
Practical improvements to class group and
regulator computation of real quadratic fields

Jean-François Biasse1 and Michael J. Jacobson, Jr.2?

1 École Polytechnique, 91128 Palaiseau, France
biasse@lix.polytechnique.fr

2 Department of Computer Science, University of Calgary
2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

jacobs@cpsc.ucalgary.ca

Abstract. We present improvements to the index-calculus algorithm for
the computation of the ideal class group and regulator of a real quadratic
field. Our improvements consist of applying the double large prime strat-
egy, an improved structured Gaussian elimination strategy, and the use of
Bernstein’s batch smoothness algorithm. We achieve a significant speed-
up and are able to compute the ideal class group structure and the reg-
ulator corresponding to a number field with a 110-decimal digit discrim-
inant.

1 Introduction

Computing invariants of real quadratic fields, in particular the ideal class group
and the regulator, has been of interest since the time of Gauss, and today has a
variety of applications. For example, solving the well-known Pell equation is in-
timately linked to computing the regulator, and integer factorization algorithms
have been developed that make use of this invariant. Public-key cryptosystems
have also been developed whose security is related to the presumed difficulty of
these computational tasks. See [16] for details.

The fastest algorithm for computing the ideal class group and regulator in
practice is a variation of Buchmann’s index-calculus algorithm [6] due to Jacob-
son [14]. The algorithm on which it is based has subexponential complexity in the
size of the discriminant of the field. The version in [14] includes several practical
enhancements, including the use of self-initialized sieving to generate relations,
a single large-prime variant (based on that of Buchmann and Düllman [7] in the
case of imaginary quadratic fields), and a practical version of the required linear
algebra. This approach proved to work well, enabling the computation of the
ideal class group and regulator of a real quadratic field with a 101-decimal digit
discriminant [15]. Unfortunately, both the complexity results of Buchmann’s al-
gorithm and the correctness of the output are dependent on the Generalized
Riemann Hypothesis (GRH). Nevertheless, for fields with large discriminants,
this approach is the only one that works.
? The second author is supported in part by NSERC of Canada.

Recently, Biasse [4] presented practical improvements to the corresponding
algorithm for imaginary quadratic fields. These included a double large prime
variant and improved algorithms for the required linear algebra. The resulting
algorithm was indeed faster then the previous state-of-the-art [14], and enabled
the computation of the ideal class group of an imaginary quadratic field with
110 decimal digit discriminant.

In this paper, we describe a number of practical improvements to the index-
calculus algorithm for computing the class group and regulator of a real quadratic
field. In addition to adaptations of Biasse’s improvements in the imaginary case,
we have found some modifications designed to improve the regulator computa-
tion part of the algorithm. We also investigate applying an idea of Bernstein [3]
to factor residues produced by the sieve using a batch smoothness test. Exten-
sive computations demonstrating the effectiveness of our improvements are pre-
sented, including the computation of class group and regulator of a real quadratic
field with 110 decimal digit discriminant.

This paper is organized as follows. In the next section, we briefly recall the
required background of real quadratic fields, and give an overview of the index-
calculus algorithm using self-initialized sieving. Our improvements to the algo-
rithm are described in Section 3, followed by numerical results in Section 4.

2 Real Quadratic Fields

We present an overview of required concepts related to real quadratic fields and
the index-calculus algorithm for computing invariants. For more details, see [16].

Let K = Q(
√

∆) be the real quadratic field of discriminant ∆, where ∆ is a
positive integer congruent to 0 or 1 modulo 4 with ∆ or ∆/4 square-free. The
integral closure of Z in K, called the maximal order, is denoted by O∆. An
interesting aspect of real quadratic fields is that their maximal orders contain
infinitely many non-trivial units, i.e., units that are not roots of unity. More
precisely, the unit group of O∆ consists of an order 2 torsion subgroup and an
infinite cyclic group. The smallest unit greater than 1, denoted by ε∆, is called
the fundamental unit. The regulator of O∆ is defined as R∆ = log ε∆.

The fractional ideals of K play an important role in the index-calculus al-
gorithm described in this paper. In our setting, a fractional ideal is a rank 2
Z-submodule of K. Any fractional ideal can be represented as

a =
s

d

[
aZ+

b +
√

∆

2
Z

]
,

where a, b, s, d ∈ Z and 4a | b2 −∆. The integers a, s, and d are unique, and b
is defined modulo 2a. The ideal a is said to be primitive if s = 1, and da ⊆ O∆

is integral. The norm of a is given by N (a) = as2/d2.

Ideals can be multiplied using Gauss’s composition formulas for indefinite
binary quadratic forms. Ideal norm respects ideal multiplication, and the set

I∆ forms an infinite abelian group with identity O∆ under this operation. The
inverse of a is

a−1 =
d

sa

[
aZ+

−b +
√

∆

2
Z

]
.

The group I∆ is generated by the prime ideals of O∆, namely those integral
ideals of the form pZ+(bp +

√
∆)/2Z where p is a prime that is split or ramified

in K. As O∆ is a Dedekind domain, the integral part of any fractional ideal
can be factored uniquely as a product of prime ideals. To factor a, it suffices
to factor N (a) and, for each prime p dividing the norm, determine whether the
prime ideal p or p−1 divides a according to whether b ≡ bp or −bp modulo 2p.

