Exam course 2-7-2 Proof assistants
Tuesday March 1 2011

The subject is ?? pages long. The exam lasts 2 hours. Hand-written course notes and other course material distributed this year are the only documents that you can use. The exercises can be solved independently.

Exercises 1 and 3 require to write Coq terms and proofs; we allow flexibility regarding the syntax used as long as there is no ambiguity on its meaning.

1 Programming with Coq: a binary scheme (9 pts)

The type positive in Coq is a representation of non-null natural numbers in a binary format. More precisely, there is a constant constructor xH which represents the natural number 1 and two constructors xl and xO which take a positive and return a positive. If p is a positive which represents the natural number n then xl p represents 2n + 1 and xO p represents 2n.

1. Write in Coq the inductive definition of positive and give the type of the corresponding induction principle on the sort Type.

2. Given a set A and a binary operation h on A, one defines for each x in A and 0 < n, the iterated composition h^n x of h by recursion on n ∈ nat:

 \[h^1 x = x \quad h^{n+1} x = h (h^n x) \]

 Define in Coq a term it that, given h, x, n, computes h^n.

3. From now on, one assumes that h is associative. Prove in Coq that

 \[\forall x, n, 0 < n \rightarrow h^{2n} x = h^n (h^x x) \]

4. The type positive gives a fast algorithm to compute h^n x using the properties :

 \[h^{2n} x = h^n (h^x x) \quad h^{2n+1} x = h (h^n (h^x x)) \]

 To obtain a terminal recursive version, one introduces an extra variable s as accumulator. The fast iteration Fit uses the algorithm:

 \[\text{Fit } h s x 1 = h s x \]

 \[\text{Fit } h s x (2n) = \text{Fit } h s (h x x) n \quad \text{Fit } h s x (2n + 1) = \text{Fit } h (h s x) (h x x) n \]

 One assumes h has a left neutral element ε (i.e. h ε x = x) and one starts with s = ε.

 (a) Define the function Fit in Coq using the type positive to represent the number n.
(b) Using the function \texttt{nat_of_P} which transforms an object in \texttt{positive} into the corresponding object in \texttt{nat}, give a specification for \texttt{Fit} which links (Fit \(h\ s\ x\ p\)) with \(s\) and (it \(h\ x\ (\texttt{nat_of_P}\ p)\)).

(c) Give the main element of the proof that your implementation of \texttt{Fit} satisfies this specification.

(d) Deduce a function \texttt{Pit} which, given \(h, x,\) and \(p : \texttt{positive},\) computes (it \(h\ x\ (\texttt{nat_of_P}\ p))\).

(e) Assuming addition on \texttt{positive} is given by a function \texttt{Pplus}, how to instantiate this scheme in order to compute \(x^n\) when both \(x\) and \(n\) are in the type \texttt{positive}?

\section{Imperative programming and invariants (10 pts)}

One introduces in \texttt{WHY} a logical environment for modeling finite sets with predicates to test membership and equality; a constant to represent the empty set, and logical operations to add (resp. remove) an element \(x\) to a set \(s\).

\begin{verbatim}
 type set
 logic emptyset : set
 logic memset : int, set → prop (* x in s *)
 logic eqset : set, set → prop (* equality between sets *)
 logic addset : int, set → set (* s + \{x\} *)
 logic remset : int, set → set (* s - \{x\} *)
\end{verbatim}

One assumes that the usual properties relating these operations and predicates are given as axioms. On top of this theory, one introduces a reference of type \texttt{set} and operations to clear this set, add a (positive) element, and pick an element in a (non-empty) set.

One introduces the following \texttt{WHY} environment (named \(\Gamma_1\)):

\begin{verbatim}
parameter s : set ref
parameter clear : unit →
 \{ \} unit writes s \{ eqset(s,emptyset) \}
parameter add : x : int →
 \{ x \geq 0 \} unit writes s \{ eqset(s,addset(x,s@)) \}
parameter pick : unit →
 \{ not eqset(s,emptyset) \}
 int writes s
 \{ memset(result,s@) and eqset(s,remset(result,s@)) \}
\end{verbatim}

Reminder: in the post-condition of a function, \texttt{s@} designates the old value contained in reference \texttt{s} at the entry point of the function.

1. Let \(e\) be the \texttt{WHY} expression:

 \begin{verbatim}
 clear(): add(2): add(3): pick()
 \end{verbatim}

 Justify that the post-condition \(\{ \texttt{result} = 2 \text{ or } \texttt{result} = 3 \}\) is satisfied after this expression is executed.

2. Assume there is another function \texttt{add'} with a different specification

 \begin{verbatim}
 parameter add' : x : int → unit writes s \{ eqset(s,addset(x,s@)) \}
 \end{verbatim}

 Explain why using \texttt{add'} instead of \texttt{add} does not change the behavior of the expression \(e\).
3. More generally, let e be an expression that satisfies a post-condition R in an environment with a function f and which possibly writes variable in a set V:

\[
\text{parameter } f: x: \tau \rightarrow \\
\{ \text{P}(\text{vars}) \} \text{ sigma writes vars } \{ \text{Q}(x.\text{result}, \text{vars}@, \text{vars}) \}
\]

Assume there is another function

\[
\text{parameter } f': x: \tau \rightarrow \\
\{ \text{P}'(\text{vars'}) \} \text{ sigma writes vars' } \{ \text{Q}'(x.\text{result}, \text{vars}@', \text{vars}) \}
\]

Explain the conditions on the properties P, Q, P', Q', and the sets of references vars and vars' such that the parameter f can be replaced by f' without changing the behavior of e.

