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Abstract. A regular language L is called dense if the fraction fm of
words of length m over some fixed signature that are contained in L tends
to one if m tends to infinity. We present an algorithm that computes the
number of accumulation points of (fm) in polynomial time, if the regular
language L is given by a finite deterministic automaton, and can then
also efficiently check whether L is dense. Deciding whether the least accu-
mulation point of (fm) is greater than a given rational number, however,
is coNP-complete. If the regular language is given by a non-deterministic
automaton, checking whether L is dense becomes PSPACE-hard. We will
formulate these problems as convergence problems of partially observable
Markov chains, and reduce them to combinatorial problems for periodic
sequences of rational numbers.

1 Introduction

In computational logics, the complexity of almost-sure validity became a
fundamental question to logical formalisms, besides e.g. the complexity
of membership test and validity. Grandjean [9] showed that almost-sure
validity for first-order logic in the finite is PSPACE-complete, whereas
validity in the finite is undecidable, by Trakhtenbrot’s theorem.

If we are considering formal languages, the corresponding concept to
almost-sure validity is the limit behavior of the density of a language. The
density of a language L over the alphabetΣ is the sequence (fm)∞m=0 of the

fractions of words of lengthm in the language, fm =df
|L∩Σm|
|Σ|m . The density

of regular languages has already been studied in [2], and the methodology
to analyze it using formal power series is standard by now [11]. It is known
that (fm)m has finitely many rational accumulation points [2]. However,
to the best of our knowledge the algorithmic complexity of e.g. computing

1 Supported by the Deutsche Forschungsgemeinschaft (DFG) within the European
graduate program ‘Combinatorics, Geometry, and Computation’ (No. GRK 588/2).
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Fig. 1. Periodic and reducible Markov chain where the probability that the system is
in the set {2, 5, 7} converges to 1

2
.

the number of accumulation points of (fm) has not yet been discussed. We
show that the computation of lim inf fm is coNP-hard, whereas lim fm can
be computed in time O(n3), if n is the size of the deterministic automaton
accepting L. If the language is given by a nondeterministic automaton,
the problem to decide whether the accepted language is dense becomes
PSPACE-hard.

Partially observable Markov chains. The density problem for a determin-
istic automaton can be translated into a convergence problem for Markov
chains. We view fm as the probability that a word of length m, chosen
uniformly at random, leads to an accepting state in the given finite deter-
ministic automaton. The automaton can then be considered as the state
space of a finite Markov chain, having transitions with probability 1

|Σ| for
every labeled edge in the finite deterministic automaton. The accepting
states of the automaton are the so-called set of observable states in the
Markov chain. We are interested in the probability that the system is in
the far future in this observable set of states.

The specification and verification of long-run average properties of
probabilistic systems was recently studied by de Alfaro [6]. De Alfaro also
presents efficient algorithms for model checking these long-time average
properties using stable-state distributions of Markov chains. However, in
general the Markov chain for the automaton is not aperiodic, and we are
not interested in the average behaviour, but rather in the probability of
a property of the system at some specific time point in the far future.
There might be a limit probability, even though there is no stable-state
distribution (see Fig. 1).

We show that computing the minimal or maximal accumulation point
of (fm) is coNP-complete. This means that we cannot expect to find
an efficient algorithm that computes the minimum probability that a



3

1 1 3 0 2 2 . . .
+ 2 4 4 6 6 3 3 5 5 7 . . .
+ 6 4 2 3 1 4 5 3 1 2 5 3 4 2 0 . . .
= 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 . . .

Fig. 2. A visualization of a sum of periodic sequences with period one.

system has a certain property after a long run. However, it is possible to
compute all the accumulation points in time polynomial in their number.
In particular, if a property has a limit probability, i.e. if there is only one
accumulation point, we will present an efficient algorithm to determine
its value. Another problem will be the computation of the number of
accumulation points.

Periodic Sequences of Rational Numbers. We will reduce the probabilis-
tic problems above to equivalent combinatorial problems for periodic se-
quences. A periodic sequence over some field X is an infinite sequence
(α[m])∞m=0 of elements in X such that there is an integer p > 0 so that
α[m] = α[m+ p] for all m ≥ 0. The least such integer is called the period

|α| of α. If we add two sequences α and β componentwise, the result is ob-
viously again a periodic sequence, and the period is at most lcm(|α|, |β|).
But sometimes a set of periodic sequences adds up to a sequence with
a shorter period. Consider for example the sequences in Figure 2. The
largest possible length of the sum of the sequences is lcm(6, 10, 15) = 30,
but in fact their sum has period one. We will investigate how to com-
pute the sum of a set of periodic sequences without evaluating a possibly
exponential number of entries in the sum.

