
INTEGER PROGRAMMING WITH 2-VARIABLE EQUATIONS AND
1-VARIABLE INEQUALITIES

MANUEL BODIRSKY, GUSTAV NORDH, AND TIMO VON OERTZEN

Abstract. We present an efficient algorithm to find an optimal integer solution of a given
system of 2-variable equalities and 1-variable inequalities with respect to a given linear
objective function. Our algorithm has worst-case running time in O(N2) where N is the
number of bits in the input.

1. Introduction

We present an efficient algorithm to find an optimal integer solution of a given system of 2-
variable equalities and 1-variable inequalities with respect to a given linear objective function.
More precisely, the input consists of

• a finite set of variables x1, . . . , xn,
• equations of the form ax + by = c where x and y are variables, and a, b, c are rational

numbers,
• inequalities of the form x ≤ u or x ≥ l, where x is a variable and u, l are rational

numbers, and
• a linear objective function

∑n
i=1 wixi where the the wi’s are rational numbers.

The task is to find an assignment of integer values to the variables x1, . . . , xn such that all
equations and inequalities are satisfied and the function

∑n
i=1 wixi is maximized.

If instead of 2-variable equalities we are given 2-variable inequalities, then the problem
obviously becomes NP-hard (this can be seen by a reduction from the maximum independent
set problem). If instead of 2-variable equalities we are given 3-variable equalities, then the
problem again becomes NP-hard. This follows by a trivial reduction from the NP-complete
problem 1-in-3-SAT [7], where each 1-in-3 clause 1-in-3(x, y, z) is reduced to x + y + z = 1,
x, y, z ≥ 0. Hence, 2-variable equalities and 1-variable inequalities is a maximal tractable
class in the sense that allowing longer equalities or longer inequalities results in NP-hard
problems.

We remark that finding integer solutions to linear equation systems without inequalities is
tractable [4], and has a long history. Faster algorithms have been found in for example [2, 10].
Integer programming can also be solved in polynomial time if the total number of variables is
two [6]; Lenstra [5] has generalized this result to any fixed finite number of variables. See [3]
for one of the fastest known algorithms for 2-variable integer programming, and for more
references about linear programming in two dimensions.

In our algorithm for a system of 2-variable equalities and 1-variable inequalities over the
integers we use the fact that such equation systems reduce to systems that define a one-
dimensional solution space. This idea was also used by Aspvall and Shiloach [1] in their
algorithm for solving systems of 2-variable equations over the rational numbers. We use this
fact to compute an optimal integer solution by solving a system of modular equations in

1



2 MANUEL BODIRSKY, GUSTAV NORDH, AND TIMO VON OERTZEN

polynomial time. One of our contributions is to show that the necessary computations can
be performed in total quadratic time in the input size.

Since the problem to decide whether a single 2-variable equation ax+by = c with a, b, c ∈ Z
has an integer solution for x, y is equivalent to deciding whether the gcd of a and b is a divisor
of c, we cannot expect an algorithm for our problem that is faster than gcd computations.
There are sub-quadratic algorithms for computing the gcd of two N bit integers with run-
ning times in O(log(N)M(N)), where M(N) is the bit-complexity of multiplying two N bit
integers [8]. Using the classical Schönhage Strassen [9] integer multiplication algorithm, this
gives a running time for gcd in O(N(log(N))2log(log(N))).

We view it as an interesting open problem whether integer programming over 2-variable
equalities and 1-variable inequalities can be shown to be no harder than gcd computations,
i.e., with a running time of O(G(N)) where G(N) is the bit complexity of computing gcd of
two N bit integers. We also emphasize that the quadratic time algorithm we give does not
rely on sub-quadratic algorithms for multiplication, division, or gcd.

2. Preliminaries

The (representation-) size of an integer a is the length of its binary encoding. The size of
the input is denoted by N throughout this paper and is defined to be the sum of the sizes
of all the numbers in the input. Addition and subtraction are computable in time O(log(b))
time on input (a, b) ∈ Z2 where a ≤ b. Multiplication, division, and gcd are computable in
O(log(a)log(b)) time on input (a, b) ∈ Z2.

