.
We prove by induction, on the size of S, that there is a winnable playspace

A′
S that is (S,<)-free (for all S ⊆ UΦ). This suffices to show the winnability of a

(UΦ, <)-free playspace, which is ∀-free, implying the truth of Φ by Proposition 1.
Suppose k ≥ 1. By induction, we assume that we have constructed our A′

S for
|S| ≤ k. Let S′ ⊆ UΦ be of size |S′| = k+1. We want to show the winnability of
a (S′, <)-free playspace. Pick any element s0 ∈ S′ and set S = S′\{s0}. Suppose
that A′

s0
is ({s0}, <)-free with respect to {dy}y∈UΦ\{s0}, and that A′

S is (S,<)-
free with respect to {ey}y∈UΦ\S . We show the winnability of the playspace A′

S′

that is (S′, <)-free with respect to {min(dy, ey)}y∈UΦ\S′ , and also ∃-free. In par-
ticular, we prove that AS′ is max-composable from (A′

s0
,A′

S). The winnability
of AS′ then follows from Theorem 5. Let y ∈ UΦ and consider t ∈ A′

S′〈<y〉,
ts0 ∈ As0〈<y〉, tS ∈ AS〈<y〉 such that t = max(ts0 , tS) pointwise. Let d ∈ Q
be a value such that t[y → d] ∈ A′

S′ . We want to find values d1, d2 such that
d = max(d1, d2) and ts0 [y → d1] ∈ As0〈≤y〉, and tS [y → d2] ∈ AS〈≤y〉. We split
into cases.

– y = s0: we select d1 = d and d2 to be a value such that d2 ≤ d and
d2 ≤ dy. The first inequality guarantees that d = max(d1, d2) and the second
guarantees that ts0 [y → d1] ∈ As0〈≤y〉.

– y ∈ S: we select d2 = d and d1 to be a value such that d1 ≤ d and d1 ≤ ey.
This case is similar to the previous one, except we use the ∀-freeness of AS

at y, whereas in the previous case, we used the ∀-freeness of As0 .
– y ∈ UΦ \ S′: we select d1 = d and d2 = d.

4.2 Near-unanimity operations

A near-unanimity operation is an operation f : Dk → D of arity k ≥ 3 satisfy-
ing the identities f(y, x, . . . , x) = f(x, y, x, . . . , x) = · · · = f(x, . . . , x, y) for all
x, y ∈ D. Near-unanimity operations have been studied in the finite case in [17,
10]. We show that, for a constraint language Γ having a near-unanimity opera-
tion as polymorphism, the problem QCSP(Γ) essentially reduces to the problem
CSP(Γ).

Theorem 10. Suppose that Γ is a constraint language having a near-unanimity
operation g : Dk → D as polymorphism. There exists a polynomial-time com-
putable mapping that, given an instance Φ of QCSP(Γ), outputs a set S of in-
stances of QCSP(Γ) such that:

– each instance in S has at most k − 1 universally quantified variables, and
– all instances in S are true if and only if the original instance Φ is true.

Proof. Let Φ be an instance of QCSP(Γ). In this proof, we define a j-collapsing
of Φ to be an instance of QCSP(Γ) obtained from Φ by selecting a subset S ⊆ UΦ

of universally quantified variables of size |S| = j, and changing the quantifiers
of the variables UΦ \ S to existential, and adding constraints {y = y′ : y, y′ ∈
UΦ \ S} equating all of the variables in UΦ \ S. (Note that these equalities can
subsequently be eliminated by renaming and removing variables.)

Clearly, if Φ is true, all of its j-collapsings are true. We show that if the
j-collapsings of Φ are true for all j ≤ k − 1, then Φ is true. This is obvious if Φ
has k − 1 or fewer universally quantified variables, so we assume that it has k
or more universally quantified variables. It is straightforward to verify that the
truth of the j-collapsing of Φ arising from the subset S ⊆ UΦ (with |S| = j)
implies the winnability of a playspace AS (for Φ) that is ∀-free at all y ∈ S and
such that f(y′) = a for all y ∈ UΦ \ S for a fixed constant a. (See the proof of
Theorem 7 for the definition of ∀-free at y.)

