Exam course 2-7-2 Proof assistants
Tuesday March 1 2011

The subject is ?? pages long. The exam lasts 2 hours. Hand-written course notes
and other course material distributed this year are the only documents that you can
use. The exercises can be solved independently.

Exercises 1 and 3 require to write Coq terms and proofs; we allow flexibility regarding
the syntax used as long as there is no ambiguity on its meaning.

1 Programming with Coq: a binary scheme (9 pts)

The type positive in Coq is a representation of non-null natural numbers in a binary format.
More precisely, there is a constant constructor \(xH \) which represents the natural number 1 and
two constructors \(xI \) and \(xO \) which take a positive and return a positive. If \(p \) is a positive which
represents the natural number \(n \) then \(xI p \) represents \(2n + 1 \) and \(xO p \) represents \(2n \).

1. Write in Coq the inductive definition of positive and give the type of the corresponding
 induction principle on the sort Type.

2. Given a set \(A \) and a binary operation \(h \) on \(A \), one defines for each \(x \) in \(A \) and \(0 < n \), the
 iterated composition \(h^n x \) of \(h \) by recursion on \(n \in \text{nat} \):
 \[
 h^1 x = x \quad h^{n+1} x = h x (h^n x)
 \]
 Define in Coq a term it that, given \(h, x, n \), computes \(h^n x \).

3. From now on, one assumes that \(h \) is associative. Prove in Coq that
 \[
 \forall x, n, \ 0 < n \rightarrow h^{2n} x = h^n (h x x)
 \]

4. The type positive gives a fast algorithm to compute \(h^n x \) using the properties :
 \[
 h^{2n} x = h^n (h x x) \quad h^{2n+1} x = h x (h^n (h x x))
 \]
 To obtain a terminal recursive version, one introduces an extra variable \(s \) as accumulator.
The fast iteration \(\text{Fit} \) uses the algorithm:

 \[
 \text{Fit} \ h \ s\ x\ 1 = h\ s\ x
 \]
 \[
 \text{Fit} \ h\ s\ x\ (2n) = \text{Fit} \ h\ s\ (h\ x\ x)\ n\quad \text{Fit} \ h\ s\ x\ (2n+1) = \text{Fit} \ h\ (h\ s\ x)\ (h\ x\ x)\ n
 \]
 One assumes \(h \) has a left neutral element \(\epsilon \) (i.e. \(h \epsilon x = x \)) and one starts with \(s = \epsilon \).

(a) Define the function \(\text{Fit} \) in Coq using the type positive to represent the number \(n \).
(b) Using the function nat_of_P which transforms an object in positive into the corresponding object in nat, give a specification for Fit which links \((\text{Fit } h s x p)\) with \(s\) and \((\text{it } h x (\text{nat_of_P } p))\).

(c) Give the main element of the proof that your implementation of Fit satisfies this specification.

(d) Deduce a function Pit which, given \(h, x,\) and \(p: \text{positive}\), computes \((\text{it } h x (\text{nat_of_P } p))\).

(e) Assuming addition on positive is given by a function Pplus, how to instantiate this scheme in order to compute \(x^n\) when both \(x\) and \(n\) are in the type positive?

2 Imperative programming and invariants (10 pts)

One introduces in WHY a logical environment for modeling finite sets with predicates to test membership and equality; a constant to represent the empty set, and logical operations to add (resp. remove) an element \(x\) to a set \(s\).

\[
\begin{align*}
\text{type} & \quad \text{set} \\
\text{logic} & \quad \text{emptyset} : \text{set} \\
& \quad \text{memset} : \text{int} \rightarrow \text{set} \rightarrow \text{prop} \quad (*x \text{ in } s *) \\
& \quad \text{eqset} : \text{set} \rightarrow \text{set} \rightarrow \text{prop} \quad (*\text{equality between sets} *) \\
& \quad \text{addset} : \text{int} \rightarrow \text{set} \rightarrow \text{set} \quad (*s + \{x\} *) \\
& \quad \text{remset} : \text{int} \rightarrow \text{set} \rightarrow \text{set} \quad (*s - \{x\} *)
\end{align*}
\]

One assumes that the usual properties relating these operations and predicates are given as axioms. On top of this theory, one introduces a reference of type set and operations to clear this set, add a (positive) element, and pick an element in a (non-empty) set.