The ideal class group, denoted by Cl∆, is the factor group I∆/P∆, where
P∆ ⊆ I∆ is the subgroup of principal ideals. The class group is finite abelian,
and its order is called the class number, denoted by h∆. By computing the class
group we mean computing the elementary divisors m1, . . . , ml with mi+1 | mi

for 1 ≤ i < l such that Cl∆ ∼= Z/m1Z× · · · × Z/mlZ.

2.1 The Index-Calculus Algorithm

Like other index-calculus algorithms, the algorithm for computing the class
group and regulator relies on finding certain smooth quantities, those whose
prime divisors are all small in some sense. In the case of quadratic fields, one
searches for smooth principal ideals for which all prime ideal divisors have norm
less than a given bound B1. The set of prime ideals B = {p1, . . . , pn} with
pi ≤ B1 is called the factor base.

A principal ideal (α) = pe1
1 . . . pen

n with α ∈ K that factors completely over
the factor base yields the relation (e1, . . . , en, log |α|). The key to the index-
calculus algorithm is the fact, proved by Buchmann [6], that the set of all re-
lations forms a sublattice Λ ⊂ Zn × R of determinant h∆R∆ provided that the
prime ideals in the factor base generate Cl∆. This follows, in part, due to the
fact that L, the integer component of Λ, is the kernel of the homomorphism
from Zn to Cl∆ given by pe1

1 . . . pen
n for (e1, . . . , en) ∈ Zn. If p1, . . . , pn generate

Cl∆, then this homomorphism is surjective, and the homomorphism theorem
then implies that Zn/L ∼= Cl∆.

The main idea behind the index-calculus algorithm is to find random relations
until they generate the entire relation lattice Λ. Let Λ′ denote the sublattice of Λ
generated by the relations that have been computed. To determine whether Λ′ =
Λ, one computes an approximation h∗ of h∆R∆ such that h∗ < h∆R∆ < 2h∗.
The value h∗ is obtained by approximating the L-function L(1, χ∆), where χ∆

denotes the Kronecker symbol (∆/p), and applying the analytic class number
formula. If Λ′ ⊂ Λ, then det(Λ′) is a integer multiple of h∆R∆. Thus, Λ′ = Λ
as soon as det(Λ′) < 2h∗, because h∆R∆ is the only integer multiple of itself in
the interval (h∗, 2h∗).

As described in [14], an adaptation of the strategy used in the self-initialized
quadratic sieve (SIQS) factoring algorithm is used to compute relations. First,

compute the ideal a = pe1
1 . . . pen

n = (1/d)[aZ+(b +
√

∆)/2Z] with N (a) = a/d2.
Let α = (ax + (b +

√
∆)/2y)/d with x, y ∈ Z be an arbitrary element in a. Then

N (α) =
1
d2

(
ax +

b +
√

∆

2
y

)(
ax +

b−√∆

2
y

)
= (a/d2)(ax2 + bxy + cy2)

where c = (b2 − ∆)/(4a). Because ideal norm is multiplicative, there exists an
ideal b with N (b) = ax2 + bxy + cy2 such that (α) = ab. Thus, finding x and
y such that N (b) factors over the norms of the prime ideals in the factor base
yields a relation. Such x and y can be found by sieving the polynomial ϕ(x, y) =
ax2 + bxy + cy2, and a careful selection of the ideals a yields a generalization of
self-initialization, in which the coefficients of the sieving polynomials and their
roots modulo the prime ideal norms can be computed quickly. In practice, we
use ϕ(x, 1) for sieving, so that the algorithm resembles the SIQS more closely.
For more details, see [14] or [16].

The determinant of the relation lattice Λ′ is computed in two stages. The
first step is to compute the determinant of the integer part of this sublattice
by finding a basis in Hermite normal form (HNF). Once Λ′ has full rank, the
determinant of this basis is computed as the product of the diagonal elements
in a matrix representation of the basis vectors. The group structure is then
computed by finding the Smith normal form of this matrix. The real part of
det(Λ′), a multiple of the regulator R∆, is computed by first finding a basis of
the kernel of the matrix consisting of the integer parts of the relations. Every
vector (k1, . . . , km) ∈ Zm in the kernel corresponds to a multiple of the regu-
lator computed with mR∆ = k1 log |α1| + · · · + km log |αm|. The “real gcd” of
the multiples m1R∆, . . . , mnR∆ computed from each basis vector of the kernel,
defined as gcd(m1, . . . , mn)R∆, is then the real part of det(Λ′). An algorithm
of Maurer [21] can be used to compute the real gcd efficiently and with guaran-
teed numerical accuracy given explicit representations of the αi and the kernel
vectors.