The following simple lemma is useful in the complexity analysis of our algorithm.

Lemma 1. Given a tuple (a1, . . . , an) ∈ Zn and binary functions f1, . . . , fm from Z2 to Z,
where each fi is computable in O(log(a)log(a′)) time on any input (a, a′) ∈ Z2. Then, any
n-ary function h(x1, . . . , xn) from Zn to Z expressible in terms of the functions f1, . . . , fm

with the restriction that no argument xi appears more than once in this arithmetic expression
can be computed in time O((

∑n
i=1 log(ai))2) on input (a1, . . . , an).

Proof. The proof is by induction on n, the arity of the function h(x1, . . . , xn). The basis n = 2
holds since each function fi is computable in O(log(a1)log(a2)) time on input (a1, a2) and
log(a1)log(a2) ≤ (log(a1)+ log(a2))2. Let T (a1, . . . , an) denote the time it takes to compute h
on input (a1, . . . , an) and use T (a1, . . . , an) ≤ (

∑n
i=1 log(ai))2 as induction hypothesis. Now,

given h(x1, . . . , xn+1) = fi(h(x1, . . . , xj), h(xj+1, . . . , xn+1)), then

T (a1, . . . , an+1) ≤ T (a1, . . . , aj) + T (aj+1, . . . , an+1) + log(a1 . . . aj)log(aj+1 . . . an+1)

≤

(
j∑

i=1

log(ai)

)2

+

 n+1∑
i=j+1

log(ai)

2

+ 2

(
j∑

i=1

log(ai)

) n+1∑
i=j+1

log(ai)

 =

(
n+1∑
i=1

log(ai)

)2

�

3. Reduction to an acyclic system

We show how to partition the system of equations into independent subsystems, each
having a one-dimensional solution space (i.e., the solution space can be expressed using one
free parameter). The graph of an instance of our problem is the graph that has a vertex for
each variable and an edge for each equation (connecting the two vertices corresponding to
the variables in the equation). A instance of our problem is called an acyclic (or connected)



INTEGER PROGRAMMING WITH 2-VARIABLE EQUATIONS AND 1-VARIABLE INEQUALITIES 3

system if the graph of the system is acyclic (or connected, respectively), and a connected
component of a system F is a subsystem of F whose graph is a connected component of the
graph of F .

Proposition 2. There is an O(N2) time algorithm that computes for a given system of two
variable linear equations an equivalent acyclic subsystem.

Proof. If the system is not connected, then it can be split into its connected components that
can be treated independently. So we assume in the following that the system is connected.

If the system is acyclic, then we are done. Hence, assume that the graph contains at
least one cycle. Note that a system of equations corresponding to a cycle on n vertices has n
variables and n equations, which means that if no equation in the cycle is redundant, then the
system has at most one solution. Arbitrarily choose a variable x (with the goal of expressing
every other variable in terms of x) and express it as x = 1x + 0. The propagation to the
rest of the graph is done as follows. If a variable y has been expressed as y = a′x + c′ and
there is an equation ay + bz = c, then express z as z = a′′x + c′′ where a′′ = −aa′/b and
c′′ = (c − ac′)/b. Since the graph contains at least one cycle, we will get two expressions for
the same variable. For example, assume that z is already expressed as z = a′′′x + c′′′ (as a
result of a previous propagation step) when the expression z = a′′x + c′′ is computed above,
then subtracting these expressions results in 0 = (a′′′ − a′′)x + (c′′′ − c′′).

Now, three cases occur.

(1) If a′′′ = a′′ and c′′′ 6= c′′ then there is an inconsistency and the system has no solution.
(2) If a′′′ 6= a′′, then x = −(c′′′− c′′)/(a′′′− a′′). This implies that the system has at most

one solution, because it is connected. The existence of a solution can be checked by
propagating the value of x in the original system of equations.

(3) Otherwise, a′′′ = a′′ and c′′′ = c′′, and hence the equation ay + bz = c is redundant.
In this case the equation is removed from the system, and we continue expressing
variables in terms of x.

Hence, the process above will either terminate with (1) the conclusion that the system
has no solution satisfying the unary inequalities, (2) the unique solution satisfying the unary
inequalities, or (3) an equivalent acyclic subsystem.

