1 Proof by structural induction

Consider the definition of lists (already in the prelude):

```
Require Import List.
Inductive list (A : Type) : Type :=
  nil : list A | cons : A -> list A -> list A
```

1- Implement a function `belast : nat -> list nat -> list nat` such that:

- `belast x nil = nil`
- `belast x (cons y l) = cons x (belast y l)`

2- Show the following statement:

```
Lemma length_belast (x : nat) (s : list nat) : length (belast x s) = length s.
```

3- Implement a function `skip : list nat -> list nat` such that:

- `skip nil = nil`
- `skip cons x nil = nil`
- `skip cons x (cons y nil) = skip (cons y nil)`

4- Show the following statement:

```
Lemma length_skip l :
   2 * length (skip l) <= length l.
```

2 Termination of fixpoints

Are the following fixpoints well-founded in CCI ? explain why ?

```
Fixpoint leq (n p : nat) {struct n} : bool :=
  match n with
  | O => true
  | S n' => match p with O => false | S p' => leq n' p' end end.

Definition exp (p:nat) :=
  (fix f (n:nat) : nat :=
     match leq p n with
     | true => 0 | false => f (S n) + f (S n) end
   end)

Definition ackermann := fix f (n:nat) : nat -> nat :=
  match n with
  | 0 => S
  | S n' => fix g (m:nat) : nat :=
             match m with
             | 0 => f n' (S 0)
             | S m' => f n' (g m')
         end
  end.
```
3 Strong elimination

Let \(t_1 \) and \(t_2 \) be two arbitrary terms of type \(T_1 \) and \(T_2 \). Is the following function typable?

\[
\text{Definition } \ g \ (b : \text{bool}) := \ \text{match } b \ \text{with } \ true \Rightarrow t_1 \ \text{|} \ false \Rightarrow t_2 \ \text{end.}
\]

If yes, give the corresponding return clause.

4 The type \(W \) of well-founded trees

The type \(W \) of well-founded trees is parameterised by a type \(A \) and a family of types \(B : A \rightarrow \text{Type} \). It has only one constructor and is defined by:

\[
\text{Inductive } \ W \ (A : \text{Type}) \ (B : A \rightarrow \text{Type}) : \text{Type} := \\
\quad \text{node} : \ \forall a : A, \ (B \ a \rightarrow W \ A \ B) \rightarrow W \ A \ B.
\]

The type \(A \) is used to parameterised the nodes and the type \(B \ a \) give the arity of the node parameterised by \(a \).

1. Give the type of dependent elimination for type \(W \) on sort \(\text{Type} \).

2. In order to encode the type \(\text{nat} \) of natural numbers with \(0 \) and \(S \), we need two types of nodes. We take \(A = \text{bool} \). The constructor \(0 \) corresponds to \(a = \text{false} \), it does not expect any argument so we take \(B \text{false} = \text{empty} \). The constructor \(S \) corresponds to \(a = \text{true} \), it takes one argument, we define \(B \text{true} = \text{unit} \).

Using this encoding, give the terms corresponding to \(\text{nat} \), \(O \) et \(S \).

3. Propose an encoding using \(W \) for the type \(\text{tree} \) of binary trees parameterised by a type of values \(V \), which means that we have a constructor \(\text{leaf} \) of type \((\text{tree} \ V) \) and a constructor \(\text{bin} \) of type \(\text{tree} \ V \rightarrow V \rightarrow \text{tree} \ V \rightarrow \text{tree} \ V \). Define the type and its constructors using this encoding.

4. Given a variable \(n \) of type \(\text{nat} \), build two functions \(f_1 \) and \(f_2 \) of type \(\text{unit} \rightarrow \text{nat} \) such that \(\forall x : \text{unit} \), \(f_1 \ x = n \) is provable but such that \(f_1 \) and \(f_2 \) are not convertible.

5. Which consequence does it have on the encoding of \(\text{nat} \) using \(W \)? Propose an equality on the type \(W \) which solves this problem.