As mentioned in the introduction, the correctness of this algorithm depends
on the truth of the Generalized Riemann Hypothesis. In fact, the GRH must
be invoked in two places. The first is to compute a sufficiently accurate ap-
proximation h∗ of h∆R∆ via a method due to Bach [2]. Without the GRH, an
exponential number of terms in the Euler product used to approximate L(1, χ∆)
must be used (see, for example, [20]). The second is to ensure that the factor base
generates Cl∆. Without the GRH, an exponential size factor base is required,
whereas by a theorem of Bach [1] the prime ideals of norm less than 6 log(∆)2

suffice. In practice, an even smaller factor base is often used, but in that case,
the factor base must be verified by showing that every remaining prime ideal
with norm less than Bach’s bound can be factored over the ideals in the factor
base.

3 Practical Improvements

In this section, we describe our practical improvements for computing the class
group structure and the regulator of a the real quadratic field. Some of these
improvements, such as the double large prime variant and structured Gaussian
elimination, were used in [4] for the simpler case of imaginary quadratic number
fields. On the other hand, the batch smoothness test and system solving based
methods for computing the regulator had never been implemented in the context
of number fields before.

3.1 Relation collection

Improving the relation collection phase allows us to speed up every other stage
of the algorithm. Indeed, the faster the relations are found, the smaller the factor
base can be, thus reducing the dimensions of the relation matrix and the time
taken by the linear algebra phase. In addition, the verification phase also relies
on our ability to find relations and therefore benefits from improvements to
the relation collection phase. Throughout the rest of the paper, M denotes the
relation matrix, the matrix whose rows are the integer parts of the relations.

Large prime variants The large prime variants were developed in the context
of integer factorization to speed up the relation collection phase in both the
quadratic sieve and the number field sieve. A single large prime variant was
described by Buchmann and Düllman [7] for computing the class group of an
imaginary quadratic field, and adapted to the real case by Jacobson [14]. Biasse
[4] described how the double large prime strategy could be using in the imaginary
case, and obtained a significant speed-up.

The idea is to keep relations involving one or two extra primes not in the
factor base of norm less than B2 ≥ B1. These relations thus have the form

(α) = pe1
1 . . . pen

n p and (α) = pe1
1 . . . pen

n pp′

for pi in B, and for p, p′ of norm less than B2. We will refer to these types of par-
tial relations as 1-partial relations and 2-partial relations, respectively. Keeping
partial relations only involving one large prime is the single large prime variant,
whereas keeping those involving one or two is the double large prime variant
which was first described by Lenstra and Manasse [17]. We do not consider the
case of more large primes, but it is a possibility that has been studied in the
context of factorization [10].

Partial relations may be identified as follows. Let m be the remainder of
ϕ(x, 1) after the division by all primes p ≤ B1, and assume that B2 < B2

1 .
If m = 1 then we have a full relation. If m ≤ B2 then we have a 1-partial
relation. We can see here that detecting 1-partial relations is almost for free. If
we also intend to collect 2-partial relations then we have to consider the following
possibilities:

1. m > B2
2 ;

2. m is prime and m > B2;
3. m is prime and m ≤ B2;
4. m is composite and B2

1 < m ≤ B2
2 .

In Cases 1 and 2 we discard the relation. In Case 3 we have a 1-partial relation,
and in Case 4 we have m = pp′ where p = N (p) and p′ = N (p′). Cases 1, 2,
and 3 can be checked very easily, but if none are satisfied we need to factor m in
order to determine whether Case 4 is satisfied. We used Milan’s implementation
of the SQUFOF algorithm [22] based on the theoretical work of [12] to factor
the m values produced.

Even though we might have to factor the remainder, partial relations are
found much faster than full relations. However, the dimensions of the resulting
matrix are much larger, thus preventing us from running the linear algebra phase
directly on the resulting relation matrix. In addition, we have to find many
more relations since we have to produce a full rank matrix. We will see in §3.2
how to reduce the dimensions of the relation matrix using Gaussian elimination
techniques.

Batch smoothness test After detecting potential candidates for smooth inte-
gers via the SIQS, one has to certify their smoothness. In [4, 14], this was done
by trial division with the primes in the factor base. The time taken by trial divi-
sion can be shortened by using Bernstein’s batch smoothness test [3], which uses
a product tree structure and modular arithmetic to factor a batch of residues
simultaneously in time O

(
b(log b)2 log log b

)
where b is the total number of input

bits.
Instead of testing the smoothness of every potential candidate as soon as

they are discovered, we rather stored them and tested them at the same time
using Bernstein’s method as soon their number exceeded a certain limit. This
improvement has an effect that is all the more important when the time spent
in the trial division is long. In our algorithm, this time mostly depends on the
tolerance value T, a parameter used to control the number of candidates yielded
by the sieve for smoothness testing.

3.2 Structured Gaussian Elimination

As mentioned in §2.1, in order to determine whether the computed relations
generate the entire relation lattice, we need to compute the HNF basis of the
sublattice they generate. This can be done by putting the integer components
of the relations as rows in a relation matrix, and computing the HNF.

The first step when using large primes is to compute full relations from all of
the partial relations. Traditionally, rows were recombined to give full relations
as follows. In the case of 1-partial relations, any pair of relations involving the
same large prime p were recombined into a full relation. In the case of 2-partial
relations, Lenstra [17] described the construction of a graph whose vertices were
the relations and whose edges linked vertices having one large prime in common.