One introduces the following WHY environment (named \(\Gamma_1\)):

\[
\begin{align*}
\text{parameter} & \quad s : \text{set ref} \\
\text{parameter} & \quad \text{clear} : \text{unit} \rightarrow \\
& \quad \{ \} \text{ unit writes } s \{ \text{eqset}(s, \text{emptyset}) \} \\
\text{parameter} & \quad \text{add} : x : \text{int} \rightarrow \\
& \quad \{ x \geq 0 \} \text{ unit writes } s \{ \text{eqset}(s, \text{addset}(x, s@)) \} \\
\text{parameter} & \quad \text{pick} : \text{unit} \rightarrow \\
& \quad \{ \not \text{eqset}(s, \text{emptyset}) \} \\
& \quad \text{int writes } s \\
& \quad \{ \text{memset}(\text{result}s@) \text{ and eqset}(s, \text{remset}(\text{result}s@)) \}
\end{align*}
\]

Reminder: in the post-condition of a function, \(s@\) designates the old value contained in reference \(s\) at the entry point of the function.

1. Let \(e\) be the WHY expression:

\[
\begin{align*}
\text{clear()} : \text{add}(2) : \text{add}(3) : \text{pick}()
\end{align*}
\]

Justify that the post-condition \(\{ \text{result } = 2 \text{ or result } = 3 \}\) is satisfied after this expression is executed.

2. Assume there is another function \(\text{add'}\) with a different specification

\[
\begin{align*}
\text{parameter} & \quad \text{add'} : x : \text{int} \rightarrow \text{unit writes } s \{ \text{eqset}(s, \text{addset}(x, s@)) \}
\end{align*}
\]

Explain why using \(\text{add'}\) instead of \(\text{add}\) does not change the behavior of the expression \(e\).
3. More generally, let \(e \) be an expression that satisfies a post-condition \(R \) in an environment with a function \(f \) and which possibly writes variable in a set \(V \):

\[
\text{parameter } f : x : \tau \to \{ P(\text{vars}) \} \sigma \text{ writes vars } \{ Q(x.\text{result}.\text{vars}@.\text{vars}) \}
\]

Assume there is another function

\[
\text{parameter } f' : x : \tau \to \{ P'(\text{vars'}) \} \sigma \text{ writes vars'} \{ Q'(x.\text{result}.\text{vars}@'.\text{vars'}) \}
\]

Explain the conditions on the properties \(P, Q, P', Q' \), and the sets of references \(\text{vars} \) and \(\text{vars'} \) such that the parameter \(f \) can be replaced by \(f' \) without changing the behavior of \(e \).

4. One introduces the property

\[
\text{predicate } \text{Inv}(s : \text{set}) = \forall n : \text{int}. \text{memset}(n, s) \to n \geq 0
\]

Show that the functions clear, add, and pick, also satisfy the specification where \(\text{Inv}(s) \) is added both in pre and post-conditions (only in post for the clear function). Namely the same implementations could be given the specifications:

\[
\text{parameter } \text{clear} : \text{unit} \to \\
\{ \} \text{unit writes s } \{ \text{eqset}(s.\text{emptyset}) \text{ and } \text{Inv}(s) \}
\]

\[
\text{parameter } \text{add} : x : \text{int} \to \\
\{ x \geq 0 \text{ and } \text{Inv}(s) \} \text{unit writes s } \{ \text{eqset}(s.\text{addset}(x,s@)) \text{ and } \text{Inv}(s) \}
\]

\[
\text{parameter } \text{pick} : \text{unit} \to \\
\{ \text{not eqset}(s.\text{emptyset}) \text{ and } \text{Inv}(s) \}
\]

\[
\text{int writes s} \\
\{ \text{memset}(\text{result}.s@) \text{ and eqset}(s.\text{remset}(\text{result}.s@)) \text{ and } \text{Inv}(s) \}
\]

We call \(\Gamma_2 \) this new environment.