2 Preliminaries

The long run behavior of the density of a deterministic finite automaton
can be seen as a probabilistic process. If the regular language is given by a
nondeterministic automaton, we first have to determinize the automaton,
which might lead to an exponential blow-up of the size of the automaton.
In fact, in this case the problem whether the language has a limit density
becomes hard for PSPACE.

Proposition 1. The problem to decide for a given nondeterministic fi-

nite automaton whether it accepts a dense language is PSPACE-hard.
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Proof. (sketch) We can adapt the classical proof showing that the non-
universality problem for nondeterministic finite automata is PSPACE-
hard [1]: Let M be a Turing Machine M accepting a language in polyno-
mial space and let x an input. We can encode machine configurations (i.e.,
tape contents, state and head position) as words w, and computations of
M as words #w1# · · ·#wk#. We can construct a (nondeterministic) au-
tomaton of size polynomial in M and x that rejects exactly the words
#w1# · · ·#wk#v where w1, . . . , wk represents an accepting computation
of M on x and v is any word.

Clearly if there is such an accepting computation of M on x and n is
the length of its representation, then the density of the language accepted
by the automaton is at most 1 − 1/n < 1. Conversely, this language is
dense (in fact, universal) if x is not accepted by M . #$

To deal with the deterministic case, we recall in this section some
notions common in the Markov chain literature.

Definition 1. A partially-observable Markov chain (POM) can be de-

scribed by a tuple (V,A, s0, O) consisting of a finite set V of states and

a function A : V 2 → [0, 1] specifying transition probabilities1 , i.e. we

have that
∑

u∈V A(u, v) = 1 for all v ∈ V . The |V |-dimensional vector

s0 is called the initial distribution. The set O ⊆ V denotes the set of

observable states.

If we identify V with {1, . . . , |V |}, the transition function A can be seen
as a |V |× |V |-matrix of rational numbers. This matrix A = (aij)i,j∈V
determines a directed weighted quasi graph, the transition graph, where
there is an edge from v to u if auv )= 0. We will freely use graph theoretic
notions, and call a POM strongly connected (or irreducible), if its tran-
sition graph is. Strongly connected components of the transition graph
with no outgoing edges are called terminal components. For simplicity we
will identify a POM with its transition matrix or its transition graph, if
initial distribution and labeling are clear from the context.

The periodicity of a strongly connected component in a POM is the
greatest common divisor of the length of all the cycles in the underlying
transition graph. The periodicity of a POM is the least common multiple

1 Note that we assume that the transition probabilities are real numbers. When an-
alyzing the running time of algorithms dealing with POMs we will only count the
number of additions and multiplications of field elements that we have to perform.
For the application to densities of regular languages it suffices to represent the prob-
abilities by rational numbers, and thus we will separately mention how to deal with
rational numbers.
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of the periodicities of its terminal components. A POM is called aperi-

odic if its periodicity is one. An aperiodic and irreducible POM is called
ergodic. We can draw POMs as graphs like in Figure 1 on page 2, where
we can see a transition graph of periodicity four.

A distribution s is a |V |-dimensional vector of numbers from [0, 1]. We
denote the i-th component of this vector by (s)i. A run of a POM is an
(infinite) sequence (sm)∞m=0 of distributions, where s0 is the initial distri-
bution, and si is defined to be Asi−1, for i ≥ 1. A stable-state distribution
s is a distribution such that As = s.

For POMs we are not interested in stable-state distributions, but in
the long-run behaviour of the sequence of probabilities (fm)∞m=0 that the
system is in the set of observable states, where fm :=

∑

v∈O(sm)v. These
are the problems for POMs we are investigating:

1. Check whether (fm) converges.
2. Determine the minimal accumulation point of (fm).
3. Determine the number of accumulation points of (fm).
4. Determine the accumulation points of (fm).

Convergence of aperiodic and irreducible Markov chains reduces to
finding a stable state distribution of the Markov chain (see e.g. [3]):

Theorem 1 (Basic Limit Theorem). Let A be an aperiodic and ir-

reducible POM. Then limm→∞Ams exists for all initial distributions s,
and is independent of s.

Moreover, we can efficiently find this limit distribution by finding the
eigenvector to the eigenvalue 1 of A, i.e. solving a linear equation system.
Since the POMs considered in this paper are in general neither aperiodic
nor strongly connected, we cannot apply this theorem directly.

3 Reducing the problem

In this section show how to reduce the convergence problems mentioned
in Section 2 to combinatorial problems of periodic sequences. The facts of
this section are all essentially known [7], but we state them to emphasize
their algorithmic aspects.