Finding independent cycles in this graph allows us to recombine partial relations
into full relations.

In this paper, we instead follow the approach of Cavallar [8], developed for
the number field sieve, and adapted by the first author to the computation of
ideal class group structures in imaginary quadratic number fields [4], which uses
Gaussian elimination on columns. The ideas is to eliminate columns using struc-
tured Gaussian strategies until the dimensions of the matrix are small enough
to allow the computation of the HNF with standard algorithms.

Let us recall a few definitions. First, subtracting two rows is called merging.
If two relations corresponding to rows r1 and r2 share the same prime p with
coefficients c1 and c2 respectively, then multiplying r1 by c2 and r2 by c1 and
merging is called pivoting. Finally, finding a sequence of pivots leading to the
elimination of a column of Hamming weight k is a k-way merge.

We aim to reduce the dimensions of the relation matrix by performing k-
way merges on the columns of weight k = 1, . . . , w in increasing order for a
certain bound w. To limit the growth of the density and of the size of the
coefficients induced by these operations, we used optimized pivoting strategies.
In what follows we describe an algorithm performing k-way merges to minimize
the growth of both the density and the size of the coefficients, thus allowing us to
go deeper in the elimination process and delay the explosion of the coefficients.

As in [4], we define a cost function C mapping rows onto the integers. The
one used in [4] satisfied

C(r) =
∑

1≤|ei|≤Q

1 + c
∑

|ej |>Q

1, (1)

where c and Q are positive numbers, and r = [e1, . . . , en] is a row corresponding
to (α) =

∏
i pei

i . This way, the heaviest rows are those which have a high density
and large coefficients. In our experiments for this work, we used a different
cost function, see §4.1. Then, to perform a k-way merge on a given column, we
construct a complete graph G of size k such that

– the vertices are the rows ri, and
– every edge linking ri and rj has weight C(rij), where rij is obtained by

pivoting ri and rj .

Finding the best sequence of pivots with respect to the chosen cost function C is
equivalent to finding the minimum spanning tree T of G, and then recombining
every row r with its parent starting with the leaves of T .

Unlike in [4], we need to keep track of the permutations we apply to the
relation matrix, and of the empty columns representing primes of norm less
than 6 log2 ∆. This will be required for the regulator computation part of the
algorithm described next.

3.3 Regulator computation

As mentioned in §2.1, the usual way to compute the regulator is to find a basis
of the kernel of the relation matrix, compute integer multiples of the regulator

from these basis vectors, and compute their real gcd using Maurer’s algorithm
[21]. If det Λ′ > 2h∗, then either the class number or regulator computed is too
large, and we need to find extra relations corresponding to new generators, and
new kernel vectors involving them.

In this section, we describe a way of taking advantage of the large number
of generators involved in the different partial relations. Indeed, the dimensions
of the relation matrix before the Gaussian elimination stage is much larger than
in the base scenario and thus involves more generators. Consequently, given a
set of k ≤ dim(ker M) kernel vectors (uj

1, . . . , u
j
n)j≤k, the probability that the

corresponding elements

vj := uj
1 log |α1|+ . . . + uj

n log |αn| ,

where αi is the generator of the i-th relation, can be recombined into R is much
larger. On the other hand, the dimensions of the matrix prevents us from running
a kernel computation directly after the relation collection phase. Thus, rather
than attempting to compute the kernel, we use a method similar to that of
Vollmer [24] based on solving linear systems.

The first step of our algorithm consists of putting the matrix in a pseudo-
lower triangular form using a permutation obtained during the Gaussian elimi-
nation phase. Indeed, as part of this computation we obtain a unimodular matrix
U ∈ Zn×n such that

UM =

A (0)

(∗)

1 (0)

. . .

(∗) 1

.

Thus, solving a linear system of the form xM = b for a vector b ∈ Zm boils
down to solving a system of the form x′A = b′, then doing a trivial descent
through the diagonal entries which equal 1 and finally permuting back the co-
efficients using U . To solve the small linear systems, we used the algorithm
certSolveRedLong from the IML library [9]. It takes a single precision dense
representation of A and returns an LLL-reduced solution.

Once M is in pseudo-lower triangular form, we draw a set of relations r1, . . . rd

which are not already rows of M , and for each ri, i ≤ d, we solve the system
xiA = ri. We then augment M with the rows ri for i ≤ d and the vectors xi

with d extra coordinates, which are all set to zero except for the i-th which is

set to −1.

M ′ :=

M

ri

 x′i :=

(
xi 0 . . . 0 −1 0 . . . 0

)
.

We clearly have x′iM
′ = 0 for i ≤ d, and the x′i can be used to find a multiple

of R∆ as described in §2.1.

4 Numerical results

In this section, we give numerical results showing the impact of our improve-
ments. For each timing, we specify the architecture used. All the timings were
obtained with our code in C++ based on the libraries GMP [11], NTL [23], IML
[9] and Linbox [19]. All timings are in CPU seconds.