To see that the algorithm above runs in quadratic time, observe that all multiplication and
division operations involved, with the exception of the division in case (2) above, take one of
its two arguments, say ai, directly from the input. Hence, leaving out the division in case (2)
above, the cost of all these operations is bounded by O(

∑n
i=1(log(a1 . . . ai−1ai+1 . . . an)log(ai))

≤ O(N
∑n

i=1 log(ai)) = O(N2), where a1, . . . , an are the numbers in the input (i.e., N =∑n
i=1 log(ai)). Now, the division in case (2) above is in O(N2) and need only be performed

at most once for each independent system of equations since in this case we know that the
system has at most one solution. In this case, by a similar argument as above, the propagation
step to determine the solution is also performed in time O(N2). �

The final step in this section is to translate the upper and lower bounds on the variables into
an upper and lower bound on the parameter x. If y has the upper bound u and the expression
for y is y = ax + c, then in case that a is positive we get the bound b(buc − c)/ac ≥ x, and
in case a is negative we get the bound d(buc − c)/ae ≤ x. Lower bounds l on y are treated
analogously. After translating all bounds we can obtain the strongest upper bound and lower
bound on x, denoted u∗ and l∗ respectively (obviously, if u∗ < l∗, then there is no solution).



4 MANUEL BODIRSKY, GUSTAV NORDH, AND TIMO VON OERTZEN

4. Expression for the solution space in terms of one free parameter

In this section we start with an acyclic connected system of equations and compute a one
parameter expression for the solution space over Z. Assume for the sake of presentation that
the coefficients a, b, c in all equations ax+by = c are integer. This is without loss of generality
since every equation can be brought into this form by multiplying both sides of the equation
by the product of the denominators of a, b, and c. This can clearly be done in quadratic time
and increases the bit size of the input by at most a constant factor.

Check that each individual equation ax + by = c has integer solutions. Recall that a
Diophantine equation of the form ax + by = c has integer solutions if and only if gcd(a, b)|c.
Simplify the equations by dividing a, b, and c by gcd(a, b). In the resulting system we now
have gcd(a, b) = 1 for each equation ax + by = c.

Proposition 3. There is an O(N2) time algorithm for solving acyclic connected systems of
two variable equations over the integers.

Proof. We perform a depth-first search on the graph of the system, starting with any variable
x from the system. The goal is to find an expression for the solution space of the form x ≡ s
(mod t). That is, the assignment x := i can be extended to an integer solution to the entire
system if and only if i ≡ s (mod t).

If we enter a variable y in the DFS and y has an unexplored child z, then continue recursively
with z. If z is a leaf in the tree, meaning that there is a unique equation ay + bz = c where
z occurs, then rewrite the equation as ay ≡ c (mod b). Note that an assignment y := i
can be extended to a solution of ay + bz = c if and only if ai ≡ c (mod b). Compute the
multiplicative inverse a−1 of a (mod b) (which exists since gcd(a, b) = 1 and can be retrieved
from the gcd computation). The congruence above can now be rewritten as y ≡ c′ (mod b)
where c′ = ca−1. If all children of y have been explored, then y is explored and we backtrack.

If v is the parent of y through the equation dv+ey = f , then rewrite the equation using the
congruence y ≡ c′ (mod b), into dv + e(c′ + kb) = f which is equivalent to dv + ebk = f − ec′.
Check that gcd(d, eb)|(f − ec′) (otherwise there is no solution and we reject) and divide d, eb,
and f − ec′ by gcd(d, eb) giving the equation d′v + e′k = f ′ with gcd(d′, e′) = 1. Rewrite this
equation as the congruence d′v ≡ f ′ (mod e′) which in turn is rewritten as v ≡ f ′′ (mod e′)
by multiplying both sides with the multiplicative inverse of d′ (mod e′) (which again exists
since gcd(d′, e′) = 1).

Suppose that v already has an explored child (with congruence v ≡ c (mod b)) when we
have finished exploring another child of v, giving rise to the congruence v ≡ c′ (mod b′). We
then combine these congruences in a similar fashion as discussed above already twice (by
computing greatest common divisors and multiplicative inverses).

