Exam course 2-7-2 Proof assistants
Tuesday March 1 2011

The subject is ?? pages long. The exam lasts 2 hours. Hand-written course notes and other course material distributed this year are the only documents that you can use. The exercises can be solved independently.

Exercises 1 and 3 require to write Coq terms and proofs; we allow flexibility regarding the syntax used as long as there is no ambiguity on its meaning.

1 Programming with Coq: a binary scheme (9 pts)

The type positive in Coq is a representation of non-null natural numbers in a binary format. More precisely, there is a constant constructor xH which represents the natural number 1 and two constructors xI and xO which take a positive and return a positive. If p is a positive which represents the natural number n then xI p represents 2n + 1 and xO p represents 2n.

1. Write in Coq the inductive definition of positive and give the type of the corresponding induction principle on the sort Type.

2. Given a set A and a binary operation h on A, one defines for each x in A and 0 < n, the iterated composition h^n x of h by recursion on n ∈ nat:

 h^1 x = x \quad h^{n+1} x = h (h^n x)

Define in Coq a term it that, given h, x, n, computes h^n x.

3. From now on, one assumes that h is associative. Prove in Coq that

 ∀ x n, 0 < n → h^{2n} x = h^n (h x x)

4. The type positive gives a fast algorithm to compute h^n x using the properties:

 h^{2n} x = h^n (h x x) \quad h^{2n+1} x = h x (h^n (h x x))

To obtain a terminal recursive version, one introduces an extra variable s as accumulator. The fast iteration Fit uses the algorithm:

 Fit h s x 1 = h s x
 Fit h s x (2n) = Fit h (h x x) n
 Fit h s x (2n + 1) = Fit h (h s x) (h x x) n

One assumes h has a left neutral element ϵ (i.e. h ϵ x = x) and one starts with s = ϵ.

 (a) Define the function Fit in Coq using the type positive to represent the number n.
(b) Using the function `nat_of_P` which transforms an object in `positive` into the corresponding object in `nat`, give a specification for `Fit` which links `(Fit h s x p)` with `s` and `(it h x (nat_of_P p))`

(c) Give the main element of the proof that your implementation of `Fit` satisfies this specification.

(d) Deduce a function `Pit` which, given `h`, `x`, and `p : positive`, computes `(it h x (nat_of_P p))`

(e) Assuming addition on `positive` is given by a function `Pplus`, how to instantiate this scheme in order to compute `x^n` when both `x` and `n` are in the type `positive`?

2 Imperative programming and invariants (10 pts)

One introduces in WHY a logical environment for modeling finite sets with predicates to test membership and equality; a constant to represent the empty set, and logical operations to add (resp. remove) an element `x` to a set `s`.

```
type set
logic emptyset : set
logic memset : int . set → prop (* x in s *)
logic eqset : set . set → prop (* equality between sets *)
logic addset : int . set → set (* s + {x} *)
logic remset : int . set → set (* s - {x} *)
```

One assumes that the usual properties relating these operations and predicates are given as axioms. On top of this theory, one introduces a reference of type `set` and operations to clear this set, add a (positive) element, and pick an element in a (non-empty) set.

One introduces the following WHY environment (named Γ₁):

```
parameter s : set ref
parameter clear : unit →
   { { } unit writes s { eqset(s,emptyset) } }
parameter add : x : int →
   { x ≥ 0 } unit writes s { eqset(s,addset(x,s@)) } }
parameter pick : unit →
   { not eqset(s,emptyset) }
   int writes s
   { memset(result,s@) and eqset(s,remset(result,s@)) } }
```

Reminder: in the post-condition of a function, `s@` designates the old value contained in reference `s` at the entry point of the function.

1. Let `e` be the WHY expression:
 `clear() ; add(2) ; add(3) ; pick()`

 Justify that the post-condition `{ result = 2 or result = 3 }` is satisfied after this expression is executed.

2. Assume there is another function `add'` with a different specification
 `parameter add' : x : int → unit writes s { eqset(s,addset(x,s@)) }`

 Explain why using `add'` instead of `add` does not change the behavior of the expression `e`.