4.1 Comparative timings

The state of the art concerning class group and regulator computation was es-
tablished in [14], where all the timings were obtained with the SPARCStation II
architecture. In addition, most of the code used at the time is unavailable now,
including the HNF computation algorithm. Thus, providing a meaningful com-
parison between our methods and those of [14] is difficult. We chose to implement
the HNF computation algorithm in a way that resembles the one of [14], but
takes advantage of the libraries available today for computing the determinant
and the modular HNF. We used this implementation in each different scenario.
The relation collection phase is easier to compare, since our method relies on
SIQS.

In the following, we will refer to the base case as the strategy consisting
of finding the relation matrix without using the large prime variants or the
smoothness batch test, and calculating the regulator by computing its kernel
with the algorithm nullspaceLong from IML library. It differs from the 0 large
prime case (0LP) where we use the algorithm described in §3.3 for computing the
regulator, along with a relation collection phase that does not use large primes.
We also denote the 1 large prime scenario by 1LP, the 2 large primes by 2LP
and 2LP Batch when using batch smoothness test.

Relation collection phase In Table 1, we give the time taken to collect all nec-
essary relations. Without large primes, we collected |B|+ 100 relations, whereas
when we allow large primes we need to collect enough relations to ensure that the
number of rows is larger than the number of non-empty columns. We used a 2.4
GHz Opteron with 16GB of memory and took ∆ = 4(10n +3) with 40 ≤ n ≤ 70.
For each discriminant, we used the optimal parameters given in [14], including

the size of the factor base, even if we tend to reduce this parameter when opti-
mizing the overall time. The only parameter we modified is the tolerance value
for the SIQS, as a higher tolerance value is required for the large prime varia-
tions. In each case we took B2 = 12B1. It is shown in [4] that the ratio B2/B1

does not have an important impact on the sieving time.

Table 1. Comparative table of the relation collection time

n 0LP 1LP 2LP 2LP Batch

40 0.83 0.48 0.63 0.90
45 6.70 3.10 2.70 2.20
50 23.00 9.50 9.20 6.10
55 56.00 26.00 23.00 15.00
60 202.00 86.00 69.00 41.00
65 1195.00 513.00 354.00 227.00
70 4653.00 1906.00 1049.00 834.00

The timings in Table 1 correspond to the optimal value of the tolerance value
in each case, found by trying values between 1.7 and 4, and keeping the optimum
for each scenario. For 0LP, the optimal value is between 1.7 and 2.3 whereas
it is around 2.3 for 1LP, 2.8 for 2LP and 3.0 for 2LP Batch. The latter case
has a higher optimal tolerance value because using the batch smoothness test
allows one to spend more time factoring the residues. When using Bernstein’s
smoothness test, we took batches of 100 residues. In our experiments, this value
did not seem to have an important effect on the relation collection time. We
observe in Table 1 that the use of the large prime variants has a strong impact on
the relation collection phase, and that using the smoothness batch test strategy
yields an additional speed-up of approximately 20% over the double large prime
strategy.

Structured Gaussian elimination Structured Gaussian elimination allows us
to reduce the time taken by the linear algebra phase by reducing the dimensions
of the relation matrix. Our method minimizes the growth of the density and of
the size of the coefficients. To illustrate the impact of the algorithm described
in §3.2, we monitor in Table 2 the evolution of the dimensions of the matrix,
the average Hamming weight of its rows, the extremal values of its coefficients
and the time taken for computing its HNF in the case of a relation matrix
corresponding to ∆ = 4(1060 + 3). We keep track of these values after all i-way
merges for some values of i between 5 and 170. The original dimensions of the
matrix are 2000×1700, and the timings are obtained on a 2.4 Ghz Opteron with
32GB of memory.

In [4], the first author regularly deleted the rows having the largest coeffi-
cients. To do this, we need to create more rows than in the base case. To provide

a fair comparison between the two strategies, we used the same relation matrix
resulting from a relation collection phase without large primes, and with as few
rows as was required to use the same algorithm as in [14]. We therefore had to
drop the regular row deletion. We also tuned the cost function to compensate
for the resulting growth of the coefficients, using

C(r) =
∑

1≤|ei|≤8

1 + 100
∑

|ej |>8

|ej | ,

instead of (1).

The HNF computation consists of taking the GCD of the determinants of two
different submatrices of the matrix after elimination using Linbox, and using the
modular HNF of NTL with this value. Indeed, this GCD (which is likely to be
relatively small) is a multiple of h∆. This method, combined with an elimination
strategy due to Havas [13], was used in [14] and implemented in LiDIA [18]. As
this implementation is no longer available, we instead refer to the timings of our
code, which has the advantage of using the best linear algebra libraries available
today.