4. One introduces the property

\[
\text{predicate } \text{Inv}(s: \text{set}) = \text{forall } n: \text{int}. \text{memset}(n, s) \rightarrow n \geq 0
\]

Show that the functions clear, add, and pick, also satisfy the specification where Inv(s) is added both in pre and post-conditions (only in post for the clear function). Namely the same implementations could be given the specifications:

\[
\text{parameter } \text{clear: unit } \rightarrow \\
\{ \} \text{ unit writes } s \{ \text{eqset}(s, \text{emptyset}) \text{ and } \text{Inv}(s) \}
\]

\[
\text{parameter } \text{add : x: int } \rightarrow \\
\{ x \geq 0 \text{ and } \text{Inv}(s) \} \text{ unit writes } s \{ \text{eqset}(s, \text{addset}(x, s@)) \text{ and } \text{Inv}(s) \}
\]

\[
\text{parameter } \text{pick : unit } \rightarrow \\
\{ \text{not eqset}(s, \text{emptyset}) \text{ and } \text{Inv}(s) \}
\]

\[
\text{int writes } s \\
\{ \text{memset}(\text{result}@0) \text{ and } \text{eqset}(s, \text{remset}(\text{result}@0)) \text{ and } \text{Inv}(s) \}
\]

We call Γ_2 this new environment.

5. Show that if e is an expression well-formed in the initial environment Γ_1 that establishes the post-condition R, and if e does not contain an assignment of the form s:=b then it can be run in the environment Γ_2 of question ?? and assuming the pre-condition Inv(s), the expression e will establish the post-condition (R and Inv(s)). The expression e is supposed to be built using application of functions, conditionals, sequences, and assignments. The only functions doing effects on the parameter s are clear, add, and pick.

6. Give an example of expression e that contains an assignment on s and such that the program e is correct in the environment Γ_1 but fails in the environment Γ_2.

7. In order to allow arbitrary updates, one introduces a boolean variable invb which, when true, ensures the invariant is satisfied. So we have the environment:

\[
\text{parameter } \text{invb: bool ref}
\]

\[
\text{parameter } \text{clear: unit } \rightarrow \\
\{ \} \text{ unit writes } s \{ \text{eqset}(s, \text{emptyset}) \text{ and } \text{Inv}(s) \}
\]

\[
\text{parameter } \text{add : x: int } \rightarrow \\
\{ x \geq 0 \text{ and } \text{Inv}(s) \text{ and } \text{invb = true} \}
\]

\[
\text{unit writes } s \\
\{ \text{eqset}(s, \text{addset}(x, s@)) \text{ and } \text{Inv}(s) \}
\]

\[
\text{parameter } \text{pick : unit } \rightarrow \\
\{ \text{not eqset}(s, \text{emptyset}) \text{ and } \text{Inv}(s) \text{ and } \text{invb = true} \}
\]
int writes s
 \{ memset(result,s@) and eqset(s,remset(result,s@)) and Inv(s) \}

parameter update: u : set →
 \{ invb = false \} unit writes s \{ eqset(s,u) \}

We also add two functions which change the value of invb. The parameter invb can be
set to true only when the invariant is proven.

parameter pack : unit → \{ Inv(s) \} unit writes invb \{ invb = true \}
parameter unpack : unit → \{ \} unit writes invb \{ invb = false \}

Show that any expression e well-formed in that environment (using update, pack, unpack
as well as add, clear, pick) and which does not assign directly s and invb preserves the
property invb = true → Inv(s).

3 Impredicative and inductive encodings of sum (4 pts)

One considers an environment

Variable A : Set.
Variable P : A → Set.

In this environment, an impredicative encoding of an indexed sum is given by:

Definition sum := forall C : Set. (forall x:A, P x → C) → C.

1. Write a Coq term sumi of type forall x:A, P x → sum and another of type sum → A.

2. Write the indexed sum as an inductive definition named sumind.

3. Write a Coq term ind of type sumind → A and a term of type:
 forall (p:sumind), P (ind p).

4. Using ind, propose a new term pi of type sum → A such that forall (p:sum), P (pi p) is
 also provable.

Reminder

Weakest precondiction computation

The weakest precondtion WP(i, Q) can be computed by induction on i:

\[WP(x := e, Q) = Q[x ← e] \]
\[WP(i_1; i_2, Q) = WP(i_1, WP(i_2, Q)) \]
\[WP(\text{if } e \text{ then } i_1 \text{ else } i_2, Q) = (e = true ⇒ WP(i_1, Q)) \land (e = false ⇒ WP(i_2, Q)) \]
\[WP(f e, Q) = \text{pre}(f)[x ← e] \land (\forall \text{result } ω, (\text{post}(f)[x ← e] ⇒ Q))[ω@ ← ω] \]