2
3. More generally, let e be an expression that satisfies a post-condition R in an environment with a function f and which possibly writes variable in a set V:

```
parameter f: x : tau → 
    { P(vars) } sigma writes vars { Q(x.result.vars0,var@).vars } 
```

Assume there is another function

```
parameter f': x : tau → 
    { P'(vars') } sigma writes vars' { Q'(x.result.vars'0,.vars') } 
```

Explain the conditions on the properties P, Q, P', Q', and the sets of references $vars$ and $vars'$ such that the parameter f can be replaced by f' without changing the behavior of e.

4. One introduces the property

```
predicate Inv(s : set) = forall n : int. memset(n,s) → n ≥ 0
```

Show that the functions clear, add, and pick, also satisfy the specification where $\text{Inv}(s)$ is added both in pre and post-conditions (only in post for the clear function). Namely the same implementations could be given the specifications:

```
parameter clear: unit → 
    { } unit writes s { eqset(s.emptyset) and Inv(s) }
parameter add : x : int → 
    { x ≥ 0 and Inv(s) } unit writes s { eqset(s.addset(x,s@)) and Inv(s) }
parameter pick: unit → 
    { not eqset(s.emptyset) and Inv(s) } 
    int writes s 
    { memset(result.s@) and eqset(s.remset(result.s@)) and Inv(s) }
```

We call Γ_2 this new environment.

5. Show that if e is an expression well-formed in the initial environment Γ_1 that establishes the post-condition R, and if e does not contain an assignment of the form $s:=b$ then it can be run in the environment Γ_2 of question ?? and assuming the pre-condition $\text{Inv}(s)$, the expression e will establish the post-condition ($R \text{ and } \text{Inv}(s)$). The expression e is supposed to be built using application of functions, conditionals, sequences, and assignments. The only functions doing effects on the parameter s are clear, add, and pick.

6. Give an example of expression e that contains an assignment on s and such that the program e is correct in the environment Γ_1 but fails in the environment Γ_2.

7. In order to allow arbitrary updates, one introduces a boolean variable invb which, when true, ensures the invariant is satisfied. So we have the environment:

```
parameter invb: bool ref
parameter clear: unit → 
    { } unit writes s { eqset(s.emptyset) and Inv(s) }
parameter add : x : int → 
    { x ≥ 0 and Inv(s) and invb = true } 
    unit writes s 
    { eqset(s.addset(x,s@)) and Inv(s) }
parameter pick: unit → 
    { not eqset(s.emptyset) and Inv(s) and invb = true }
```
```coq
int writes s
{ memset(result.s@) and eqset(s,remset(result.s@)) and Inv(s) }

parameter update: u : set ->
{ invb = false } unit writes s { eqset(s,u) }
```

We also add two functions which change the value of invb. The parameter invb can be set to true only when the invariant is proven.

```coq
parameter pack : unit -> { Inv(s) } unit writes invb { invb = true }
parameter unpack : unit -> {} unit writes invb { invb = false }
```

Show that any expression e well-formed in that environment (using update, pack, unpack as well as add, clear, pick) and which does not assign directly s and invb preserves the property invb = true -> Inv(s).

3 Impredicative and inductive encodings of sum (4 pts)

One considers an environment

Variable A : Set.
Variable P : A -> Set.

In this environment, an impredicative encoding of an indexed sum is given by:

Definition sum := forall C : Set, (forall x : A, P x -> C) -> C.

1. Write a Coq term sumi of type forall x:A, P x -> sum and another of type sum -> A.
2. Write the indexed sum as an inductive definition named sumind.
3. Write a Coq term ind of type sumind -> A and a term of type:
   ```coq```
   forall (p : sumind), P (ind p).
   ```coq```
4. Using ind, propose a new term pi of type sum -> A such that forall (p : sum), P (pi p) is also provable.

Reminder

Weakest precondition computation

The weakest precondition $WP(i, Q)$ can be computed by induction on i:

- $WP(x := e, Q) = Q[x ← e]$
- $WP(i_1; i_2, Q) = WP(i_1, WP(i_2, Q))$
- $WP(\text{if } e \text{ then } i_1 \text{ else } i_2, Q) = (e = \text{true} \Rightarrow WP(i_1, Q)) \land (e = \text{false} \Rightarrow WP(i_2, Q))$
- $WP(f e, Q) = \text{pre}(f)[x ← e] \land (\forall \omega. (\text{post}(f)[x ← e] \Rightarrow Q)) [\omega@ ← \omega]$