The result (if a solution exists) is a congruence v ≡ c′′ (mod b′′), which replaces the two
old congruences, and we continue the depth first search.

To see that the algorithm runs in quadratic time, note that the depth first search in the
tree described above is nothing else than an evaluation of an arithmetic expression involving
addition, subtraction, multiplication, division, and gcd computations. The fact that the
arithmetic expression in our graph representation is acyclic guarantees that no argument
appears more than once in the arithmetic expression (in the sense of Lemma 1). Hence, since
all the operations involved are computable in O(log(a)log(b)) time on arguments (a, b) ∈ Z2,
we can apply Lemma 1 to get the desired bound of O(N2). �



INTEGER PROGRAMMING WITH 2-VARIABLE EQUATIONS AND 1-VARIABLE INEQUALITIES 5

5. Computing an optimal solution

We combine the results from the previous sections and obtain the desired result.

Theorem 4. There is an algorithm that computes the optimal solution of a given integer
program with 2-variable equalities and 1-variable inequalities in O(N2) time, where N is the
number of bits in the input.

Proof. Note that we trivially get an optimal solution to the original problem by computing
an optimal solution to each connected component of the system (if it exists; if there exists a
component that has no feasible solution, we return ‘no feasible solution’ and terminate).

We are given the expression x ≡ s (mod t) for the solution space from the previous section
and the upper and lower bounds on x, u∗ and l∗ respectively, from Section 3. Since x ≡ s
(mod t) is a one parameter expression for the solution space, all solutions lie on a line in Rn.
Since the goal function is linear and all solutions lie on a line, the goal function is increasing
along one direction of this line and decreasing in the other direction, unless the goal function
is orthogonal to the solution space, in which case all solutions are equally good and we return
any solution.

We evaluate the goal function on the solutions we get by assigning u∗ and l∗ to x, re-
spectively. Assume u∗ gives the best value for the goal function, meaning that the goal
function is increasing for increasing x. The largest value of x ≤ u∗ satisfying x ≡ s (mod t)
is s+ tb(u− s)/tc. We propagate this assignment to the rest of the system to get the optimal
solution to our original problem. Again it should be clear (by similar reasoning as in the
previous sections) that the necessary computations can be done in O(N2) time. �

References

[1] B. Aspvall and Y. Shiloach. A fast algorithm for solving systems of linear equations with two variables
per equation. Linear Algebra and its Applications, 34:117–124, 1980.

[2] T. Chou and G. Collins. Algorithms for the solution of systems of linear diophantine equations. SIAM J.
Comput., 11(4):687–708, 1982.

[3] F. Eisenbrand and S. Laue. A linear algorithm for integer programming in the plane. Math. Program.,
102(2):249–259, 2005.

[4] R. Kannan and A. Bachem. Polynomial algorithms for computing the smith and hermite normal forms of
an integer matrix. SIAM J. Comput., 8(4):499–507, 1979.

[5] H.W. Lenstra. Integer programming with a fixed number of variables. Mathematics of Operations Research,
8(4):538–548, 1983.

[6] H. E. Scarf. Production sets with indivisibilities. part ii: The case of two activities. Econometrica, 49:395–
423, 1981.

[7] T. Schaefer. The complexity of satisfiability problems. In STOC, pages 216–226, 1978.
[8] A. Schönhage. Schnelle berechnung von kettenbruchentwicklungen. Acta Inf., 1:139–144, 1971.
[9] A. Schönhage and V. Strassen. Schnelle multiplikation großer zahlen. Computing, 7:281–292, 1971.

[10] A. Storjohann and G. Labahn. Asymptotically fast computation of hermite normal forms of integer ma-
trices. In ISSAC, pages 259–266, 1996.

École Polytechnique, LIX (CNRS UMR 7161), Palaiseau, France
E-mail address: bodirsky@lix.polytechnique.fr

École Polytechnique, LIX (CNRS UMR 7161), Palaiseau, France
E-mail address: nordh@lix.polytechnique.fr

Max Planck Institute for Human Development, Berlin, Germany
E-mail address: vonoertzen@mpib-berlin.mpg.de