Table 2. Comparative table of elimination strategies

Naive Gauss

i Row Nb Col Nb Average weight max coeff min coeff HNF time

5 1189 1067 27.9 14 -17 357.9
10 921 799 49.3 22 -19 184.8
30 757 635 112.7 51 -50 106.6
50 718 596 160.1 81 -91 93.7
70 699 577 186.3 116 -104 85.6
90 684 562 205.5 137 -90 79.0

125 664 542 249.0 140 -146 73.8
160 655 533 282.4 167 -155 72.0
170 654 532 286.4 167 -155 222.4

With dedicated elimination strategy

i Row Nb Col Nb Average weight max coeff min coeff HNF time

5 1200 1078 26.8 13 -12 368.0
10 928 806 42.6 20 -15 187.2
30 746 624 82.5 33 -27 100.8
50 702 580 107.6 64 -37 84.3
70 672 550 136.6 304 -676 73.4
90 656 534 157.6 1278 -1088 67.5

125 637 515 187.1 3360 -2942 63.4
160 619 497 214.6 5324 -3560 56.9
170 615 493 247.1 36761280 -22009088 192.6

Table 2 shows that the use of our elimination strategy leads to a matrix with
smaller dimensions (493 rows with our method, 533 with the naive elimination)
and lower density (the average weight of its rows is of 214 with our method and
282 with the naive elimination). These differences result in an improvement of
the time taken by the HNF computation: 56.9 seconds with our method against
72.0 seconds with the naive Gaussian elimination. The regular cancellation of
the rows having the largest coefficients over the course of the algorithm would
delay the explosion of the coefficient size, but require more rows for the original
matrix. This brutal increase in the size of the extremal values of the matrix can
be seen in Table 2. At this point these higher values propagate during pivoting
operations, and any further column elimination becomes counter-productive.

Factor base verification The improvements in the relation collection phase
have an impact on the factor base verification. The impact of the smoothness
batch test is straightforward, whereas the large prime variants act in a more
subtle way. Indeed, we create many more relations when using the large prime
variants, and the relations created involve primes of larger norm. Therefore, a
given prime not in B of norm less than 6 log2 ∆ is more likely to appear in a
relation, and thus not to need to be verified. Table 3 shows the impact of the
large prime variants and of the batch smoothness test on the verification time.
We used a 2.4 GHz Opteron with 16GB of memory. We considered discriminants
of the form ∆ = 4(10n + 3) for n between 40 and 70, and we chose in every case
the factor base giving the best results for the base scenario.

Table 3. Comparative table of the factor base verification time

n 0LP 1LP 2LP 2LP Batch

40 17.0 11.0 11.0 6.2
45 77.0 44.0 30.0 18.0
50 147.0 85.0 52.0 43.0
55 308.0 167.0 134.0 110.0
60 826.0 225.0 282.0 274.0
65 8176.0 1606.0 1760.0 1689.0
70 9639.0 4133.0 5777.0 2706.0

Regulator computation Our method for computing the regulator avoids com-
puting the relation matrix kernel. Instead, we need to solve a few linear systems
involving the matrix resulting from the Gaussian elimination. To illustrate the
impact of this algorithm, we used the relation matrix obtained in the base case
for discriminants of the form 4(10n + 3) for n between 40 and 70. The timings
are obtained on a 2.4GHz Opteron with 16GB of memory.

Table 4. Comparative table of regulator computation time

n Kernel Computation System Solving

40 15.0 6.2
45 18.0 8.3
50 38.0 20.0
55 257.0 49.0
60 286.0 103.0
65 5009.0 336.0
70 10030.0 643.0

In Table 4, the timings corresponding to our system solving approach are
taken with seven kernel vectors. However, in most cases only two or three vectors
are required to compute the regulator. As most of the time taken by our approach
is spent on system solving, we see that computing fewer kernel vectors would
result in an improvement of the timings, at the risk of obtaining a multiple of
the regulator.

Overall time We have studied the individual impact of our improvements on
each stage of the algorithm. We now present their effect on the overall time taken
by the algorithm, including the factor base verification time, for discriminants
of the form ∆ = 4(10n + 3) with 40 ≤ n ≤ 70 on a 2.4 GHz Opteron with 16GB
of memory. We used the same parameters as in [14], except for the tolerance
and the size of the factor base. We notice in Table 5 that the optimal size of
the factor base is smaller when we use improvements for the sieving phase. For
example the optimal size for the double large prime variant is half the one of the
base case scenario. This results in an improvement in the HNF and regulator
computation whereas the relation collection time can remain unchanged, or even
increase. The tolerance value we chose varies only with the strategy, but not with
the size of the discriminant. We chose 2.0 for the base case and 0LP whereas we
set it to 2.3 for 1LP, 2.8 for 2LP and 3.0 for 2LP Batch. We eliminated columns
of weight up to w = 150 since Table 2 indicates that further elimination is
counter-productive.

Table 5 shows that there is an overall speed-up of of a factor of 2 for the
smallest discriminants and 4 for the largest. The base case with the largest
discriminants suffers from the necessity of finding some relations in a more ran-
domized way. This ensures that we can get full rank submatrices of the relation
matrix after the Gaussian elimination to compute a small multiple of h∆. Ma-
trices produced using the large prime variants do not need this extra step, even
with the largest discriminants. This naturally affects the sieving time, since we
cannot use SIQS for that purpose, but also affects phases relying on linear alge-
bra. Indeed, elimination produces a matrix with larger entries and dimensions.