Let (V,A, s,O) be a POM, and suppose we are interested in the se-
quence of probabilities fm that the system at time point m is in the set of
observed states O. Only states in terminal components can contribute to
the value of the accumulation points of fm (see [7]), since the probability
that the POM is in any other state converges to zero.
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Compute-Limit(B, s)
1 Compute terminal components B1, . . . , Bq.
2 for v : v /∈ B1 ∪ · · · ∪Bq

3 do reduce self loops at v
4 reduce edges to v.
5 for i = 0, . . . , q
6 do λi ←

∑
v∈V, u∈Bi

(s)v Avu

7 bi ← Eigenvector to eigenvalue 1 of
8 the transition matrix of Bi.
9 return the vector

∑q
i=1

λibi .

Fig. 3. Computing the density of an aperiodic POM. This procedure is used by the
algorithm in Figure 4. The sub-procedures reduce solf loops and reduce edges, and
correctness proofs can be found at [4].

Compute-Period(A, s)
1 Compute subchains A1, . . . , Ap

2 induced by the terminal components
3 of periodicity l1, . . . , lp.
4 for i = 0, . . . , p; j = 0, . . . , li − 1
5 do αi[j] ←

∑
v∈O(Compute-Limit(Ali, Ajs))v.

6 return α1, . . . ,αp.

Fig. 4. The reduction of the convergence problems to period problems, calling the
procedure Compute-Limit of Figure 3. Periodicities of directed graphs are easy to
compute (see, e.g., [10]).

The main idea is to analyze each terminal component separately, com-
puting the periodic contribution of every terminal component to the prob-
abilities fm. To this end we introduce the notion of a subchain of a POM:
Given a set of states S, we replace all the outgoing edges of states that
do not have a path into S by a self-loop.

Definition 2. Let (V,A, s,O) be a POM, and S ⊆ V be a set of states.

Then we will define the subchain (V,B, s,O) of A induced by S. The

transition function of B is defined for all u, v ∈ V by

B(u, v) :=











A(u, v) if there is a path in A from u into S

1 if u = v, and there is no path in A from u into S

0 otherwise

Obviously, an induced subchain is a POMas well. Let l1, . . . , lp be the peri-
odicity of the subchains A1, . . . , Ap induced by the terminal components.
Thus the periodicity of the POM is l := lcm(l1, . . . , lp).
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Now for each of these subchains Ai and for 0 ≤ j < li, we define

αi[j] := lim
m→∞

∑

v∈O

(Amli+j
i s)v (1)

As we will see in the next proposition, these limits exist and can be
computed. The proposition states that the global accumulation points can
be computed using the periodic contributions of the subchains induced
by the terminal components:

Proposition 2. Let A be a POM, and A1, . . . , Ap the subchains induced

by the terminal components S1, . . . , Sp. Let li denote the periodicity of Ai,

and l := lcm(l1, . . . , lp) the periodicity of A. Then for every v ∈ Si and

every initial distribution s the following limits exists and can be computed,

and we have:

lim
m→∞

(Alms)v = lim
m→∞

(Alim
i s)v (2)

In particular, limm→∞ fml+j =
∑

1≤i≤p αi[j]. A proof and an algorithm
for computing the αi can be found in the full version of the paper at [4].

4 Periodic Sequences of Field Elements

In the previous sections we saw how to compute certain characteristic
periodic sequences of rational numbers that describe the long run be-
haviour of a POM with respect to the sequence of probabilities (fm) that
the system is in an observed state. If we want to know whether this prob-
ability converges, it suffices to check whether all accumulation points are
equal. In this section we present a polynomial time algorithm that avoids
to check in a brute-force way exponentially many different entries in the
periodic sequence of the sum.

A sequence (α[i])∞i=0 of elements over some set X is periodic if there
is an integer p > 0 so that α[m] = α[m+ p] for all m ≥ 0. The least such
integer is called the period |α| of α. Here we are interested in algorithmic
problems for periodic sequences over real (or rational) numbers, and thus
we assume that X is a field. In Section 2 we asked several questions
concerning the convergence of POMs. By the reduction of the previous
section they correspond to the following problems for periodic sequences
of integers α1, . . . ,αk, where a periodic sequence α is given by a finite
sequence α[0], . . . ,α[|α| − 1] of elements in X:
Let β be the sequence defined by β[j] :=

∑k
i=1 αi[j];
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1. Check whether |β| = 1.
2. Determine the minimal element min{β[i] | 0 ≤ i < |β|} of the periodic

sequence β.
3. Determine the length |β| of the sequence β.
4. Determine the entries of the periodic sequence β.

These problems are in fact polynomial time equivalent to the correspond-
ing problems for POMs: Assume we are given a set of periodic integer
sequences. It is then easy to specify a POM and an observation set such
that the respective convergence problem leads to the corresponding period
sum problem.

