1 Short overview of the Gallina specification language

1.1 Main commands

- **Definition** c : ty := def.
 Extends context with symbol c as a short-hand for term def of type ty. The type (and :) may be omitted.

- **Definition** c (x1:ty1) (x2:ty2) : ty := def.
 The same for a parameterized definition. The type of the parameters can be omitted (Definition c x1 x2 := ...).

- **Axiom** c : ty. or **Parameter** c : ty.
 Extends the context with an uninterpreted symbol c of the given type.

- **Lemma** c : ty.
 Starts a proof of statement (or type) ty. It is followed by a sequence of commands, called tactics, that incrementally build a term of this type. When the proof is completed, the command Qed. (or Defined.) must be used and a symbol c is added to the context. Its definition is the term built by the tactics.

- **Print** c.
 Prints the definition of symbol c.

- **Check** trm
 Type-checks and prints the type of the given term.

- **Eval compute in** trm
 Type-checks and evaluates the given term to a normal form according to all reduction rules.

1.2 Terms

The syntax of term is an extension of the \(\lambda\)-calculus.

<table>
<thead>
<tr>
<th>(\lambda)-abstraction</th>
<th>application</th>
<th>arrow type</th>
<th>dependent product</th>
</tr>
</thead>
<tbody>
<tr>
<td>fun (x:ty) => body</td>
<td>f arg1 arg2</td>
<td>A -> B</td>
<td>forall x:A, B</td>
</tr>
</tbody>
</table>

Here again, the type of the variable introduced by the \(\lambda\)-abstraction or dependent product can be omitted.

The constant **Type** plays the role of the type of types.

Logical formulas are typed by the sort **Prop**, which is a subtype of **Type**, i.e. every term with type **Prop** also has type **Type**.

Coq uses notations for legibility, whose display can be controlled using **Set/Unset Printing Notations**.
When Coq starts, its context already contains some useful definitions (called the prelude). It includes propositional logic and the definitions of naturals and booleans seen in the lecture.

2 Propositional and predicate logic

The standard connectives (in \texttt{Prop}) are defined as follows:

<table>
<thead>
<tr>
<th>connective</th>
<th>type</th>
<th>intro rule</th>
<th>elimination rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>trivial proposition</td>
<td>True</td>
<td>I</td>
<td>True_ind</td>
</tr>
<tr>
<td>absurd proposition</td>
<td>False</td>
<td>False_ind</td>
<td>and_ind</td>
</tr>
<tr>
<td>conjunction</td>
<td>A /\ B (and)</td>
<td>conj</td>
<td>or_introl or_intror</td>
</tr>
<tr>
<td>disjunction</td>
<td>A \ B (or)</td>
<td></td>
<td>or_ind</td>
</tr>
<tr>
<td>negation</td>
<td>\neg A (not)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using the \texttt{Print} command, obtain their definitions, then write the proof terms for the following definitions:

Definition \texttt{imp_id} (A : Prop) : A -> A := ..
Definition \texttt{imp_trans} (A B C : Prop) : (A -> B) -> (B -> C) -> (A -> C) := ..
Definition \texttt{disj_comm} (A B : Prop) : (A \ B) -> (B \ A) := ...

2.1 Tactics

Using the command \texttt{Lemma} instead of \texttt{Definition}, one enters an interactive proof mode allowing to build a proof term for the type of the lemma incrementaly, using tactics. As proof terms correspond to logical rules, in this mode we focus on the use of logical rules and let the system build the proof term for us. A tactic corresponds to the application of one or more logical rules to a sequent.

The introduction and elimination rules for the standard connectives are implemented by the following tactics:

assumption
destruct H
split
left, right
intro, intros
apply H
\texttt{Axiom}

\texttt{A\ elim}, \texttt{\lor\ elim}, \texttt{\neg\ elim}

\texttt{\lor\ intro}, \texttt{T\ intro}

\texttt{\lor\ intro}

\texttt{\Rightarrow\ intro}, \texttt{\neg\ intro}

\texttt{\Rightarrow\ elim}, \texttt{Axiom}

2.2 Propositional tautologies

Using tactics, prove the following tautologies:

Parameter A B : Prop.
Lemma \texttt{A impA} : A -> A.
...
Lemma \texttt{imp_trans} : (A -> B) -> (B -> C) -> A -> C.
...
Lemma \texttt{and
comm} : A \ B -> B \ A.
...

Print the proofs obtained for \texttt{A impA} and \texttt{imp_trans}. What are these terms ?

If you have time, you can try to prove more tautologies:

- A -> \neg A
- (A \ B) \ C -> A \ C \ B \ C
- A <-> A First observe the definition of \texttt{iff} underlying the notation.
2.3 Drinker’s paradox

The prelude also contains definitions for the predicate calculus:

<table>
<thead>
<tr>
<th>universal quantification</th>
<th>(\text{forall } x:A, B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>existential quantification</td>
<td>(\text{exists } x:A, B)</td>
</tr>
</tbody>
</table>

and the corresponding rules:

<table>
<thead>
<tr>
<th>(\text{destruct } H)</th>
<th>(\exists)-elim</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\exists \text{ trm})</td>
<td>(\exists)-intro</td>
</tr>
<tr>
<td>(\text{intro, intros})</td>
<td>(\forall)-intro</td>
</tr>
<tr>
<td>(\text{apply } H)</td>
<td>(\forall)-elim</td>
</tr>
</tbody>
</table>

Consider the following statement: “Consider a room with at least one person. There exists a person such that if he drinks, then everybody drinks”.

Write the assumptions and the statement of the problem, including a type representing the persons, and a predicate of persons that drink (those are axioms/parameters). The proof of this proposition requires the excluded-middle, which can be equivalently stated as for all \(P: \text{Prop} \), \(P \lor \neg P \) or for all \(P: \text{Prop} \), \(\neg \neg P \rightarrow P \). Prove that the 2 formulations are indeed equivalent, and that the drinker’s paradox can be proved using excluded-middle.