Table 5. Effect on the overall time

n strategy |B| relations elimination HNF regulator verification total

40

base 400 0.8 0.1 3.2 14.6 16.8 35.6
0LP 400 0.7 0.1 2.2 6.0 16.6 25.7
1LP 300 0.8 0.2 2.5 6.4 13.1 23.1
2LP 250 1.7 0.3 4.8 8.7 18.0 33.3

2LP Batch 250 0.5 0.2 3.6 6.7 4.4 15.5

45

base 500 6.7 0.1 5.1 18.0 77.0 107.0
0LP 500 5.9 0.2 4.9 10.0 85.0 106.0
1LP 400 4.0 0.4 6.0 11.0 50.0 71.0
2LP 350 3.8 0.5 12.0 17.0 36.0 69.0

2LP Batch 350 2.6 1.1 9.0 14.0 30.0 57.0

50

base 750 23.0 0.3 16.0 38.0 147.0 224.0
0LP 700 21.0 0.4 15.0 20.0 147.0 203.0
1LP 450 20.0 0.4 10.0 17.0 108.0 155.0
2LP 400 14.0 0.8 22.0 23.0 74.0 133.0

2LP Batch 400 10.0 0.6 21.0 25.0 62.0 119.0

55

base 1200 129.0 1.9 60.0 257.0 308.0 756.0
0LP 1300 47.0 0.7 52.0 49.0 265.0 414.0
1LP 650 61.0 0.7 28.0 33.0 255.0 378.0
2LP 550 40.0 1.1 48.0 48.0 177.0 313.0

2LP Batch 550 34.0 1.0 47.0 48.0 141.0 271.0

60

base 1700 322.0 2.9 95.0 286.0 830.0 1535.0
0LP 1700 187.0 1.3 106.0 103.0 846.0 1244.0
1LP 750 309.0 1.0 45.0 64.0 865.0 1284.0
2LP 700 143.0 2.1 152.0 137.0 365.0 799.0

2LP Batch 700 142.0 1.8 103.0 100.0 309.0 655.0

65

base 2700 10757.0 12.0 652.0 5009.0 8176.0 24607.0
0LP 2700 1225.0 2.8 489.0 336.0 3676.0 5730.0
1LP 1900 1003.0 15.0 318.0 262.0 2984.0 4583.0
2LP 1200 753.0 4.7 525.0 398.0 1943.0 3624.0

2LP Batch 1000 1030.0 35.0 199.0 219.0 1642.0 3125.0

70

base 3700 17255.0 24.0 1869.0 10031.0 9639.0 38818.0
0LP 3600 4934.0 19.0 1028.0 644.0 9967.0 16591.0
1LP 2500 3066.0 17.0 845.0 646.0 9005.0 13579.0
2LP 1700 2414.0 27.0 2054.0 1295.0 4590.0 10379.0

2LP Batch 1700 2588.0 20.0 1372.0 934.0 5078.0 9991.0

4.2 Large example

The improvements we described allow us to compute class groups and regulators
of real number fields with larger discriminants than was previously possible. The
key is to parallelize the relation collection and verification phase, while the linear
algebra has to be performed the usual way. These methods were successfully
used in [4] to compute the class group structure of an imaginary quadratic field
with a 110-digit discriminant. We used a cluster with 260 2.4GHz Xeon cores to

compute a relation matrix corresponding to the discriminant ∆110 := 4(10110+3)
in 4 days. We allowed two large primes, used a tolerance value of 3.0, tested
batches of 100 residues, took w = 250 and set |B| = 13000 . Then, we used
three 2.4 GHz Opterons with 32GB of memory each to compute determinants
of full-rank submatrices of the relation matrix after the Gaussian elimination
in 1 day, and one 2.4GHz Opteron to compute the HNF modulo the GCD of
these determinants in 3 days. We had to find 4018 extra relations during the
verification phase that took 4 days on 96 2.4GHz Xeon cores. We thus obtained
that

Cl∆110
∼= Z/12Z× Z/2Z , (2)

and the corresponding regulator is

R∆110 ≈ 70795074091059722608293227655184666748799878533480399.6730200233 .

We estimate that it would take two weeks (4000 relations per day) to complete
the relation collection for ∆120 with the same factor base as ∆110, thus requiring
a similar time for the linear algebra.

5 Conclusions

Recently, our work has been extended to the problems of principal ideal testing
and solving the discrete logarithm problem in the ideal class group [5]. The
double large prime variant and improvements to relation generation translated
directly to improvements in this context. However, HNF computations are not
required for this problem, and linear system solving over Z can be used instead.
The numerical results were used to give estimates for discriminant sizes that
offer equivalent security to recommended sizes of RSA moduli.

Some possibilities for further improvements remain to be investigated. For
example, a lattice sieving strategy could be used to sieve ϕ(x, y) instead of
ϕ(x, 1). Factor refinement and coprime factorization techniques may be a useful
alternative to Bernstein’s batch smoothness test. Multiple large primes have
been successfully used for integer factorization and could also be tried in our
context.