For Problem 4, we have to measure the complexity of an algorithm in
both n as above and m := |β|, because in this case the size of the output
β itself might be exponential. The second problem turns out to be hard:

Proposition 3. The problem to determine whether the minimal element

in the sum of given periodic sequences is greater or equal than a given

value k is coNP-complete.

This can be proven by reduction of the complement of the NP-complete
problem simultaneous inequalities [8], which stays hard even if the num-
bers of the instance are represented in unary (by inspection of the NP-
hardness proof given in [12]). A proof can be found in the full version of
the paper available at [4]. In the next section we will show that there is
an efficient algorithm for Problem 1, 3 and 4.

5 An Efficient Algorithm for Periods over the Rationals

The main idea of the algorithms for the period sum problems presented
here is to represent a periodic sequence α as the power series pα(X)
defined by

∑∞
i=1 α[i−1]X−i. Let l := |α|; it is easy to verify the following

closed representation of this power series:

pα(X) =

∑l−1
i=0 α[i]X

l−i−1

X l − 1
.

Given any fraction of polynomials such that the denominator divides
X l − 1, this fraction can be expanded to such a representation of a pe-
riodic sequence. The sequence can then be determined by dividing the
numerator by the denominator with a polynomial division; this can eas-
ily be verified for a denominator X l − 1 and must therefore hold for any
divisor of X l − 1, because the result of a polynomial division is invariant
under expansion and cancelation of the fraction.
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For the period problems we are given the sequences α1, . . . ,αk, and
want to analyze their sum. Adding up the fractions pα1

(X), . . . , pαk
(X)

yields a fraction representation u
v of the sum of the sequences. We would

like to compute the potentially exponential period of u
v without actually

computing the entries of the periodic sequence. For the denominator v,
we first compute the least common multiple of the denominators of all
summands; since these are of the form X l − 1, their zeroes are exactly
all l-th roots of unity. We can therefore represent v by the list of its
roots of unity. The entries of the list are stored as fractions pj

qj
such that

zj = exp(pjqj 2πi) is the j-th root of unity in the list. For each zj in the

list, we test whether u also evaluates to 0 at zj . If so, zj can be canceled,
and we eliminate it from the list.

We would like to compute the period of the resulting representation,
i.e. the minimal m such that the fraction has denominator Xm− 1. Since
every remaining zj in the list is an l-th root for every multiple l of qj,
it suffices to find the minimal m that is a multiple of every qj. Thus the
period m is the smallest common multiple of the qj.

If we are given periodic sequences of rational numbers, testing whether
the numerator is zero at a root of unity can be done numerically. We
first calculate the greatest common divisor of the numerator and the
denominator, which is guaranteed to have only roots of unity as zeros.
The minimal distance between two roots of unity is 2π times the distance
of their representing fraction, which is limited by the inverse of the input
size, and we can therefore test whether the polynomial contains a certain
root of unity with a linear number of bits of precision. To approximate
the values at the roots of unity up to n bits we need O(n2 log n) time.

To actually compute the entries of the sequence sum (Problem 4) we
perform the division of u

v step by step, and stop after m steps.

Proposition 4. Let n := |α1|+ · · ·+ |αk| be the size of a set of periodic

integer sequences, and m := |α1 + · · ·+αk| the length of their sum. Then

the problem to calculate m is in O(n2 log n log log n). Computing the en-

tries of the sum takes O(n2 log n log log n+m) operations. In particular,

we can check in O(n2 log n log log n) whether the sum has period one.

Proof. The dominating step with respect to the input size n is the re-
duction of the at most n fractions to higher terms before adding them:
Assuming an n log n log log n multiplication algorithm (see e.g. [5]), the
algorithm runs within O(n2 log n log log n). For large m, the performance
of the division is the bottleneck, requiring m operations. #$
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6 Conclusion

We reduced the problem to determine the limit behaviour of regular lan-
guages to convergence problems for partially observable Markov chains.
In this more general setting we reduced the problem to combinatorial
period problems over fields that can be solved efficiently using power se-
ries representations. It is possible to efficiently compute the potentially
exponential number of accumulation points of the density of a regular
language given by a deterministic automaton. Moreover, we presented
an algorithm that computes the accumulation points in time polynomial
in the input and output. The overall running time of the algorithms for
the tractable cases is dominated by the reduction to period problems over
rational numbers, which involves the solution of a linear equation system.

If the language is given by a nondeterministic algorithm, we proved
that the density problem is PSPACE-hard; we do not know whether it is
PSPACE-complete. We would also like to know the computational com-
plexity of checking whether a context free language, given by a generating
grammar, is dense, i.e., its density converges to one.
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