The goal of this project is to write an automated tactic for proving boolean tautologies by reflecting them into the set of polynomials. Results from the earlier questions that you did not succeed or did not have time to prove can still be assumed to hold in the later questions.

1 Multivariate Polynomials

Polynomials of $\mathbb{Z}[(X_i)_{i \in \mathbb{N}}]$ will be represented by the following inductive type:

\[
\text{Inductive poly : Type :=} \\
| \text{Cst : } \mathbb{Z} \to \text{poly} \\
| \text{Poly : poly } \to \text{nat } \to \text{poly } \to \text{poly}.
\]

Cst a represents the constant polynomial of value a. Poly p i q represents the composite polynomial $p + X_i \cdot q$.

1.1 Valid Polynomials

A constant polynomial Cst a is always valid. A composite polynomial Poly p i q is valid if and only if:

- all the variables X_j found in p satisfy $j > i$,
- all the variables X_j found in q satisfy $j \geq i$,
- q is not Cst 0,
- p and q are valid recursively.

Note: you may use the function nat_compare: nat \to nat \to comparison in the library Arith to compare two natural numbers.

a. Define an inductive predicate characterizing the validity of a polynomial.

b. Define a boolean predicate (that is, valid_bool $p = \text{true}$) characterizing the validity of a polynomial and prove it is equivalent to the inductive one.

This predicate can be embedded into a polynomial in order to express valid polynomials:

\[
\text{Record valid_poly : Type :=} \\
\{ \text{VP} \text{_value : poly ;} \\
\text{VP} \text{_prop : valid_bool VP} \text{_value } = \text{true } \}.
\]

c. Prove that two valid polynomials with the same structure are equal with respect to Leibniz’ equality:

\[\forall p, q : \text{valid_poly, VP} \text{_value } p = \text{VP} \text{_value } q \Rightarrow p = q.\]

Hint: one can start from the dependent elimination of the equality to prove that, for any boolean b, all the proofs of $b = \text{true}$ are actually equal. It is the so-called proof irrelevance.
1.2 Coefficients and Values

a. Define a type \texttt{mono} that can represent any monomial $\prod_{i \in \mathbb{N}} X_i^{\alpha_i}$.
Define a function \texttt{get coef: valid poly -> mono -> \mathbb{Z}} that returns the coefficient of a polynomial associated to a monomial.

b. Prove that two valid polynomials with same coefficients are equal:
 \[\forall p, q : \text{valid poly}, (\forall m, \text{get coef } p \ m = \text{get coef } q \ m) \Rightarrow p = q. \]

c. Define a function that takes a polynomial and a valuation of the variables (that is, a map from X_i to \mathbb{Z}) and returns the corresponding value of the polynomial.

d. Prove that two valid polynomials that have the same values have the same coefficients.

1.3 Arithmetic Operations

a. Define a function that computes the sum of two valid polynomials. Prove that this function is a morphism for the evaluation.

b. Define a function that computes the product of two valid polynomials. Prove that this function is a morphism for the evaluation.

2 Boolean Tautologies

2.1 Boolean Formulas

a. Define an inductive type that represents boolean formulas that contain constants \bot and \top, variables $v_i \in \mathbb{N}$, and boolean operators $\land, \lor, \neg, \ldots$

b. Define a function that takes a boolean formula (represented by an inductive object) and a valuation of the variables ($v_i \in \mathbb{N}$) and returns the boolean result that would be obtained by evaluating the formula.

c. Write a tactic that takes a Coq expression on booleans and returns the inductive object that represents it and a valuation that contains all the open variables and uninterpreted terms.

Note that the tactic should behave like the inverse function of the boolean evaluation. In particular, applying the evaluation function to the result of the tactic should be convertible to the original formula.

The following tactic takes a term and a partial valuation and returns an inductive object and a new valuation that extends the partial one. This example handles only boolean negation. You can extend it to handle all the other cases.

\texttt{Inductive BTerm :=
| BTnot : BTerm -> BTerm
| BTvar : nat -> BTerm.}

\texttt{Ltac list_add a l :=
let rec aux a l n :=
match l with
| nil => constr:(n, cons a l)
| cons a _ => constr:(n, 1)
| cons ?x ?l =>
 match aux a l (S n) with (?n, ?l) => constr:(n, cons x 1) end
 end in
 aux a l 0.

Ltac read_term f l :=
 match f with
 | negb ?x =>
 match read_term x l with (?x', ?l') => constr:(BTnot x', l') end
 | _ =>
 match list_add f l with (?n, ?l') => constr:(BTvar n, l') end
 end.

let v := read_term (negb (negb a)) (@nil bool) in idtac v.
 (* -> (BTnot (BTnot (BTvar 0)), a :: nil) *)

2.2 Polynomial Reflection

The goal is to write an automatic tactic for proving that two boolean formulas are equal, by converting them to polynomials over \(\mathbb{Z} \) and checking that both polynomials are equal. If you did not succeed in writing the arithmetic operators of Section 1.3, you can use expressions on \(\mathbb{Z} \) instead of valid_poly and let the ring tactic perform the computations in the following questions.

a. Define a function that transforms a formula represented by an inductive object into a valid polynomial over \(\mathbb{Z} \):
 - \(a \land b = a \times b \),
 - \(a \lor b = a + b - a \times b \),
 - \(\neg a = 1 - a \).

Prove that evaluating a boolean formula \(f \) gives the same result than evaluating its polynomial transformation \(\overline{f} \).

b. Deduce a process for automatically proving boolean tautologies in Coq. Test it on various boolean equalities, e.g. \(\neg a \lor \neg b \lor (c \land \top) = \neg (a \land b \land \neg c) \).

c. How complete is the process? (That is, are there actual boolean equalities that cannot be proved by your tactic?) If so, how can this shortcoming be avoided?