5. Show that if \(e \) is an expression well-formed in the initial environment \(\Gamma_1 \) that establishes the post-condition \(R \), and if \(e \) does not contain an assignment of the form \(s := b \) then it can be run in the environment \(\Gamma_2 \) of question ?? and assuming the pre-condition \(\text{Inv}(s) \), the expression \(e \) will establish the post-condition (\(R \text{ and } \text{Inv}(s) \)). The expression \(e \) is supposed to be built using application of functions, conditionals, sequences, and assignments. The only functions doing effects on the parameter \(s \) are clear, add, and pick.

6. Give an example of expression \(e \) that contains an assignment on \(s \) and such that the program \(e \) is correct in the environment \(\Gamma_1 \) but fails in the environment \(\Gamma_2 \).

7. In order to allow arbitrary updates, one introduces a boolean variable \(\text{invb} \) which, when true, ensures the invariant is satisfied. So we have the environment:

\[
\text{parameter } \text{invb} : \text{bool ref} \\
\text{parameter } \text{clear} : \text{unit} \to \\
\{ \} \text{unit writes s } \{ \text{eqset}(s.\text{emptyset}) \text{ and } \text{Inv}(s) \}
\]

\[
\text{parameter } \text{add} : x : \text{int} \to \\
\{ x \geq 0 \text{ and } \text{Inv}(s) \text{ and } \text{invb} = \text{true} \} \\
\text{unit writes s} \\
\{ \text{eqset}(s.\text{addset}(x,s@)) \text{ and } \text{Inv}(s) \}
\]

\[
\text{parameter } \text{pick} : \text{unit} \to \\
\{ \text{not eqset}(s.\text{emptyset}) \text{ and } \text{Inv}(s) \text{ and } \text{invb} = \text{true} \}
\]
\begin{verbatim}
int writes s
 { memset(result.s@) and eqset(s,remset(result.s@)) and Inv(s) }

parameter update : u : set →
 { invb = false } unit writes s { eqset(s,u) }

We also add two functions which change the value of invb. The parameter invb can be
set to true only when the invariant is proven.

parameter pack : unit → { Inv(s) } unit writes invb { invb = true }
parameter unpack : unit → { } unit writes invb { invb = false }

Show that any expression e well-formed in that environment (using update, pack, unpack
as well as add, clear, pick) and which does not assign directly s and invb preserves the
property invb = true → Inv(s).

3 Impredicative and inductive encodings of sum (4 pts)

One considers an environment

Variable A : Set.
Variable P : A → Set.

In this environment, an impredicative encoding of an indexed sum is given by:

Definition sum := forall C : Set, (forall x : A, P x → C) → C.

1. Write a Coq term sumi of type forall x : A, P x → sum and another of type sum → A.

2. Write the indexed sum as an inductive definition named sumind.

3. Write a Coq term ind of type sumind → A and a term of type:
 forall (p : sumind), P (ind p).

4. Using ind, propose a new term pi of type sum → A such that forall (p : sum), P (pi p) is
 also provable.

Reminder

Weakest precondition computation

The weakest precondition WP(i, Q) can be computed by induction on i:

WP(x := e, Q) = Q[x ← e]
WP(i₁; i₂, Q) = WP(i₁, WP(i₂, Q))
WP(if e then i₁ else i₂, Q) = (e = true ⇒ WP(i₁, Q)) ∧ (e = false ⇒ WP(i₂, Q))
WP(f e, Q) = pre(f)[x ← e] ∧ (∀result ω, (post(f)[x ← e] ⇒ Q))[ws @ ← ω]
\end{verbatim}