
Proof Assistants – TP. 4

Bruno Barras

Jan 12, 2017

1 Proof by structural induction

Consider the definition of lists (already in the prelude):

Require Import L i s t .
Inductive l i s t (A : Type) : Type :=

n i l : l i s t A | cons : A→ l i s t A→ l i s t A

1- Implement a function belast : nat -> list nat -> list nat such that:

• belast x nil = nil

• belast x (cons y l) = cons x (belast y l)

2- Show the following statement:

Lemma l ength be last (x : nat) (s : l i s t nat) : length (be last x s) = length s .

3- Implement a function skip : list nat -> list nat such that:

• skip nil = nil

• skip cons x nil = nil

• skip cons x (cons y nil) = skip (cons y nil)

4- Show the following statement:

Lemma l ength sk ip l :
2 ∗ length (skip l) ≤ length l .

2 Termination of fixpoints

Are the following fixpoints well-founded in CCI ? explain why ?

Fixpoint leq (n p : nat) { st ruct n} : bool :=
match n with
| O⇒ true
| S n ’ ⇒ match p with O⇒ f a l s e | S p ’ ⇒ leq n ’ p ’ end
end .

Definit ion exp (p : nat) :=
(f i x f (n : nat) : nat :=
match leq p n with | true ⇒ S 0 | f a l s e ⇒ f (S n) + f (S n) end)
0.

Definit ion ackermann := f i x f (n : nat) : nat → nat := match n with
| O⇒ S
| S n ’ ⇒ f i x g (m: nat) : nat := match m with

| O⇒ f n ’ (S O)
| S m’ ⇒ f n ’ (g m’)
end

end .

1

3 Strong elimination

Let t1 and t2 be two arbitrary terms of type T1 and T2. Is the following function typable ?

Definit ion g (b : bool) := match b with true ⇒ t1 | f a l s e ⇒ t2 end .

If yes, give the corresponding return clause.

4 The type W of well-founded trees

The type W of well-founded trees is parameterised by a type A and a family of types B : A→ Type. It has
only one constructor and is defined by :

Inductive W (A:Type) (B:A→ Type) : Type :=
node : f o r a l l (a :A) , (B a →W A B) →W A B.

The type A is used to parameterised the nodes and the type B a give the arity of the node parameterised
by a.

1. Give the type of dependent elimination for type W on sort Type.

2. In order to encode the type nat of natural numbers with O and S, we need two types of nodes. We
take A = bool. The constructor O corresponds to a = false, it does not expect any argument so we
take B false = empty. The constructor S corresponds to a = true, it takes one argument, we define
B true = unit.
Using this encoding, give the terms corresponding to nat, O et S.

3. Propose an encoding using W for the type tree of binary trees parameterised by a type of values
V , which means that we have a constructor leaf of type (treeV) and a constructor bin of type
treeV → V → treeV → treeV . Define the type and its constructors using this encoding.

4. Given a variable n of type nat, build two functions f1 and f2 of type unit → nat such that ∀x :
unit, fi x = n is provable but such that f1 and f2 are not convertible.

5. Which consequence does it have on the encoding of nat using W? Propose an equality on the type W
which solves this problem.

2