We prove that for all subsets S ⊆ UΦ, there is a winnable playspace AS

(for Φ) that is ∀-free at all y ∈ S. This suffices, since then AUΦ is a winnable
playspace that is ∀-free. We prove this by induction on |S|. We have pointed
out that this is true when |S| ≤ k − 1, so assume that |S| ≥ k. Select k distinct
elements s1, . . . , sk ∈ S. For each i ∈ [k], define Si = S \ {si}. We claim that the
playspace AS that consists of all functions f : V Φ → D such that f(y) = a for all
y ∈ UΦ \ S, is g-composable from (AS1 , . . . ,ASk

). The result then follows from
Theorem 5. We verify this as follows. Let y ∈ UΦ and suppose that t ∈ AS〈<y〉
and ti ∈ ASi

〈<y〉 for all i ∈ [k] are such that t = g(t1, . . . , tk) pointwise, and d ∈
D is a value such that t[y → d] ∈ AS〈≤y〉. We want to give values d1, . . . , dk ∈ D
such that d = g(d1, . . . , dk) and ti[y → di] ∈ ASi〈≤y〉. We split into cases.

– If y = si for some i ∈ [k], we set di = a and dj = d for all other j, that is,
j ∈ [k] \ {i}.

– If y ∈ S \ {s1, . . . , sk}, we set di = d for all i ∈ [k].
– If y ∈ UΦ \ S, we set di = a for all i ∈ [k].

ut

The following is an example application of Theorem 10. Define the operation
median : Q3 → Q to be the operation that returns the median of its three
arguments. The operation median is a near-unanimity operation of arity 3.

Theorem 11. Suppose that Γ is a temporal constraint language having the
median operation as polymorphism. The problem QCSP(Γ) is in NP.

Proof. We use the reduction of Theorem 10 along with Lemma 9 to obtain a
reduction to CSP(Γ ′) for a temporal constraint language Γ ′. ut

References

1. Manuel Bodirsky. Constraint satisfaction with infinite domains. Ph.D. thesis,
Humboldt-Universität zu Berlin, 2004.

2. Manuel Bodirsky. The core of a countably categorical structure. In Volker Diekert
and Bruno Durand, editors, Proceedings of the 22nd Annual Symposium on The-
oretical Aspects of Computer Science (STACS’05), Stuttgart (Germany), LNCS
3404, pages 100–110, Springer-Verlag Berlin Heidelberg, 2005.

3. Manuel Bodirsky and Hubie Chen. Quantified equality constraints. Manuscript,
2006.

4. Manuel Bodirsky and Jan Kára. The complexity of equality constraint lan-
guages. In Proceedings of the International Computer Science Symposium in Russia
(CSR’06), LNCS 3967, pages 114–126, 2006.

5. F. Boerner, A. Bulatov, A. Krokhin, and P. Jeavons. Quantified constraints: Al-
gorithms and complexity. In Proceedings of CSL’03, LNCS 2803, pages 58–70,
2003.

6. A. Bulatov and V. Dalmau. A simple algorithm for Mal’tsev constraints. SIAM
J. Comp. (to appear).

7. A. Bulatov, A. Krokhin, and P. G. Jeavons. Classifying the complexity of con-
straints using finite algebras. SIAM Journal on Computing, 34:720–742, 2005.

8. Andrei Bulatov, Andrei Krokhin, and Peter Jeavons. The complexity of maximal
constraint languages. In Proceedings of STOC’01, pages 667–674, 2001.

9. Andrei A. Bulatov. A dichotomy theorem for constraints on a three-element set.
In FOCS’02, pages 649–658, 2002.

10. Hubie Chen. The computational complexity of quantified constraint satisfaction.
Ph.D. thesis, Cornell University, August 2004.

11. Hubie Chen. Collapsibility and consistency in quantified constraint satisfaction.
In AAAI, pages 155–160, 2004.

12. Hubie Chen. Quantified constraint satisfaction, maximal constraint languages, and
symmetric polymorphisms. In STACS, pages 315–326, 2005.

13. Victor Dalmau. Generalized majority-minority operations are tractable. In LICS,
pages 438–447, 2005.

14. T. Feder and M. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM
Journal on Computing, 28:57–104, 1999.

15. Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. The complexity of quan-
tified constraint satisfaction problems under structural restrictions. In IJCAI 2005,
2005.

16. Wilfrid Hodges. A shorter model theory. Cambridge University Press, 1997.
17. Peter Jeavons, David Cohen, and Martin Cooper. Constraints, consistency and

closure. AI, 101(1-2):251–265, 1998.
18. Ph. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint

satisfaction. In Proceedings of PODS’98, pages 205–213, 1998.
19. Dexter Kozen. Positive first-order logic is NP-complete. IBM Journal of Research

and Development, 25(4):327–332, 1981.
20. Guoqiang Pan and Moshe Vardi. Fixed-parameter hierarchies inside PSPACE. In

LICS 2006. To appear.
21. Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential

time: Preliminary report. In STOC, pages 1–9, 1973.

