1 Proof by structural induction

Consider the definition of lists (already in the prelude):

\begin{verbatim}
Require Import List.
Inductive list (A : Type) : Type :=
 nil : list A | cons : A -> list A -> list A
\end{verbatim}

1- Implement a function \(\text{belast} : \text{nat} \to \text{list nat} \to \text{list nat} \) such that:
\begin{itemize}
 \item \(\text{belast} x \text{nil} = \text{nil} \)
 \item \(\text{belast} x (\text{cons} y l) = \text{cons} x (\text{belast} y l) \)
\end{itemize}

2- Show the following statement:
\begin{verbatim}
Lemma length_belast (x : nat) (s : list nat) : length (belast x s) = length s.
\end{verbatim}

3- Implement a function \(\text{skip} : \text{list nat} \to \text{list nat} \) such that:
\begin{itemize}
 \item \(\text{skip} \text{nil} = \text{nil} \)
 \item \(\text{skip} \text{cons} x \text{nil} = \text{nil} \)
 \item \(\text{skip} \text{cons} x (\text{cons} y \text{nil}) = \text{skip} (\text{cons} y \text{nil}) \)
\end{itemize}

4- Show the following statement:
\begin{verbatim}
Lemma length_skip l :
 2 * length (skip l) \leq length l.
\end{verbatim}

2 Termination of fixpoints

Are the following fixpoints well-founded in CCI? explain why?

\begin{verbatim}
Fixpoint leq (n p : nat) {struct n} : bool :=
 match n with
 | O => true
 | S n' => match p with O => false | S p' => leq n' p' end
end.
Definition exp (p:nat) :=
 (fix f (n:nat) : nat :=
 match leq p n with
 | true => S 0 | false => f (S n) + f (S n) end)
0.
Definition ackermann :=
 fix f (n:nat) : nat :=
 match n with
 | O => S
 | S n' => fix g (m:nat) : nat :=
 match m with
 | O => f (n' (S 0))
 | S m' => f (n' (g m'))
 end
end.
\end{verbatim}
3 Strong elimination

Let \(t_1 \) and \(t_2 \) be two arbitrary terms of type \(T_1 \) and \(T_2 \). Is the following function typable?

Definition \(g (b : \text{bool}) := \text{match } b \text{ with } \text{true } \Rightarrow t_1 \mid \text{false } \Rightarrow t_2 \text{ end.} \)

If yes, give the corresponding return clause.

4 The type \(W \) of well-founded trees

The type \(W \) of well-founded trees is parameterised by a type \(A \) and a family of types \(B : A \rightarrow \text{Type} \). It has only one constructor and is defined by:

\[
\text{Inductive } W (A: \text{Type}) (B:A \rightarrow \text{Type}) : \text{Type} := \\
\text{node : forall (a:A), (B a \rightarrow W A B) \rightarrow W A B.}
\]

The type \(A \) is used to parameterised the nodes and the type \(B a \) give the arity of the node parameterised by \(a \).

1. Give the type of dependent elimination for type \(W \) on sort \(\text{Type} \).

2. In order to encode the type \text{nat} of natural numbers with 0 and \(S \), we need two types of nodes. We take \(A = \text{bool} \). The constructor 0 corresponds to \(a = \text{false}, \) it does not expect any argument so we take \(B \text{false} = \text{empty} \). The constructor \(S \) corresponds to \(a = \text{true} \), it takes one argument, we define \(B \text{true} = \text{unit} \).

Using this encoding, give the terms corresponding to \text{nat}, \text{O} et \text{S}.

3. Propose an encoding using \(W \) for the type \text{tree} of binary trees parameterised by a type of values \(V \), which means that we have a constructor \text{leaf} of type \(\text{tree} V \) and a constructor \text{bin} of type \(\text{tree} V \rightarrow V \rightarrow \text{tree} V \rightarrow \text{tree} V \). Define the type and its constructors using this encoding.

4. Given a variable \(n \) of type \text{nat}, build two functions \(f_1 \) and \(f_2 \) of type \text{unit} \rightarrow \text{nat} such that \(\forall x : \text{unit}, f_1 x = n \) is provable but such that \(f_1 \) and \(f_2 \) are not convertible.

5. Which consequence does it have on the encoding of \text{nat} using \(W \)? Propose an equality on the type \(W \) which solves this problem.