There is also still room for improvement to the linear algebra components. For
example, a HNF algorithm that exploits the natural sparseness of the relation
matrix, perhaps as a black-box algorithm, would be useful. If such an algorithm
were available, we could reconsider using Gaussian elimination techniques since
they induce a densification of the matrix. We could also study the effect of
other dense HNF algorithms in existing linear algebra packages such as KASH,
Pari, Sage and especially MAGMA which seems to have the most efficient HNF
algorithm for our types of matrices. In that case, we would need the elimination
phase regardless of how these algorithms are affected by the density and the size
of the coefficients of the matrix. Indeed, we cannot afford manipulating a dense
representation of the matrix before the Gaussian elimination phase.

References

1. E. Bach, Explicit bounds for primality testing and related problems, Math. Comp.
55 (1990), no. 191, 355–380.

2. , Improved approximations for Euler products, Number Theory: CMS Proc.,
vol. 15, Amer. Math. Soc., Providence, RI, 1995, pp. 13–28.

3. D. Bernstein, How to find smooth parts of integers, submited to Mathematics of
Computation.

4. J-F. Biasse, Improvements in the computation of ideal class groups of imaginary
quadratic number fields, to appear in Advances in Mathematics of Communications,
2010.

5. J-F. Biasse, M. J. Jacobson, Jr., A. K. Silvester, Security estimates for quadratic
field based cryptosystems, to appear in ACISP 2010.

6. J. Buchmann, A subexponential algorithm for the determination of class groups and
regulators of algebraic number fields, Séminaire de Théorie des Nombres (Paris),
1988-89, pp. 27–41.

7. J. Buchmann and S. Düllmann, Distributed class group computation, Festschrift
aus Anlaß des sechzigsten Geburtstages von Herrn Prof. Dr. G. Hotz, Universität
des Saarlandes, 1991, and Teubner, Stuttgart, 1992, pp. 69–79.

8. S. Cavallar, Strategies in filtering in the number field sieve, ANTS-IV: Proceedings
of the 4th International Symposium on Algorithmic Number Theory, Lecture Note
in Computer Science, vol. 1838, Springer-Verlag, 2000, pp. 209–232.

9. Z. Chen, A. Storjohann, and C. Fletcher, IML: Integer Matrix Library, Software,
2010, see http://www.cs.uwaterloo.ca/ astorjoh/iml.html.

10. B. Dodson, P. C. Leyland, A. K. Lenstra, A. Muffett, and S. Wagstaff, MPQS
with three large primes, ANTS-V: Proceedings of the 5th International Symposium
on Algorithmic Number Theory, Lecture Note in Computer Science, vol. 2369,
Springer-Verlag, 2002, pp. 446–460.

11. GMP, The GNU multiple precision bignum library, Software, 2010, see http://gmp-
lib.org/.

12. J. E. Gower and S. Wagstaff, Square form factorization, Mathematics of Compu-
tation 77 (2008), 551–588.

13. G. Havas and B.S. Majewski, Integer matrix diagonalization, Journal of Symbolic
Computing 24 (1997), 399–408.

14. M. J. Jacobson, Jr., Subexponential class group computation in quadratic orders,
Ph.D. thesis, Technische Universitt Darmstadt, Darmstadt, Germany, 1999.

15. M. J. Jacobson, Jr., R. Scheidler, and H. C. Williams, The efficiency and security
of a real quadratic field based key exchange protocol, Public-Key Cryptography and
Computational Number Theory (Warsaw, Poland), de Gruyter, 2001, pp. 89–112.

16. M. J. Jacobson, Jr. and H. C. Williams, Solving the Pell equation, CMS Books in
Mathematics, Springer-Verlag, 2009, ISBN 978-0-387-84922-5.

17. A. K. Lenstra and M. S. Manasse, Factoring with two large primes (extended ab-
stract), Advances in Cryptology - EUROCRYPT ’90, Lecture Note in Computer
Science, vol. 473, Springer-Verlag, 1991, pp. 72–82.

18. LiDIA Group, LiDIA: a c++ library for computational number theory, Software,
Technische Universität Darmstadt, Germany, 1997, see http://www.informatik.tu-
darmstadt.de/TI/LiDIA.

19. LinBox, Project LinBox: Exact computational linear algebra, Software, 2010, see
http://www.linalg.org/.

20. S. Louboutin, Computation of class numbers of quadratic number fields, Math.
Comp. 71 (2002), no. 240, 1735–1743.

21. M. Maurer, Regulator approximation and fundamental unit computation for real
quadratic orders, Ph.D. thesis, Technische Universitt Darmstadt, Darmstadt, Ger-
many, 1999.

22. J. Milan, Tifa, Software, 2010, http://www.lix.polytechnique.fr/Labo/Jerome.-
Milan/tifa/tifa.xhtml.

23. V. Shoup, NTL: A Library for doing Number Theory, Software, 2010, http://www.-
shoup.net/ntl.

24. U. Vollmer, An accelerated Buchmann algorithm for regulator computation in real
quadratic fields, Algorithmic Number Theory — ANTS-V, Lecture Notes in Com-
puter Science, vol. 2369, 2002, pp. 148–162.

